Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [80]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate [27]. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).
Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. mGlu form constitutive dimers, cross-linked by a disulfide bridge. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [46,60,66,87]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organisation similar to that of other GPCRs, although the helices appear more compacted [11,15,92]. Recent advances in cryo-electron microscopy have provided structures of full-length mGlu receptor homodimers [43,49] and heterodimers [17]. Studies have revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [16]. First characterised in transfected cells, co-localisation and specific pharmacological properties suggest the existence of such heterodimers in the brain [29,50,58,62,70,94]. Beyond heteromerisation with other mGlu receptor subtypes, increasing evidence suggests mGlu receptors form heteromers and larger order complexes with class A GPCRs (reviewed in [27]).
The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [5] and antagonised by (S)-hexylhomoibotenic acid [53]. Group-II mGlu receptors may be activated by LY389795 [61], LY379268 [61], eglumegad [81,93], DCG-IV and (2R,3R)-APDC [82], and antagonised by eGlu [34] and LY307452 [20,91]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [23]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [39]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as ‘potentiators’ of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist.
mGlu1 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||
mGlu2 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||
mGlu3 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||
mGlu4 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||
mGlu5 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||
mGlu6 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||
mGlu7 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||
mGlu8 receptor C Show summary »« Hide summary More detailed page
|
* Key recommended reading is highlighted with an asterisk
Anwyl R. (2009) Metabotropic glutamate receptor-dependent long-term potentiation. Neuropharmacology, 56 (4): 735-40. [PMID:19705571]
Bird MK, Lawrence AJ. (2009) The promiscuous mGlu5 receptor--a range of partners for therapeutic possibilities?. Trends Pharmacol Sci, 30 (12): 617-23. [PMID:19892412]
Bradley SJ, Challiss RA. (2012) G protein-coupled receptor signalling in astrocytes in health and disease: a focus on metabotropic glutamate receptors. Biochem Pharmacol, 84 (3): 249-59. [PMID:22531220]
Chaki S. (2010) Group II metabotropic glutamate receptor agonists as a potential drug for schizophrenia. Eur J Pharmacol, 639 (1-3): 59-66. [PMID:20371240]
Chiechio S, Copani A, Zammataro M, Battaglia G, Gereau RW, Nicoletti F. (2010) Transcriptional regulation of type-2 metabotropic glutamate receptors: an epigenetic path to novel treatments for chronic pain. Trends Pharmacol Sci, 31 (4): 153-60. [PMID:20064669]
Conn PJ, Lindsley CW, Jones CK. (2009) Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol Sci, 30 (1): 25-31. [PMID:19058862]
Conn PJ, Pin JP. (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol, 37: 205-37. [PMID:9131252]
D'Antoni S, Berretta A, Bonaccorso CM, Bruno V, Aronica E, Nicoletti F, Catania MV. (2008) Metabotropic glutamate receptors in glial cells. Neurochem Res, 33 (12): 2436-43. [PMID:18438710]
Durand D, Pampillo M, Caruso C, Lasaga M. (2008) Role of metabotropic glutamate receptors in the control of neuroendocrine function. Neuropharmacology, 55 (4): 577-83. [PMID:18616955]
Duty S. (2010) Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson's disease. Br J Pharmacol, 161 (2): 271-87. [PMID:20735415]
* Ferraguti F, Shigemoto R. (2006) Metabotropic glutamate receptors. Cell Tissue Res, 326 (2): 483-504. [PMID:16847639]
Flor PJ, Acher FC. (2012) Orthosteric versus allosteric GPCR activation: the great challenge of group-III mGluRs. Biochem Pharmacol, 84 (4): 414-24. [PMID:22554564]
Gladding CM, Fitzjohn SM, Molnár E. (2009) Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol Rev, 61 (4): 395-412. [PMID:19926678]
Goudet C, Magnaghi V, Landry M, Nagy F, Gereau RW, Pin JP. (2009) Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev, 60 (1): 43-56. [PMID:19146876]
* Gregory KJ, Goudet C. (2021) International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev, 73 (1): 521-569. [PMID:33361406]
Julio-Pieper M, Flor PJ, Dinan TG, Cryan JF. (2011) Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol Rev, 63 (1): 35-58. [PMID:21228260]
Kim CH, Lee J, Lee JY, Roche KW. (2008) Metabotropic glutamate receptors: phosphorylation and receptor signaling. J Neurosci Res, 86 (1): 1-10. [PMID:17663464]
Krivoy A, Fischel T, Weizman A. (2008) The possible involvement of metabotropic glutamate receptors in schizophrenia. Eur Neuropsychopharmacol, 18 (6): 395-405. [PMID:18063347]
Marek GJ. (2010) Metabotropic glutamate2/3 (mGlu2/3) receptors, schizophrenia and cognition. Eur J Pharmacol, 639 (1-3): 81-90. [PMID:20371229]
Moreno JL, Sealfon SC, González-Maeso J. (2009) Group II metabotropic glutamate receptors and schizophrenia. Cell Mol Life Sci, 66 (23): 3777-85. [PMID:19707855]
Moussawi K, Kalivas PW. (2010) Group II metabotropic glutamate receptors (mGlu2/3) in drug addiction. Eur J Pharmacol, 639 (1-3): 115-22. [PMID:20371233]
* Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology, 60 (7-8): 1017-41. [PMID:21036182]
* Niswender CM, Conn PJ. (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol, 50: 295-322. [PMID:20055706]
O'Connor RM, Finger BC, Flor PJ, Cryan JF. (2010) Metabotropic glutamate receptor 7: at the interface of cognition and emotion. Eur J Pharmacol, 639 (1-3): 123-31. [PMID:20371242]
Olive MF. (2010) Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol, 639 (1-3): 47-58. [PMID:20371237]
Pilc A, Chaki S, Nowak G, Witkin JM. (2008) Mood disorders: regulation by metabotropic glutamate receptors. Biochem Pharmacol, 75 (5): 997-1006. [PMID:18164691]
* Pin JP, Bettler B. (2016) Organization and functions of mGlu and GABAB receptor complexes. Nature, 540 (7631): 60-68. [PMID:27905440]
Robichaud AJ, Engers DW, Lindsley CW, Hopkins CR. (2011) Recent progress on the identification of metabotropic glutamate 4 receptor ligands and their potential utility as CNS therapeutics. ACS Chem Neurosci, 2 (8): 433-49. [PMID:22860170]
* Rondard P, Goudet C, Kniazeff J, Pin JP, Prézeau L. (2011) The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein-coupled receptors. Neuropharmacology, 60 (1): 82-92. [PMID:20713070]
Schoepp DD, Alexander SP, Beart P, Conn PJ, Lodge D, Nakanishi S et al.. (2000) Metabotropic glutamate receptors. In IUPHAR Compendium of Receptor Characterization and Classification Edited by Watson SP, Girdlestone D (IUPHAR Press) 195-208.
Shin SS, Martino JJ, Chen S. (2008) Metabotropic glutamate receptors (mGlus) and cellular transformation. Neuropharmacology, 55 (4): 396-402. [PMID:18554669]
Simonyi A, Schachtman TR, Christoffersen GR. (2010) Metabotropic glutamate receptor subtype 5 antagonism in learning and memory. Eur J Pharmacol, 639 (1-3): 17-25. [PMID:20363219]
Tang FR, Bradford HF, Ling EA. (2009) Metabotropic glutamate receptors in the control of neuronal activity and as targets for development of anti-epileptogenic drugs. Curr Med Chem, 16 (17): 2189-204. [PMID:19519386]
Wierońska JM, Pilc A. (2009) Metabotropic glutamate receptors in the tripartite synapse as a target for new psychotropic drugs. Neurochem Int, 55 (1-3): 85-97. [PMID:19428811]
Wood MR, Hopkins CR, Brogan JT, Conn PJ, Lindsley CW. (2011) "Molecular switches" on mGluR allosteric ligands that modulate modes of pharmacology. Biochemistry, 50 (13): 2403-10. [PMID:21341760]
1. Anderson JJ, Rao SP, Rowe B, Giracello DR, Holtz G, Chapman DF, Tehrani L, Bradbury MJ, Cosford ND, Varney MA. (2002) [3H]Methoxymethyl-3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine binding to metabotropic glutamate receptor subtype 5 in rodent brain: in vitro and in vivo characterization. J Pharmacol Exp Ther, 303 (3): 1044-51. [PMID:12438526]
2. Barda DA, Wang ZQ, Britton TC, Henry SS, Jagdmann GE, Coleman DS, Johnson MP, Andis SL, Schoepp DD. (2004) SAR study of a subtype selective allosteric potentiator of metabotropic glutamate 2 receptor, N-(4-phenoxyphenyl)-N-(3-pyridinylmethyl)ethanesulfonamide. Bioorg Med Chem Lett, 14 (12): 3099-102. [PMID:15149652]
3. Bonnefous C, Vernier JM, Hutchinson JH, Chung J, Reyes-Manalo G, Kamenecka T. (2005) Dipyridyl amides: potent metabotropic glutamate subtype 5 (mGlu5) receptor antagonists. Bioorg Med Chem Lett, 15 (4): 1197-200. [PMID:15686941]
4. Bonnefous C, Vernier JM, Hutchinson JH, Gardner MF, Cramer M, James JK, Rowe BA, Daggett LP, Schaffhauser H, Kamenecka TM. (2005) Biphenyl-indanones: allosteric potentiators of the metabotropic glutamate subtype 2 receptor. Bioorg Med Chem Lett, 15 (19): 4354-8. [PMID:16046122]
5. Brabet I, Mary S, Bockaert J, Pin JP. (1995) Phenylglycine derivatives discriminate between mGluR1- and mGluR5-mediated responses. Neuropharmacology, 34 (8): 895-903. [PMID:8532171]
6. Brodkin J, Bradbury M, Busse C, Warren N, Bristow LJ, Varney MA. (2002) Reduced stress-induced hyperthermia in mGluR5 knockout mice. Eur J Neurosci, 16 (11): 2241-4. [PMID:12473093]
7. Bräuner-Osborne H, Sløk FA, Skjaerbaek N, Ebert B, Sekiyama N, Nakanishi S, Krogsgaard-Larsen P. (1996) A new highly selective metabotropic excitatory amino acid agonist: 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid. J Med Chem, 39 (16): 3188-94. [PMID:8759641]
8. Carroll FY, Stolle A, Beart PM, Voerste A, Brabet I, Mauler F, Joly C, Antonicek H, Bockaert J, Müller T et al.. (2001) BAY36-7620: a potent non-competitive mGlu1 receptor antagonist with inverse agonist activity. Mol Pharmacol, 59 (5): 965-73. [PMID:11306677]
9. Cho HP, Engers DW, Venable DF, Niswender CM, Lindsley CW, Conn PJ, Emmitte KA, Rodriguez AL. (2014) A novel class of succinimide-derived negative allosteric modulators of metabotropic glutamate receptor subtype 1 provides insight into a disconnect in activity between the rat and human receptors. ACS Chem Neurosci, 5 (7): 597-610. [PMID:24798819]
10. Chopra M, Yao Y, Blake TJ, Hampson DR, Johnson EC. (2009) The neuroactive peptide N-acetylaspartylglutamate is not an agonist at the metabotropic glutamate receptor subtype 3 of metabotropic glutamate receptor. J Pharmacol Exp Ther, 330 (1): 212-9. [PMID:19389924]
11. Christopher JA, Orgován Z, Congreve M, Doré AS, Errey JC, Marshall FH, Mason JS, Okrasa K, Rucktooa P, Serrano-Vega MJ et al.. (2019) Structure-Based Optimization Strategies for G Protein-Coupled Receptor (GPCR) Allosteric Modulators: A Case Study from Analyses of New Metabotropic Glutamate Receptor 5 (mGlu5) X-ray Structures. J Med Chem, 62 (1): 207-222. [PMID:29455526]
12. Chung DS, Traynelis SF, Murphy TJ, Conn PJ. (1997) 4-Methylhomoibotenic acid activates a novel metabotropic glutamate receptor coupled to phosphoinositide hydrolysis. J Pharmacol Exp Ther, 283 (2): 742-9. [PMID:9353394]
13. Clark BP, Baker SR, Goldsworthy J, Harris JR, Kingston AE. (1997) (+)-2-Methyl-4-carboxyphenylglycine (LY367385) selectively antagonises metabotropic glutamate mGluR1 receptors. Bioorg Med Chem Lett, 7 (21): 2777-2780. DOI: 10.1016/S0960-894X(97)10071-3
14. Costantino G, Maltoni K, Marinozzi M, Camaioni E, Prezeau L, Pin JP, Pellicciari R. (2001) Synthesis and biological evaluation of 2-(3'-(1H-tetrazol-5-yl) bicyclo[1.1.1]pent-1-yl)glycine (S-TBPG), a novel mGlu1 receptor antagonist. Bioorg Med Chem, 9 (2): 221-7. [PMID:11249114]
15. Doré AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, Errey JC, Jazayeri A, Khan S, Tehan B et al.. (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature, 511 (7511): 557-62. [PMID:25042998]
16. Doumazane E, Scholler P, Zwier JM, Trinquet E, Rondard P, Pin JP. (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J, 25 (1): 66-77. [PMID:20826542]
17. Du J, Wang D, Fan H, Xu C, Tai L, Lin S, Han S, Tan Q, Wang X, Xu T et al.. (2021) Structures of human mGlu2 and mGlu7 homo- and heterodimers. Nature, 594 (7864): 589-593. [PMID:34135509]
18. Engers DW, Niswender CM, Weaver CD, Jadhav S, Menon UN, Zamorano R, Conn PJ, Lindsley CW, Hopkins CR. (2009) Synthesis and evaluation of a series of heterobiarylamides that are centrally penetrant metabotropic glutamate receptor 4 (mGluR4) positive allosteric modulators (PAMs). J Med Chem, 52 (14): 4115-8. [PMID:19469556]
19. Engers JL, Rodriguez AL, Konkol LC, Morrison RD, Thompson AD, Byers FW, Blobaum AL, Chang S, Venable DF, Loch MT et al.. (2015) Discovery of a Selective and CNS Penetrant Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 3 with Antidepressant and Anxiolytic Activity in Rodents. J Med Chem, 58 (18): 7485-500. [PMID:26335039]
20. Escribano A, Ezquerra J, Pedregal C, Rubio A, Yruretagoyena B, Baker SR, Wright RA, Johnson BG, Schoepp DD. (1998) (2S,4S)-amino-4-(2,2-diphenylethyl)pentanedioic acid selective group 2 metabotropic glutamate receptor antagonist. Bioorg Med Chem Lett, 8 (7): 765-70. [PMID:9871538]
21. Fricker AC, Mok MH, de la Flor R, Shah AJ, Woolley M, Dawson LA, Kew JN. (2009) Effects of N-acetylaspartylglutamate (NAAG) at group II mGluRs and NMDAR. Neuropharmacology, 56 (6-7): 1060-7. [PMID:19285517]
22. Gasparini F, Andres H, Flor PJ, Heinrich M, Inderbitzin W, Lingenhöhl K, Müller H, Munk VC, Omilusik K, Stierlin C et al.. (2002) [(3)H]-M-MPEP, a potent, subtype-selective radioligand for the metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett, 12 (3): 407-9. [PMID:11814808]
23. Gasparini F, Bruno V, Battaglia G, Lukic S, Leonhardt T, Inderbitzin W, Laurie D, Sommer B, Varney MA, Hess SD, Johnson EC, Kuhn R, Urwyler S, Sauer D, Portet C, Schmutz M, Nicoletti F, Flor PJ. (1999) (R,S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist is anticonvulsive and neuroprotectivein vivo. J Pharmacol Exp Ther, 289: 1678-1687. [PMID:10336568]
24. Gasparini F, Lingenhöhl K, Stoehr N, Flor PJ, Heinrich M, Vranesic I, Biollaz M, Allgeier H, Heckendorn R, Urwyler S et al.. (1999) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology, 38 (10): 1493-503. [PMID:10530811]
25. Gee CE, Peterlik D, Neuhäuser C, Bouhelal R, Kaupmann K, Laue G, Uschold-Schmidt N, Feuerbach D, Zimmermann K, Ofner S et al.. (2014) Blocking metabotropic glutamate receptor subtype 7 (mGlu7) via the Venus flytrap domain (VFTD) inhibits amygdala plasticity, stress, and anxiety-related behavior. J Biol Chem, 289 (16): 10975-87. [PMID:24596089]
26. Goudet C, Vilar B, Courtiol T, Deltheil T, Bessiron T, Brabet I, Oueslati N, Rigault D, Bertrand HO, McLean H et al.. (2012) A novel selective metabotropic glutamate receptor 4 agonist reveals new possibilities for developing subtype selective ligands with therapeutic potential. FASEB J, 26 (4): 1682-93. [PMID:22223752]
27. Gregory KJ, Goudet C. (2021) International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev, 73 (1): 521-569. [PMID:33361406]
28. Gregory KJ, Noetzel MJ, Rook JM, Vinson PN, Stauffer SR, Rodriguez AL, Emmitte KA, Zhou Y, Chun AC, Felts AS et al.. (2012) Investigating metabotropic glutamate receptor 5 allosteric modulator cooperativity, affinity, and agonism: enriching structure-function studies and structure-activity relationships. Mol Pharmacol, 82 (5): 860-75. [PMID:22863693]
29. Habrian CH, Levitz J, Vyklicky V, Fu Z, Hoagland A, McCort-Tranchepain I, Acher F, Isacoff EY. (2019) Conformational pathway provides unique sensitivity to a synaptic mGluR. Nat Commun, 10 (1): 5572. [PMID:31804469]
30. Han G, Hampson DR. (1999) Ligand binding to the amino-terminal domain of the mGluR4 subtype of metabotropic glutamate receptor. J Biol Chem, 274 (15): 10008-13. [PMID:10187777]
31. Hellyer SD, Albold S, Wang T, Chen ANY, May LT, Leach K, Gregory KJ. (2018) "Selective" Class C G Protein-Coupled Receptor Modulators Are Neutral or Biased mGlu5 Allosteric Ligands. Mol Pharmacol, 93 (5): 504-514. [PMID:29514854]
32. Hemstapat K, Da Costa H, Nong Y, Brady AE, Luo Q, Niswender CM, Tamagnan GD, Conn PJ. (2007) A novel family of potent negative allosteric modulators of group II metabotropic glutamate receptors. J Pharmacol Exp Ther, 322 (1): 254-64. [PMID:17416742]
33. Jalan-Sakrikar N, Field JR, Klar R, Mattmann ME, Gregory KJ, Zamorano R, Engers DW, Bollinger SR, Weaver CD, Days EL et al.. (2014) Identification of positive allosteric modulators VU0155094 (ML397) and VU0422288 (ML396) reveals new insights into the biology of metabotropic glutamate receptor 7. ACS Chem Neurosci, 5 (12): 1221-37. [PMID:25225882]
34. Jane DE, Thomas NK, Tse HW, Watkins JC. (1996) Potent antagonists at the L-AP4- and (1S,3S)-ACPD-sensitive presynaptic metabotropic glutamate receptors in the neonatal rat spinal cord. Neuropharmacology, 35 (8): 1029-35. [PMID:9121605]
35. Johnson BG, Wright RA, Arnold MB, Wheeler WJ, Ornstein PL, Schoepp DD. (1999) [3H]-LY341495 as a novel antagonist radioligand for group II metabotropic glutamate (mGlu) receptors: characterization of binding to membranes of mGlu receptor subtype expressing cells. Neuropharmacology, 38 (10): 1519-29. [PMID:10530814]
36. Johnson MP, Baez M, Jagdmann Jr GE, Britton TC, Large TH, Callagaro DO, Tizzano JP, Monn JA, Schoepp DD. (2003) Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2- trifluoroethylsulfonyl)pyrid-3-ylmethylamine. J Med Chem, 46 (15): 3189-92. [PMID:12852748]
37. Johnson MP, Barda D, Britton TC, Emkey R, Hornback WJ, Jagdmann GE, McKinzie DL, Nisenbaum ES, Tizzano JP, Schoepp DD. (2005) Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s). Psychopharmacology (Berl.), 179 (1): 271-83. [PMID:15717213]
38. Kalinichev M, Rouillier M, Girard F, Royer-Urios I, Bournique B, Finn T, Charvin D, Campo B, Le Poul E, Mutel V et al.. (2013) ADX71743, a potent and selective negative allosteric modulator of metabotropic glutamate receptor 7: in vitro and in vivo characterization. J Pharmacol Exp Ther, 344 (3): 624-36. [PMID:23257312]
39. Kingston AE, Ornstein PL, Wright RA, Johnson BG, Mayne NG, Burnett JP, Belagaje R, Wu S, Schoepp DD. (1998) LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology, 37 (1): 1-12. [PMID:9680254]
40. Kinney GG, O'Brien JA, Lemaire W, Burno M, Bickel DJ, Clements MK, Chen TB, Wisnoski DD, Lindsley CW, Tiller PR et al.. (2005) A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. J Pharmacol Exp Ther, 313 (1): 199-206. [PMID:15608073]
41. Klein J, Iovino M, Vakil M, Shinozaki H, Löffelholz K. (1997) Ontogenetic and pharmacological studies on metabotropic glutamate receptors coupled to phospholipase D activation. Neuropharmacology, 36 (3): 305-11. [PMID:9175608]
42. Knoflach F, Mutel V, Jolidon S, Kew JN, Malherbe P, Vieira E, Wichmann J, Kemp JA. (2001) Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc Natl Acad Sci USA, 98 (23): 13402-7. [PMID:11606768]
43. Koehl A, Hu H, Feng D, Sun B, Zhang Y, Robertson MJ, Chu M, Kobilka TS, Laeremans T, Steyaert J et al.. (2019) Structural insights into the activation of metabotropic glutamate receptors. Nature, 566 (7742): 79-84. [PMID:30675062]
44. Kohara A, Toya T, Tamura S, Watabiki T, Nagakura Y, Shitaka Y, Hayashibe S, Kawabata S, Okada M. (2005) Radioligand binding properties and pharmacological characterization of 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-carboxamide (YM-298198), a high-affinity, selective, and noncompetitive antagonist of metabotropic glutamate receptor type 1. J Pharmacol Exp Ther, 315 (1): 163-9. [PMID:15976016]
45. Kolczewski S, Adam G, Stadler H, Mutel V, Wichmann J, Woltering T. (1999) Synthesis of heterocyclic enol ethers and their use as group 2 metabotropic glutamate receptor antagonists. Bioorg Med Chem Lett, 9 (15): 2173-6. [PMID:10465539]
46. Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K. (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature, 407 (6807): 971-7. [PMID:11069170]
47. Lavreysen H, Janssen C, Bischoff F, Langlois X, Leysen JE, Lesage AS. (2003) [3H]R214127: a novel high-affinity radioligand for the mGlu1 receptor reveals a common binding site shared by multiple allosteric antagonists. Mol Pharmacol, 63 (5): 1082-93. [PMID:12695537]
48. Lavreysen H, Wouters R, Bischoff F, Nóbrega Pereira S, Langlois X, Blokland S, Somers M, Dillen L, Lesage AS. (2004) JNJ16259685, a highly potent, selective and systemically active mGlu1 receptor antagonist. Neuropharmacology, 47 (7): 961-72. [PMID:15555631]
49. Lin S, Han S, Cai X, Tan Q, Zhou K, Wang D, Wang X, Du J, Yi C, Chu X et al.. (2021) Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature, 594 (7864): 583-588. [PMID:34135510]
50. Lin X, Fisher NM, Dogra S, Senter RK, Reed CW, Kalbfleisch JJ, Lindsley CW, Asher WB, Xiang Z, Niswender CM et al.. (2022) Differential activity of mGlu7 allosteric modulators provides evidence for mGlu7/8 heterodimers at hippocampal Schaffer collateral-CA1 synapses. J Biol Chem, 298 (10): 102458. [PMID:36063995]
51. Lindsley CW, Wisnoski DD, Leister WH, O'brien JA, Lemaire W, Williams Jr DL, Burno M, Sur C, Kinney GG, Pettibone DJ et al.. (2004) Discovery of positive allosteric modulators for the metabotropic glutamate receptor subtype 5 from a series of N-(1,3-diphenyl-1H- pyrazol-5-yl)benzamides that potentiate receptor function in vivo. J Med Chem, 47 (24): 5825-8. [PMID:15537338]
52. Litschig S, Gasparini F, Rueegg D, Stoehr N, Flor PJ, Vranesic I, Prézeau L, Pin JP, Thomsen C, Kuhn R. (1999) CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol Pharmacol, 55 (3): 453-61. [PMID:10051528]
53. Madsen U, Pickering DS, Nielsen B, Bräuner-Osborne H. (2005) 4-Alkylated homoibotenic acid (HIBO) analogues: versatile pharmacological agents with diverse selectivity profiles towards metabotropic and ionotropic glutamate receptor subtypes. Neuropharmacology, 49 Suppl 1: 114-9. [PMID:15996690]
54. Maj M, Bruno V, Dragic Z, Yamamoto R, Battaglia G, Inderbitzin W, Stoehr N, Stein T, Gasparini F, Vranesic I et al.. (2003) (-)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection. Neuropharmacology, 45 (7): 895-906. [PMID:14573382]
55. Malherbe P, Kratzeisen C, Lundstrom K, Richards JG, Faull RL, Mutel V. (1999) Cloning and functional expression of alternative spliced variants of the human metabotropic glutamate receptor 8. Brain Res Mol Brain Res, 67 (2): 201-10. [PMID:10216218]
56. Mannaioni G, Attucci S, Missanelli A, Pellicciari R, Corradetti R, Moroni F. (1999) Biochemical and electrophysiological studies on (S)-(+)-2-(3'-carboxybicyclo(1.1.1)pentyl)-glycine (CBPG), a novel mGlu5 receptor agonist endowed with mGlu1 receptor antagonist activity. Neuropharmacology, 38 (7): 917-26. [PMID:10428410]
57. Mathiesen JM, Svendsen N, Bräuner-Osborne H, Thomsen C, Ramirez MT. (2003) Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP. Br J Pharmacol, 138 (6): 1026-30. [PMID:12684257]
58. Meng J, Xu C, Lafon PA, Roux S, Mathieu M, Zhou R, Scholler P, Blanc E, Becker JAJ, Le Merrer J et al.. (2022) Nanobody-based sensors reveal a high proportion of mGlu heterodimers in the brain. Nat Chem Biol, 18 (8): 894-903. [PMID:35681029]
59. Mitsukawa K, Yamamoto R, Ofner S, Nozulak J, Pescott O, Lukic S, Stoehr N, Mombereau C, Kuhn R, McAllister KH et al.. (2005) A selective metabotropic glutamate receptor 7 agonist: activation of receptor signaling via an allosteric site modulates stress parameters in vivo. Proc Natl Acad Sci USA, 102 (51): 18712-7. [PMID:16339898]
60. Monn JA, Prieto L, Taboada L, Pedregal C, Hao J, Reinhard MR, Henry SS, Goldsmith PJ, Beadle CD, Walton L et al.. (2015) Synthesis and pharmacological characterization of C4-disubstituted analogs of 1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate: identification of a potent, selective metabotropic glutamate receptor agonist and determination of agonist-bound human mGlu2 and mGlu3 amino terminal domain structures. J Med Chem, 58 (4): 1776-94. [PMID:25602126]
61. Monn JA, Valli MJ, Massey SM, Hansen MM, Kress TJ, Wepsiec JP, Harkness AR, Grutsch Jr JL, Wright RA, Johnson BG et al.. (1999) Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J Med Chem, 42 (6): 1027-40. [PMID:10090786]
62. Moreno Delgado D, Møller TC, Ster J, Giraldo J, Maurel D, Rovira X, Scholler P, Zwier JM, Perroy J, Durroux T et al.. (2017) Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells. Elife, 6. [PMID:28661401]
63. Moroni F, Attucci S, Cozzi A, Meli E, Picca R, Scheideler MA, Pellicciari R, Noe C, Sarichelou I, Pellegrini-Giampietro DE. (2002) The novel and systemically active metabotropic glutamate 1 (mGlu1) receptor antagonist 3-MATIDA reduces post-ischemic neuronal death. Neuropharmacology, 42 (6): 741-51. [PMID:12015200]
64. Moroni F, Lombardi G, Thomsen C, Leonardi P, Attucci S, Peruginelli F, Torregrossa SA, Pellegrini-Giampietro DE, Luneia R, Pellicciari R. (1997) Pharmacological characterization of 1-aminoindan-1,5-dicarboxylic acid, a potent mGluR1 antagonist. J Pharmacol Exp Ther, 281 (2): 721-9. [PMID:9152378]
65. Mutel V, Ellis GJ, Adam G, Chaboz S, Nilly A, Messer J, Bleuel Z, Metzler V, Malherbe P, Schlaeger EJ et al.. (2000) Characterization of [(3)H]Quisqualate binding to recombinant rat metabotropic glutamate 1a and 5a receptors and to rat and human brain sections. J Neurochem, 75 (6): 2590-601. [PMID:11080213]
66. Muto T, Tsuchiya D, Morikawa K, Jingami H. (2007) Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci USA, 104 (10): 3759-64. [PMID:17360426]
67. Neale JH. (2011) N-acetylaspartylglutamate is an agonist at mGluR₃ in vivo and in vitro. J Neurochem, 119 (5): 891-5. [PMID:21740441]
68. Niswender CM, Johnson KA, Miller NR, Ayala JE, Luo Q, Williams R, Saleh S, Orton D, Weaver CD, Conn PJ. (2010) Context-dependent pharmacology exhibited by negative allosteric modulators of metabotropic glutamate receptor 7. Mol Pharmacol, 77 (3): 459-68. [PMID:20026717]
69. Niswender CM, Johnson KA, Weaver CD, Jones CK, Xiang Z, Luo Q, Rodriguez AL, Marlo JE, de Paulis T, Thompson AD et al.. (2008) Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol Pharmacol, 74 (5): 1345-58. [PMID:18664603]
70. Niswender CM, Jones CK, Lin X, Bubser M, Thompson Gray A, Blobaum AL, Engers DW, Rodriguez AL, Loch MT, Daniels JS et al.. (2016) Development and Antiparkinsonian Activity of VU0418506, a Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor 4 Homomers without Activity at mGlu2/4 Heteromers. ACS Chem Neurosci, 7 (9): 1201-11. [PMID:27441572]
71. Pellegrini-Giampietro DE, Torregrossa SA, Moroni F. (1996) Pharmacological characterization of metabotropic glutamate receptors coupled to phospholipase D in the rat hippocampus. Br J Pharmacol, 118 (4): 1035-43. [PMID:8799579]
72. Pellicciari R, Marinozzi M, Natalini B, Costantino G, Luneia R, Giorgi G, Moroni F, Thomsen C. (1996) Synthesis and pharmacological characterization of all sixteen stereoisomers of 2-(2'-carboxy-3'-phenylcyclopropyl)glycine. Focus on (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine, a novel and selective group II metabotropic glutamate receptors antagonist. J Med Chem, 39 (11): 2259-69. [PMID:8667369]
73. Pin JP, Acher F. (2002) The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Neurol Disord, 1 (3): 297-317. [PMID:12769621]
74. Pin JP, De Colle C, Bessis AS, Acher F. (1999) New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur J Pharmacol, 375 (1-3): 277-94. [PMID:10443583]
75. Pittolo S, Gómez-Santacana X, Eckelt K, Rovira X, Dalton J, Goudet C, Pin JP, Llobet A, Giraldo J, Llebaria A et al.. (2014) An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat Chem Biol, 10 (10): 813-5. [PMID:25173999]
76. Porter RH, Jaeschke G, Spooren W, Ballard TM, Büttelmann B, Kolczewski S, Peters JU, Prinssen E, Wichmann J, Vieira E et al.. (2005) Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther, 315 (2): 711-21. [PMID:16040814]
77. Rodriguez AL, Grier MD, Jones CK, Herman EJ, Kane AS, Smith RL, Williams R, Zhou Y, Marlo JE, Days EL et al.. (2010) Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity. Mol Pharmacol, 78 (6): 1105-23. [PMID:20923853]
78. Rook JM, Xiang Z, Lv X, Ghoshal A, Dickerson JW, Bridges TM, Johnson KA, Foster DJ, Gregory KJ, Vinson PN et al.. (2015) Biased mGlu5-Positive Allosteric Modulators Provide In Vivo Efficacy without Potentiating mGlu5 Modulation of NMDAR Currents. Neuron, 86 (4): 1029-1040. [PMID:25937172]
79. Schaffhauser H, Rowe BA, Morales S, Chavez-Noriega LE, Yin R, Jachec C, Rao SP, Bain G, Pinkerton AB, Vernier JM et al.. (2003) Pharmacological characterization and identification of amino acids involved in the positive modulation of metabotropic glutamate receptor subtype 2. Mol Pharmacol, 64 (4): 798-810. [PMID:14500736]
80. Schoepp DD, Alexander SP, Beart P, Conn PJ, Lodge D, Nakanishi S et al.. (2000) Metabotropic glutamate receptors. In IUPHAR Compendium of Receptor Characterization and Classification Edited by Watson SP, Girdlestone D (IUPHAR Press) 195-208.
81. Schoepp DD, Johnson BG, Wright RA, Salhoff CR, Mayne NG, Wu S, Cockerman SL, Burnett JP, Belegaje R, Bleakman D et al.. (1997) LY354740 is a potent and highly selective group II metabotropic glutamate receptor agonist in cells expressing human glutamate receptors. Neuropharmacology, 36 (1): 1-11. [PMID:9144636]
82. Schoepp DD, Salhoff CR, Wright RA, Johnson BG, Burnett JP, Mayne NG, Belagaje R, Wu S, Monn JA. (1996) The novel metabotropic glutamate receptor agonist 2R,4R-APDC potentiates stimulation of phosphoinositide hydrolysis in the rat hippocampus by 3,5-dihydroxyphenylglycine: evidence for a synergistic interaction between group 1 and group 2 receptors. Neuropharmacology, 35 (12): 1661-72. [PMID:9076745]
83. Schweitzer C, Kratzeisen C, Adam G, Lundstrom K, Malherbe P, Ohresser S, Stadler H, Wichmann J, Woltering T, Mutel V. (2000) Characterization of [(3)H]-LY354740 binding to rat mGlu2 and mGlu3 receptors expressed in CHO cells using semliki forest virus vectors. Neuropharmacology, 39 (10): 1700-6. [PMID:10884552]
84. Suzuki G, Tsukamoto N, Fushiki H, Kawagishi A, Nakamura M, Kurihara H, Mitsuya M, Ohkubo M, Ohta H. (2007) In vitro pharmacological characterization of novel isoxazolopyridone derivatives as allosteric metabotropic glutamate receptor 7 antagonists. J Pharmacol Exp Ther, 323 (1): 147-56. [PMID:17609420]
85. Thomas NK, Wright RA, Howson PA, Kingston AE, Schoepp DD, Jane DE. (2001) (S)-3,4-DCPG, a potent and selective mGlu8a receptor agonist, activates metabotropic glutamate receptors on primary afferent terminals in the neonatal rat spinal cord. Neuropharmacology, 40 (3): 311-8. [PMID:11166323]
86. Thoreson WB, Gottesman J, Jane DE, Tse HW, Watkins JC, Miller RF. (1997) Two phenylglycine derivatives antagonize responses to L-AP4 in ON bipolar cells of the amphibian retina. Neuropharmacology, 36 (1): 13-20. [PMID:9144637]
87. Tsuchiya D, Kunishima N, Kamiya N, Jingami H, Morikawa K. (2002) Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc Natl Acad Sci USA, 99 (5): 2660-5. [PMID:11867751]
88. Tuckmantel W, Kozikowski AP, Wang S, Pshenichkin S, Wroblewski JT. (1997) Synthesis, molecular modeling, and biology of the 1-benzyl derivative of APDC-an apparent mGluR6 selective ligand. Bioorg Med Chem Lett, 7: 601-606. DOI: 10.1016/S0960-894X(97)00068-1
89. Uyama Y, Ishida M, Shinozaki H. (1997) DCG-IV, a potent metabotropic glutamate receptor agonist, as an NMDA receptor agonist in the rat cortical slice. Brain Res, 752 (1-2): 327-30. [PMID:9106476]
90. Wenthur CJ, Morrison R, Felts AS, Smith KA, Engers JL, Byers FW, Daniels JS, Emmitte KA, Conn PJ, Lindsley CW. (2013) Discovery of (R)-(2-fluoro-4-((-4-methoxyphenyl)ethynyl)phenyl) (3-hydroxypiperidin-1-yl)methanone (ML337), an mGlu3 selective and CNS penetrant negative allosteric modulator (NAM). J Med Chem, 56 (12): 5208-12. [PMID:23718281]
91. Wermuth CG, Mann A, Schoenfelder A, Wright RA, Johnson BG, Burnett JP, Mayne NG, Schoepp DD. (1996) (2S,4S)-2-amino-4-(4,4-diphenylbut-1-yl)- pentane-1,5-dioic acid: a potent and selective antagonist for metabotropic glutamate receptors negatively linked to adenylate cyclase. J Med Chem, 39 (4): 814-6. [PMID:8632404]
92. Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V et al.. (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 344 (6179): 58-64. [PMID:24603153]
93. Wu S, Wright RA, Rockey PK, Burgett SG, Arnold JS, Rosteck Jr PR, Johnson BG, Schoepp DD, Belagaje RM. (1998) Group III human metabotropic glutamate receptors 4, 7 and 8: molecular cloning, functional expression, and comparison of pharmacological properties in RGT cells. Brain Res Mol Brain Res, 53 (1-2): 88-97. [PMID:9473604]
94. Yin S, Noetzel MJ, Johnson KA, Zamorano R, Jalan-Sakrikar N, Gregory KJ, Conn PJ, Niswender CM. (2014) Selective actions of novel allosteric modulators reveal functional heteromers of metabotropic glutamate receptors in the CNS. J Neurosci, 34 (1): 79-94. [PMID:24381270]
Subcommittee members:
Cyril Goudet, PhD (Chairperson)
Francine Acher
Giuseppe Battaglia
Hans Bräuner-Osborne
P. Jeffrey Conn
Robert Duvoisin
Francesco Ferraguti
Peter J. Flor
Karen J. Gregory, Ph.D.
James Monn
Ferdinando Nicoletti
Colleen Niswender
Jean-Philippe Pin (Past chairperson)
Philippe Rondard
Ryuichi Shigemoto |
Other contributors:
David Hampson
Michael P. Johnson
Yoshihiro Kubo
Shigetada Nakanishi
Darryle D. Schoepp
Michihiro Tateyama |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br J Pharmacol. 180 Suppl 2:S23-S144.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The activity of NAAG as an agonist at mGlu3 receptors was questioned on the basis of contamination with glutamate [10,21], but this has been refuted [67].
Radioligand binding using a variety of radioligands has been conducted on recombinant receptors (for example, [3H]R214127 [47] and [3H]YM298198 [44] at mGlu1 receptors and [3H]M-MPEP [22] and [3H]methoxymethyl-MTEP [1] at mGlu5 receptors; [3H]LY341495 and [3H]eglumegad for mGlu2 and mGlu3 receptors [35,83]). Although a number of radioligands have been used to examine binding in native tissues, correlation with individual subtypes is limited. Many pharmacological agents have not been fully tested across all known subtypes of mGlu receptors and may have unappreciated biased or neutral activity at other subtypes [31]. Potential differences linked to the species (e.g. human versus rat or mouse) of the receptors and the receptor splice variants are generally not known. The influence of receptor expression level on pharmacology and selectivity has not been controlled for in most studies, particularly those involving functional assays of receptor coupling.
(S)-(+)-CBPG is an antagonist at mGlu1, but is an agonist (albeit of reduced efficacy) at mGlu5 receptors. DCG-IV also exhibits agonist activity at NMDA glutamate receptors [89], and is an antagonist at all Group-III mGluRs with an IC50 of 30µM. A potential novel metabotropic glutamate receptor coupled to phosphoinositide turnover has been observed in rat brain; it is activated by 4-methylhomoibotenic acid (ineffective as an agonist at recombinant Group I metabotropic glutamate receptors), but is resistant to LY341495 [12]. There are also reports of a distinct metabotropic glutamate receptor coupled to phospholipase D in rat brain, which does not readily fit into the current classification [41,71]
A related class C receptor composed of two distinct subunits, T1R1 + T1R3 is also activated by glutamate and is responsible for umami taste detection.
All selective antagonists at metabotropic glutamate receptors are competitive.