Top ▲

mGlu7 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 295

Nomenclature: mGlu7 receptor

Family: Metabotropic glutamate receptors

Gene and Protein Information Click here for help
class C G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 915 3p26.1 GRM7 glutamate metabotropic receptor 7 20,23,43
Mouse 7 915 6 E3 Grm7 glutamate receptor, metabotropic 7
Rat 7 915 4q41 Grm7 glutamate metabotropic receptor 7 27,35
Previous and Unofficial Names Click here for help
mGluR7 | GLUR7 | GPRC1G | mGlu7a receptor | glutamate receptor
Database Links Click here for help
Specialist databases
GPCRdb grm7_human (Hs), grm7_mouse (Mm), grm7_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
L-glutamic acid
L-serine-O-phosphate
Comments: Other endogenous ligands include L-aspartic acid, L-serine-O-phosphate, NAAG and L-cysteine sulphinic acid

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
L-serine-O-phosphate Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 4.4 pKi 42
pKi 4.4 [42]
L-CCG-I Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.3 pKi 42
pKi 4.3 [42]
L-AP4 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 3.7 pKi 42
pKi 3.7 [42]
PPG Small molecule or natural product Hs Full agonist 3.7 pKi 42
pKi 3.7 [42]
L-glutamic acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 3.1 pKi 42
pKi 3.1 [42]
(1S,3R)-ACPD Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 3.0 – 3.1 pKi 42
pKi 3.1 [42]
pKi 3.0 [42]
LSP4-2022 Small molecule or natural product Click here for species-specific activity table Hs Agonist 4.9 pEC50 12
pEC50 4.9 (EC50 1.16x10-5 M) [12]
L-serine-O-phosphate Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 4.5 pEC50 43
pEC50 4.5 (EC50 3.1x10-5 M) [43]
LSP1-2111 Small molecule or natural product Click here for species-specific activity table Rn Agonist 4.3 pEC50 2
pEC50 4.3 (EC50 5.3x10-5 M) [2]
L-AP4 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 3.8 pEC50 43
pEC50 3.8 (EC50 1.75x10-4 M) [43]
L-glutamic acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Agonist 3.0 pEC50 31
pEC50 3.0 [31]
(R,S)-4-PPG Small molecule or natural product Click here for species-specific activity table Hs Full agonist 3.7 pIC50 9-10
pIC50 3.7 [9-10]
View species-specific agonist tables
Agonist Comments
There is a single study reporting affinity values for mGlu7 agonists using LY341495 as a radioligand. More information based on functional studies can be obtained from [36].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]LY341495 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Antagonist 7.1 pKd 42
pKd 7.1 [42]
LY341495 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.7 pKi 42
pKi 6.7 [42]
DCG-IV Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 4.7 pKi 42
pKi 4.7 [42]
α-methylserine-O-phosphate Small molecule or natural product Hs Antagonist 4.4 pKi 42
pKi 4.4 [42]
MAP4 Small molecule or natural product Hs Antagonist 3.8 pKi 42
pKi 3.8 [42]
MPPG Small molecule or natural product Click here for species-specific activity table Hs Antagonist 3.8 pKi 42
pKi 3.8 [42]
MSOPPE Small molecule or natural product Hs Antagonist 3.6 pKi 42
pKi 3.6 [42]
(+)-MCPG Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 3.2 pKi 42
pKi 3.2 [42]
MCCG Small molecule or natural product Hs Antagonist 3.2 pKi 42
pKi 3.2 [42]
Antagonist Comments
There is a single study reporting affinity values for mGlu7 antagonists using LY341495 as a radioligand. More information based on functional studies can be obtained from [31].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
AMN082 Small molecule or natural product Hs Positive 6.5 – 6.8 pEC50 22
pEC50 6.5 – 6.8 [22]
MDIP Small molecule or natural product Rn Negative 7.6 pIC50 40
pIC50 7.6 (IC50 2.6x10-8 M) [40]
ADX71743 Small molecule or natural product Hs Negative 7.2 pIC50 14
pIC50 7.2 (IC50 6.3x10-8 M) [14]
ADX71743 Small molecule or natural product Rn Negative 7.1 pIC50 14
pIC50 7.1 (IC50 8.8x10-8 M) [14]
MMPIP Small molecule or natural product Rn Negative 6.1 – 7.6 pIC50 24,40
pIC50 6.1 – 7.6 (IC50 7.17x10-7 – 2.5x10-8 M) [24,40]
VU6012962 Small molecule or natural product Hs Negative 6.5 pIC50 33
pIC50 6.5 (IC50 3.47x10-7 M) [33]
VU6010608 Small molecule or natural product Primary target of this compound Rn Negative 6.1 pIC50 32
pIC50 6.1 (IC50 7.59x10-7 M) [32]
Description: IN a clacium mobilization assay using rat mGlu7/Gα15/HEK cells activated by the agonist L-AP4.
XAP044 Small molecule or natural product Primary target of this compound Hs Negative 5.6 pIC50 11
pIC50 5.6 (IC50 2.8x10-6 M) [11]
Description: Inhibition of agonist-induced [35S]GTPγS binding.
View species-specific allosteric modulator tables
Allosteric Modulator Comments
AMN082 has been shown to be rapidly metabolised, generating metabolites with off-target activity at SERT, NET, and DAT [39]. Care should be taken in interpreting data in the absence of confirmation in knockout animals. The in vitro pharmacology of MMPIP is complex, with different potencies observed in various assays [24].
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Calcium channel
References:  27,30,35,43
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Phospholipase C stimulation
References:  30
Tissue Distribution Click here for help
Hippocampus; medial perforant path, mossy fiber, Schaffer collateral (mGluR7a only).
Species:  Rat
Technique:  Immunohistochemistry.
References:  37
mGlu7(a) is seen in the olfactory bulb, anterior olfactory nucleus, piriform and entorhinal cortices, periamygdaloid cortex, amygdalohippocampal area, hippocampus, layer I of the neocortical regions, globus pallidus, superficial layers of the superior colliculus, locus coeruleus, and superficial layers of the medullary and spinal dorsal horns.
Species:  Rat
Technique:  immunocytochemistry.
References:  16
Main and accessory olfactory bulb, striatum, hippocampus, cerebral cortex, superior culliculus, inferior culliculus, cerebellum, thalamus, olfactory tubercle.
Species:  Rat
Technique:  RNA blot and in situ hybridization.
References:  27
Mitral and tufted neurons in the olfactory bulb.
Species:  Rat
Technique:  In situ hybridization and RNA blot.
References:  35
Mitral and tufted cells of the olfactory bulb; anterior olfactory nucleus; neocortical regions; cingulate cortex; retrosplenial cortex; piriform cortex; perirhinal cortex; CA1; CA3; granule cells of the dentate gyrus; superficial layers of the subicular cortex; deep layers of the entorhinal, parasubicular, and presubicular cortices; ventral part of the lateral septal nucleus; septohippocampal nucleus; triangular septal nucleus; nuclei of the diagonal band; bed nucleus of the stria terminalis; ventral pallidum; claustrum; amygdaloid nuclei other than the intercalated nuclei; preoptic region; hypothalamic nuclei other than the medial mammillary nucleus; ventral lateral geniculate nucleus; locus coeruleus; Purkinje cells; many nuclei of the lower brainstem other than the superior colliculus, periaqueductal gray, interpeduncular nucleus, pontine nuclei, and dorsal cochlear nucleus; and dorsal horn of the spinal cord, olfactory tubercle, superficial layers of the entorhinal cortex, CA4, septofimbrial nucleus, intercalated nuclei of the amygdala, medial mammillary nucleus, many thalamic nuclei, and pontine nuclei, trigeminal ganglion and dorsal root ganglia.
Species:  Rat
Technique:  in situ hybridization.
References:  25
Cerebral cortex and hippocampus.
Species:  Rat
Technique:  in situ hybridization.
References:  7
Neuropil in laminae I and II of the dorsal horn, neuronal cell bodies in the dorsal root ganglion.
Species:  Rat
Technique:  Immunohistochemistry.
References:  26
mGluR7a: piriform cortex, superior colliculus, and dorsal cochlear nucleus, locus ceruleus, cerebellum, and thalamic nuclei.
Species:  Rat
Technique:  Immunocytochemistry
References:  5
Spinal cord (terminals of primary afferent fibers).
Species:  Rat
Technique:  immunocytochemistry.
References:  19,26
Main and accessory olfactory bulbs; superficial layer of the olfactory tubercle, layer Ia of the piriform cortex, periamygdaloid cortical region.
Species:  Rat
Technique:  Immunohistochemistry.
References:  41
Basal ganglia; cerebral cortex and striatum, globus pallidus, and substantia nigra pars reticulata.
Species:  Rat
Technique:  in situ hybridization.
References:  17
Hippocampus.
Species:  Rat
Technique:  immunocytochemistry.
References:  38
Retina.
Species:  Rat
Technique:  in situ hybridisation.
References:  13
Retina.
Species:  Rat
Technique:  immunocytochemistry.
References:  1,6
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of cAMP levels in CHO cells transfected with the rat mGlu7 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP production.
References:  27
Measurement of cAMP levels in RGT cells transfected with the human mGlu7 receptor.
Species:  Human
Tissue:  RGT cells.
Response measured:  Inhibition of cAMP production.
References:  15
Measurement of post-synaptic EPSPs in cultured cerebellar granule neurons.
Species:  Mouse
Tissue:  Cultured cerebellar granule neurons.
Response measured:  Inhibition of synaptic transmission.
References:  29
Measurement of post-synaptic EPSPs in brain slices.
Species:  Rat
Tissue:  Hippocampal slices.
Response measured:  Inhibition of synaptic transmission.
References:  3
Measurement of IP production in HEK 293 cells transfected with the rat mGlu7 receptor as well as Gqi9.
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  IP production.
References:  4
Physiological Functions Click here for help
Long term depression and feedforward inhibition in the hippocampal mossy fiber synapses.
Species:  Mouse
Tissue:  Hippocampal slices.
References:  28
Long term depression in stratum radiatum interneurons.
Species:  Rat
Tissue:  Hippocampal slices
References:  18
Physiological Consequences of Altering Gene Expression Click here for help
Sensory stimulus-evoked epileptic phenotype.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  34
Deficit in fear response and condinioned taste aversion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  21
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Grm7tm1Nak Grm7tm1Nak/Grm7tm1Nak
involves: 129P2/OlaHsd * C57BL/6
MGI:1351344  MP:0002805 abnormal conditioned taste aversion behavior PMID: 9920659 
Grm7tm1Nak Grm7tm1Nak/Grm7tm1Nak
involves: 129P2/OlaHsd * C57BL/6
MGI:1351344  MP:0001469 abnormal contextual conditioning behavior PMID: 9920659 
Grm7tm1Betz Grm7tm1Betz/Grm7tm1Betz
B6.129P2-Grm7
MGI:1351344  MP:0002910 abnormal excitatory postsynaptic currents PMID: 18716219 
Grm7tm1Betz Grm7tm1Betz/Grm7tm1Betz
B6.129P2-Grm7
MGI:1351344  MP:0008428 abnormal spatial working memory PMID: 18716219 
Grm7tm1Dgen Grm7tm1Dgen/Grm7tm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:1351344  MP:0001405 impaired coordination
Grm7tm1Betz Grm7tm1Betz/Grm7tm1Betz
B6.129P2-Grm7
MGI:1351344  MP:0009766 increased sensitivity to xenobiotic induced morbidity/mortality PMID: 18716219 
Grm7tm1Dgen Grm7tm1Dgen/Grm7tm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:1351344  MP:0002906 increased susceptibility to pharmacologically induced seizures
Grm7tm1Betz Grm7tm1Betz/Grm7tm1Betz
B6.129P2-Grm7
MGI:1351344  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 18716219 
Grm7tm1Nak Grm7tm1Nak/Grm7tm1Nak
involves: 129P2/OlaHsd * C57BL/6
MGI:1351344  MP:0002064 seizures PMID: 9920659 
Biologically Significant Variants Click here for help
Type:  Splice variants
Species:  Rat
Description:  mGlu7(a) corresponds to the first reported variant.
References:  27,35
Type:  Splice variants
Species:  Rat
Description:  mGlu7(b) is generated by the insertion of an out-of-frame 92 base pairs exon which results in the substitution of the last 16 residues of mGlu7(a) by 23 different residues.
References:  7
Type:  Splice variants
Species:  Human
Description:  mGlu7(a) corresponds to the first reported variant.
References:  20
Type:  Splice variants
Species:  Human
Description:  mGlu7(b) is generated by the insertion of an out-of-frame 92 base pairs exon which results in the substitution of the last 16 residues of mGlu7(a) by 23 different residues.
References:  8
General Comments
Not much is known about the physiological role of this receptor widely expressed in the CNS due to the lack of selective agents.

References

Show »

1. Akazawa C, Ohishi H, Nakajima Y, Okamoto N, Shigemoto R, Nakanishi S, Mizuno N. (1994) Expression of mRNAs of L-AP4-sensitive metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7) in the rat retina. Neurosci Lett, 171 (1-2): 52-4. [PMID:8084499]

2. Beurrier C, Lopez S, Révy D, Selvam C, Goudet C, Lhérondel M, Gubellini P, Kerkerian-LeGoff L, Acher F, Pin JP et al.. (2009) Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J, 23 (10): 3619-28. [PMID:19525404]

3. Bough KJ, Mott DD, Dingledine RJ. (2004) Medial perforant path inhibition mediated by mGluR7 is reduced after status epilepticus. J Neurophysiol, 92 (3): 1549-57. [PMID:15152022]

4. Brabet I, Parmentier ML, De Colle C, Bockaert J, Acher F, Pin JP. (1998) Comparative effect of L-CCG-I, DCG-IV and gamma-carboxy-L-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology, 37 (8): 1043-51. [PMID:9833633]

5. Bradley SR, Rees HD, Yi H, Levey AI, Conn PJ. (1998) Distribution and developmental regulation of metabotropic glutamate receptor 7a in rat brain. J Neurochem, 71 (2): 636-45. [PMID:9681454]

6. Brandstätter JH, Koulen P, Kuhn R, van der Putten H, Wässle H. (1996) Compartmental localization of a metabotropic glutamate receptor (mGluR7): two different active sites at a retinal synapse. J Neurosci, 16 (15): 4749-56. [PMID:8764662]

7. Corti C, Restituito S, Rimland JM, Brabet I, Corsi M, Pin JP, Ferraguti F. (1998) Cloning and characterization of alternative mRNA forms for the rat metabotropic glutamate receptors mGluR7 and mGluR8. Eur J Neurosci, 10 (12): 3629-41. [PMID:9875342]

8. Flor PJ, Van Der Putten H, Rüegg D, Lukic S, Leonhardt T, Bence M, Sansig G, Knöpfel T, Kuhn R. (1997) A novel splice variant of a metabotropic glutamate receptor, human mGluR7b. Neuropharmacology, 36 (2): 153-9. [PMID:9144652]

9. Gasparini F, Bruno V, Battaglia G, Lukic S, Leonhardt T, Inderbitzin W, Laurie D, Sommer B, Varney MA, Hess SD, Johnson EC, Kuhn R, Urwyler S, Sauer D, Portet C, Schmutz M, Nicoletti F, Flor PJ. (1999) (R,S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist is anticonvulsive and neuroprotectivein vivo. J Pharmacol Exp Ther, 289: 1678-1687. [PMID:10336568]

10. Gasparini F, Inderbitzin W, Francotte E, Lecis G, Richert P, Dragic Z, Kuhn R, Flor PJ. (2000) (+)-4-phosphonophenylglycine (PPG) a new group III selective metabotropic glutamate receptor agonist. Bioorg Med Chem Lett, 10 (11): 1241-4. [PMID:10866390]

11. Gee CE, Peterlik D, Neuhäuser C, Bouhelal R, Kaupmann K, Laue G, Uschold-Schmidt N, Feuerbach D, Zimmermann K, Ofner S et al.. (2014) Blocking metabotropic glutamate receptor subtype 7 (mGlu7) via the Venus flytrap domain (VFTD) inhibits amygdala plasticity, stress, and anxiety-related behavior. J Biol Chem, 289 (16): 10975-87. [PMID:24596089]

12. Goudet C, Vilar B, Courtiol T, Deltheil T, Bessiron T, Brabet I, Oueslati N, Rigault D, Bertrand HO, McLean H et al.. (2012) A novel selective metabotropic glutamate receptor 4 agonist reveals new possibilities for developing subtype selective ligands with therapeutic potential. FASEB J, 26 (4): 1682-93. [PMID:22223752]

13. Hartveit E, Brandstätter JH, Enz R, Wässle H. (1995) Expression of the mRNA of seven metabotropic glutamate receptors (mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue sections and isolated cells. Eur J Neurosci, 7 (7): 1472-83. [PMID:7551173]

14. Kalinichev M, Rouillier M, Girard F, Royer-Urios I, Bournique B, Finn T, Charvin D, Campo B, Le Poul E, Mutel V et al.. (2013) ADX71743, a potent and selective negative allosteric modulator of metabotropic glutamate receptor 7: in vitro and in vivo characterization. J Pharmacol Exp Ther, 344 (3): 624-36. [PMID:23257312]

15. Kingston AE, Ornstein PL, Wright RA, Johnson BG, Mayne NG, Burnett JP, Belagaje R, Wu S, Schoepp DD. (1998) LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology, 37 (1): 1-12. [PMID:9680254]

16. Kinoshita A, Shigemoto R, Ohishi H, van der Putten H, Mizuno N. (1998) Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: a light and electron microscopic study. J Comp Neurol, 393: 332-352. [PMID:9548554]

17. Kosinski CM, Risso Bradley S, Conn PJ, Levey AI, Landwehrmeyer GB, Penney Jr JB, Young AB, Standaert DG. (1999) Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. J Comp Neurol, 415 (2): 266-84. [PMID:10545164]

18. Laezza F, Doherty JJ, Dingledine R. (1999) Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. Science, 285 (5432): 1411-4. [PMID:10464102]

19. Li H, Ohishi H, Kinoshita A, Shigemoto R, Nomura S, Mizuno N. (1997) Localization of a metabotropic glutamate receptor, mGluR7, in axon terminals of presumed nociceptive, primary afferent fibers in the superficial layers of the spinal dorsal horn: an electron microscope study in the rat. Neurosci Lett, 223 (3): 153-6. [PMID:9080455]

20. Makoff A, Pilling C, Harrington K, Emson P. (1996) Human metabotropic glutamate receptor type 7: molecular cloning and mRNA distribution in the CNS. Brain Res Mol Brain Res, 40 (1): 165-70. [PMID:8840028]

21. Masugi M, Yokoi M, Shigemoto R, Muguruma K, Watanabe Y, Sansig G, van der Putten H, Nakanishi S. (1999) Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. J Neurosci, 19 (3): 955-63. [PMID:9920659]

22. Mitsukawa K, Yamamoto R, Ofner S, Nozulak J, Pescott O, Lukic S, Stoehr N, Mombereau C, Kuhn R, McAllister KH et al.. (2005) A selective metabotropic glutamate receptor 7 agonist: activation of receptor signaling via an allosteric site modulates stress parameters in vivo. Proc Natl Acad Sci USA, 102 (51): 18712-7. [PMID:16339898]

23. Muto T, Tsuchiya D, Morikawa K, Jingami H. (2007) Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci USA, 104 (10): 3759-64. [PMID:17360426]

24. Niswender CM, Johnson KA, Miller NR, Ayala JE, Luo Q, Williams R, Saleh S, Orton D, Weaver CD, Conn PJ. (2010) Context-dependent pharmacology exhibited by negative allosteric modulators of metabotropic glutamate receptor 7. Mol Pharmacol, 77 (3): 459-68. [PMID:20026717]

25. Ohishi H, Akazawa C, Shigemoto R, Nakanishi S, Mizuno N. (1995) Distributions of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. J Comp Neurol, 360 (4): 555-70. [PMID:8801249]

26. Ohishi H, Nomura S, Ding YQ, Shigemoto R, Wada E, Kinoshita A, Li JL, Neki A, Nakanishi S, Mizuno N. (1995) Presynaptic localization of a metabotropic glutamate receptor, mGluR7, in the primary afferent neurons: an immunohistochemical study in the rat. Neurosci Lett, 202: 85-88. [PMID:8787837]

27. Okamoto N, Hori S, Akazawa C, Hayashi Y, Shigemoto R, Mizuno N, Nakanishi S. (1994) Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem, 269 (2): 1231-6. [PMID:8288585]

28. Pelkey KA, Lavezzari G, Racca C, Roche KW, McBain CJ. (2005) mGluR7 is a metaplastic switch controlling bidirectional plasticity of feedforward inhibition. Neuron, 46 (1): 89-102. [PMID:15820696]

29. Perroy J, El Far O, Bertaso F, Pin JP, Betz H, Bockaert J, Fagni L. (2002) PICK1 is required for the control of synaptic transmission by the metabotropic glutamate receptor 7. EMBO J, 21 (12): 2990-9. [PMID:12065412]

30. Perroy J, Prezeau L, De Waard M, Shigemoto R, Bockaert J, Fagni L. (2000) Selective blockade of P/Q-type calcium channels by the metabotropic glutamate receptor type 7 involves a phospholipase C pathway in neurons. J Neurosci, 20 (21): 7896-904. [PMID:11050109]

31. Pin JP, De Colle C, Bessis AS, Acher F. (1999) New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur J Pharmacol, 375 (1-3): 277-94. [PMID:10443583]

32. Reed CW, McGowan KM, Spearing PK, Stansley BJ, Roenfanz HF, Engers DW, Rodriguez AL, Engelberg EM, Luscombe VB, Loch MT et al.. (2017) VU6010608, a Novel mGlu7 NAM from a Series of N-(2-(1H-1,2,4-Triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamides. ACS Med Chem Lett, 8 (12): 1326-1330. [PMID:29259756]

33. Reed CW, Yohn SE, Washecheck JP, Roenfanz HF, Quitalig MC, Luscombe VB, Jenkins MT, Rodriguez AL, Engers DW, Blobaum AL et al.. (2019) Discovery of an Orally Bioavailable and Central Nervous System (CNS) Penetrant mGlu7 Negative Allosteric Modulator (NAM) in Vivo Tool Compound: N-(2-(1 H-1,2,4-triazol-1-yl)-5-(trifluoromethoxy)phenyl)-4-(cyclopropylmethoxy)-3-methoxybenzamide (VU6012962). J Med Chem, 62 (3): 1690-1695. [PMID:30608678]

34. Sansig G, Bushell TJ, Clarke VR, Rozov A, Burnashev N, Portet C, Gasparini F, Schmutz M, Klebs K, Shigemoto R et al.. (2001) Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. J Neurosci, 21 (22): 8734-45. [PMID:11698585]

35. Saugstad JA, Kinzie JM, Mulvihill ER, Segerson TP, Westbrook GL. (1994) Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptors. Mol Pharmacol, 45 (3): 367-72. [PMID:8145723]

36. Schoepp DD, Jane DE, Monn JA. (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology, 38 (10): 1431-76. [PMID:10530808]

37. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S et al.. (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci, 17 (19): 7503-22. [PMID:9295396]

38. Somogyi P, Dalezios Y, Luján R, Roberts JD, Watanabe M, Shigemoto R. (2003) High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating interneurons in the rat hippocampus. Eur J Neurosci, 17 (12): 2503-20. [PMID:12823458]

39. Sukoff Rizzo SJ, Leonard SK, Gilbert A, Dollings P, Smith DL, Zhang MY, Di L, Platt BJ, Neal S, Dwyer JM et al.. (2011) The metabotropic glutamate receptor 7 allosteric modulator AMN082: a monoaminergic agent in disguise?. J Pharmacol Exp Ther, 338 (1): 345-52. [PMID:21508084]

40. Suzuki G, Tsukamoto N, Fushiki H, Kawagishi A, Nakamura M, Kurihara H, Mitsuya M, Ohkubo M, Ohta H. (2007) In vitro pharmacological characterization of novel isoxazolopyridone derivatives as allosteric metabotropic glutamate receptor 7 antagonists. J Pharmacol Exp Ther, 323 (1): 147-56. [PMID:17609420]

41. Wada E, Shigemoto R, Kinoshita A, Ohishi H, Mizuno N. (1998) Metabotropic glutamate receptor subtypes in axon terminals of projection fibers from the main and accessory olfactory bulbs: a light and electron microscopic immunohistochemical study in the rat. J Comp Neurol, 393 (4): 493-504. [PMID:9550154]

42. Wright RA, Arnold MB, Wheeler WJ, Ornstein PL, Schoepp DD. (2000) Binding of [3H](2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl) glycine ([3H]LY341495) to cell membranes expressing recombinant human group III metabotropic glutamate receptor subtypes. Naunyn Schmiedebergs Arch Pharmacol, 362 (6): 546-54. [PMID:11138847]

43. Wu S, Wright RA, Rockey PK, Burgett SG, Arnold JS, Rosteck Jr PR, Johnson BG, Schoepp DD, Belagaje RM. (1998) Group III human metabotropic glutamate receptors 4, 7 and 8: molecular cloning, functional expression, and comparison of pharmacological properties in RGT cells. Brain Res Mol Brain Res, 53 (1-2): 88-97. [PMID:9473604]

Contributors

Show »

How to cite this page