Top ▲

mGlu8 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 296

Nomenclature: mGlu8 receptor

Family: Metabotropic glutamate receptors

Gene and Protein Information Click here for help
class C G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 908 7q31.33 GRM8 glutamate metabotropic receptor 8 32,41
Mouse 7 908 6 A3.1-A3.2 Grm8 glutamate receptor, metabotropic 8 9
Rat 7 908 4q22 Grm8 glutamate metabotropic receptor 8 31
Previous and Unofficial Names Click here for help
Gprc1h | mGluR8 | GLUR8 | mGluR8b | glutamate receptor
Database Links Click here for help
Specialist databases
GPCRdb grm8_human (Hs), grm8_mouse (Mm), grm8_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
L-glutamic acid
L-serine-O-phosphate
Comments: Other endogenous ligands include L-aspartic acid, L-serine-O-phosphate, NAAG and L-cysteine sulphinic acid

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]AP4 Small molecule or natural product Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Full agonist 6.6 – 6.7 pKd 23
pKd 6.6 – 6.7 [23]
(S)-3,4-DCPG Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.5 pEC50 37
pEC50 7.5 [37]
(R,S)-4-PPG Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.7 pEC50 11-12,37
pEC50 6.7 [11-12,37]
L-CCG-I Small molecule or natural product Click here for species-specific activity table Rn Full agonist 6.2 pEC50 31
pEC50 6.2 [31]
L-AP4 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Full agonist 6.2 pEC50 31
pEC50 6.2 [31]
D-AP4 Small molecule or natural product Hs Full agonist 5.5 pEC50 41
pEC50 5.5 [41]
L-glutamic acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Agonist 4.9 – 5.6 pEC50 29
pEC50 4.9 – 5.6 [29]
eglumegad Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.1 pEC50 23
pEC50 5.1 [23]
ACPT-I Small molecule or natural product Click here for species-specific activity table Rn Partial agonist 5.1 pEC50 5
pEC50 5.1 [5]
(1S,3R)-ACPD Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 4.4 pEC50 41
pEC50 4.4 [41]
(1S,3R)-ACPD Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Full agonist 4.3 pEC50 31
pEC50 4.3 [31]
L-AP4 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.0 – 7.2 pIC50 23
pIC50 7.0 – 7.2 [23]
L-serine-O-phosphate Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 6.2 – 7.2 pIC50 23,41
pIC50 6.2 – 7.2 [23,41]
L-CCG-I Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.1 – 6.3 pIC50 23
pIC50 6.1 – 6.3 [23]
L-glutamic acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 5.0 – 5.7 pIC50 23,41
pIC50 5.0 – 5.7 [23,41]
View species-specific agonist tables
Agonist Comments
(S)-3,4-DCPG is the only selective agonist for mGlu8. Affinity is 100 fold higher than on mGlu4 and mGlu6. L-AP4, L-SOP, (RS)-4-PPG are selective for group III mGlu receptors.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
CPPG Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.3 pKi 27
pKi 6.3 [27]
LY341495 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.8 pIC50 17
pIC50 6.8 [17]
MAP4 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 5.1 – 7.6 pIC50 27,31
pIC50 5.1 – 7.6 [27,31]
DCG-IV Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.5 pIC50 23
pIC50 5.5 [23]
α-methylserine-O-phosphate Small molecule or natural product Click here for species-specific activity table Rn Antagonist 5.3 pIC50 28
pIC50 5.3 [28]
MPPG Small molecule or natural product Click here for species-specific activity table Hs Antagonist 4.3 pIC50 41
pIC50 4.3 (IC50 4.65x10-5 M) [41]
View species-specific antagonist tables
Antagonist Comments
There is no specific mGlu8 antagonist.
CPPG, α-MSOP, MAP4 are group III selective antagonists.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
VU0422288 Small molecule or natural product Hs Positive 6.7 pKB 16
pKB 6.7 [16]
AZ12216052 Small molecule or natural product N/A Positive 5.4 pKB 14
pKB 5.4 [14]
VU0155094 Small molecule or natural product Hs Positive 5.0 pKB 16
pKB 5.0 [16]
AZ12216052 Small molecule or natural product Hs Positive 6.0 pEC50 6
pEC50 6.0 (EC50 1x10-6 M) [6]
View species-specific allosteric modulator tables
Allosteric Modulator Comments
Reference [7] uses AZ12216052 and states that the compound may not mediate all effects via mGlu8 and not all behavioural effects are lost in mGlu8 KO mice; off target activity may be an issue.
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Comments:  In RGT and CHO cells stably transfected with recombinant rat or human mGlu8 receptors.
References:  9,31,41
Tissue Distribution Click here for help
Olfactory bulb, piriform cortex, pontine nuclei > neocortex, reticular thalamic nucleus, basolateral amygdaloid nuclear group.
Species:  Human
Technique:  in situ hybridisation.
References:  4
Olfactory bulb (granule cells, mitral cells), olfactory tubercule, mammillary body, retina.
Species:  Mouse
Technique:  in situ hybridisation.
References:  9
Nodose ganglia and nucleus solitary tract.
Species:  Rat
Technique:  RT-PCR
References:  15
Hippocampus: presynaptic terminals of the lateral perforant path in the dendate gyrus and CA3 regions.
Species:  Rat
Technique:  Immunohistochemistry.
References:  35
Superficial layer of the olfactory tubercle, piriform cortex, periamygdaloid cortical region.
Species:  Rat
Technique:  Immunohistochemistry.
References:  40
Retina.
Species:  Rat
Technique:  immunocytochemistry.
References:  19
Pancreatic islets (alpha cells).
Species:  Rat
Technique:  RT-PCR.
References:  39
Enteric nervous system.
Species:  Rat
Technique:  RT-PCR, Western blotting and immunocytochemistry.
References:  38
Basal ganglia: reticular thalamic nucleus > premotor cortex > nucleus accumbens > anteroventral thalamus, parafasicular nucleus, substantia nigra pars compacta, striatum, subthalamic nucelus > entopeduncular nucleus, globus pallidus, substantia nigra pars reticular, ventrolateral thalamus, ventromedial thalamus.
Species:  Rat
Technique:  in situ hybridisation.
References:  24
Pancreatic islets.
Species:  Rat
Technique:  RT-PCR and Western blotting.
References:  1
Presynaptic active zone of both excitatory and GABAergic axon terminals.
Species:  Rat
Technique:  Western blotting.
References:  10
Olfactory bulb (granule cells, mitral cells), piriform cortex (pyramidal cells), pontine gray, lateral reticular nucleus of the thalamus and other nuclei of basal ganglia > cerebral cortex, hippocampus, cerebellum, mammillary body.
Species:  Rat
Technique:  in situ hybridisation.
References:  31
Presynaptic active zone of GABAergic axon terminals.
Species:  Rat
Technique:  immunocytochemistry.
References:  18
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of GIRK-mediated K+ currents in Xenopus oocytes transfected with the mGlu8 receptor.
Species:  Rat
Tissue:  Xenopus oocytes.
Response measured:  Stimulation of K+ currents.
References:  31
Measurement of cAMP levels in RGT cells transfected with the mGlu8 receptor.
Species:  Human
Tissue:  RGT cells.
Response measured:  Inhibition of cAMP accumulation.
References:  41
Measurement of IP levels in HEK 293 cells transfected with the mGlu8 receptor and Gqi9.
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  IP formation.
References:  5
Measurement of N-type Ca2+ currents in superior cervical neurons transfected with the mGlu8 receptor.
Species:  Rat
Tissue:  Superior cervical neurons.
Response measured:  Inhibition of N-type Ca2+ currents.
References:  13
Physiological Functions Click here for help
Inhibition of synaptic transmission at lateral perforant path input to dendate gyrus.
Species:  Mouse
Tissue:  Brain
References:  3,42
Modulation of the fast component of the dorsal root-evoked ventral root potential.
Species:  Rat
Tissue:  Spinal Cord
References:  37
Inhibition of sound-induced seizures in DBA/2 mice
Species:  Mouse
Tissue:  Brain
References:  25
Modulation of synaptic transmission in the retino-collicular pathway.
Species:  Rat
Tissue:  Brain
References:  30
mGlu8 stimulation induces c-Fos in stress-related brain regions.
Species:  Mouse
Tissue:  Brain
References:  21
Regulation of transmitter release in the supraoptic nucleus of the rat hypothalamus.
Species:  Rat
Tissue:  Brain
References:  26
Attenuation of alcohol self-administration.
Species:  Rat
Tissue:  In vivo.
References:  2
Acquisition and expression of conditioned fear are inhibited by mGlu8 stimulation in the amygdala.
Species:  Rat
Tissue:  In vivo.
References:  33
Physiological Consequences of Altering Gene Expression Click here for help
Absence of inhibition of synaptic transmission at the perforant path by L-AP4 in mGlu8-null mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  3,42
Increased anxiety-related behavior in mGlu8-null mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  8,22
Absence of inhibition of synaptic transmission at the perforant path by DCPG in mGlu8-null mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  42
mGlu8 knockout mice exhibit an increased c-Fos expression in the thalamus following the elevated plus maze test.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  20
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Grm8tm1Duv Grm8tm1Duv/Grm8tm1Duv
B6.129S1-Grm8
MGI:1351345  MP:0001417 decreased exploration in new environment PMID: 16045496 
Grm8tm1En Grm8tm1En/Grm8tm1En
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1351345  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 12213276 
Grm8tm1Duv Grm8tm1Duv/Grm8tm1Duv
B6.129S1-Grm8
MGI:1351345  MP:0001522 impaired swimming PMID: 16045496 
Grm8tm1Duv Grm8tm1Duv/Grm8tm1Duv
B6.129S1-Grm8
MGI:1351345  MP:0001363 increased anxiety-related response PMID: 16045496 
Grm8tm1Duv Grm8tm1Duv/Grm8tm1Duv
B6.129S1-Grm8
MGI:1351345  MP:0001260 increased body weight PMID: 16045496 
Grm8tm1Duv Grm8tm1Duv/Grm8tm1Duv
B6.129S1-Grm8
MGI:1351345  MP:0005458 increased percent body fat PMID: 16045496 
Grm8tm1Duv Grm8tm1Duv/Grm8tm1Duv
B6.129S1-Grm8
MGI:1351345  MP:0005331 insulin resistance PMID: 16045496 
Biologically Significant Variants Click here for help
Type:  Splice variants
Species:  Rat
Description:  Alternative splicing results in a different C-terminus.
References:  4
Type:  Splice variants
Species:  Human
Description:  Alternative splicing results in a different C-terminus.
References:  23
Type:  Splice variants
Species:  Human
Description:  A second splice variant introduces a stop codon before the 7 transmembrane domain resulting in a potentially secreted isoform of the receptor.
References:  23
Biologically Significant Variant Comments
A study in rats showed that mGlu8 can be sumoylated [36].
General Comments
Schoepp et al., (1999) [34] and Pin & Acher (2002) [28] review and compare the pharmacology of mGlu receptors.

References

Show »

1. Brice NL, Varadi A, Ashcroft SJ, Molnar E. (2002) Metabotropic glutamate and GABA(B) receptors contribute to the modulation of glucose-stimulated insulin secretion in pancreatic beta cells. Diabetologia, 45 (2): 242-52. [PMID:11935156]

2. Bäckström P, Hyytiä P. (2005) Suppression of alcohol self-administration and cue-induced reinstatement of alcohol seeking by the mGlu2/3 receptor agonist LY379268 and the mGlu8 receptor agonist (S)-3,4-DCPG. Eur J Pharmacol, 528 (1-3): 110-8. [PMID:16324694]

3. Cai Z, Saugstad JA, Sorensen SD, Ciombor KJ, Zhang C, Schaffhauser H, Hubalek F, Pohl J, Duvoisin RM, Conn PJ. (2001) Cyclic AMP-dependent protein kinase phosphorylates group III metabotropic glutamate receptors and inhibits their function as presynaptic receptors. J Neurochem, 78 (4): 756-66. [PMID:11520896]

4. Corti C, Restituito S, Rimland JM, Brabet I, Corsi M, Pin JP, Ferraguti F. (1998) Cloning and characterization of alternative mRNA forms for the rat metabotropic glutamate receptors mGluR7 and mGluR8. Eur J Neurosci, 10 (12): 3629-41. [PMID:9875342]

5. De Colle C, Bessis AS, Bockaert J, Acher F, Pin JP. (2000) Pharmacological characterization of the rat metabotropic glutamate receptor type 8a revealed strong similarities and slight differences with the type 4a receptor. Eur J Pharmacol, 394 (1): 17-26. [PMID:10771029]

6. Duvoisin RM, Pfankuch T, Wilson JM, Grabell J, Chhajlani V, Brown DG, Johnson E, Raber J. (2010) Acute pharmacological modulation of mGluR8 reduces measures of anxiety. Behav Brain Res, 212 (2): 168-73. [PMID:20385173]

7. Duvoisin RM, Villasana L, Davis MJ, Winder DG, Raber J. (2011) Opposing roles of mGluR8 in measures of anxiety involving non-social and social challenges. Behav Brain Res, 221 (1): 50-4. [PMID:21382421]

8. Duvoisin RM, Zhang C, Pfankuch TF, O'Connor H, Gayet-Primo J, Quraishi S, Raber J. (2005) Increased measures of anxiety and weight gain in mice lacking the group III metabotropic glutamate receptor mGluR8. Eur J Neurosci, 22 (2): 425-36. [PMID:16045496]

9. Duvoisin RM, Zhang C, Ramonell K. (1995) A novel metabotropic glutamate receptor expressed in the retina and olfactory bulb. J Neurosci, 15: 3075-3083. [PMID:7722646]

10. Ferraguti F, Klausberger T, Cobden P, Baude A, Roberts JD, Szucs P, Kinoshita A, Shigemoto R, Somogyi P, Dalezios Y. (2005) Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus. J Neurosci, 25 (45): 10520-36. [PMID:16280590]

11. Gasparini F, Bruno V, Battaglia G, Lukic S, Leonhardt T, Inderbitzin W, Laurie D, Sommer B, Varney MA, Hess SD, Johnson EC, Kuhn R, Urwyler S, Sauer D, Portet C, Schmutz M, Nicoletti F, Flor PJ. (1999) (R,S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist is anticonvulsive and neuroprotectivein vivo. J Pharmacol Exp Ther, 289: 1678-1687. [PMID:10336568]

12. Gasparini F, Inderbitzin W, Francotte E, Lecis G, Richert P, Dragic Z, Kuhn R, Flor PJ. (2000) (+)-4-phosphonophenylglycine (PPG) a new group III selective metabotropic glutamate receptor agonist. Bioorg Med Chem Lett, 10 (11): 1241-4. [PMID:10866390]

13. Guo J, Ikeda SR. (2005) Coupling of metabotropic glutamate receptor 8 to N-type Ca2+ channels in rat sympathetic neurons. Mol Pharmacol, 67 (6): 1840-51. [PMID:15755905]

14. Hellyer SD, Albold S, Wang T, Chen ANY, May LT, Leach K, Gregory KJ. (2018) "Selective" Class C G Protein-Coupled Receptor Modulators Are Neutral or Biased mGlu5 Allosteric Ligands. Mol Pharmacol, 93 (5): 504-514. [PMID:29514854]

15. Hoang CJ, Hay M. (2001) Expression of metabotropic glutamate receptors in nodose ganglia and the nucleus of the solitary tract. Am J Physiol Heart Circ Physiol, 281 (1): H457-62. [PMID:11406515]

16. Jalan-Sakrikar N, Field JR, Klar R, Mattmann ME, Gregory KJ, Zamorano R, Engers DW, Bollinger SR, Weaver CD, Days EL et al.. (2014) Identification of positive allosteric modulators VU0155094 (ML397) and VU0422288 (ML396) reveals new insights into the biology of metabotropic glutamate receptor 7. ACS Chem Neurosci, 5 (12): 1221-37. [PMID:25225882]

17. Kingston AE, Ornstein PL, Wright RA, Johnson BG, Mayne NG, Burnett JP, Belagaje R, Wu S, Schoepp DD. (1998) LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology, 37 (1): 1-12. [PMID:9680254]

18. Kogo N, Dalezios Y, Capogna M, Ferraguti F, Shigemoto R, Somogyi P. (2004) Depression of GABAergic input to identified hippocampal neurons by group III metabotropic glutamate receptors in the rat. Eur J Neurosci, 19 (10): 2727-40. [PMID:15147307]

19. Koulen P, Kuhn R, Wässle H, Brandstätter JH. (1999) Modulation of the intracellular calcium concentration in photoreceptor terminals by a presynaptic metabotropic glutamate receptor. Proc Natl Acad Sci USA, 96 (17): 9909-14. [PMID:10449793]

20. Linden AM, Baez M, Bergeron M, Schoepp DD. (2003) Increased c-Fos expression in the centromedial nucleus of the thalamus in metabotropic glutamate 8 receptor knockout mice following the elevated plus maze test. Neuroscience, 121 (1): 167-78. [PMID:12946709]

21. Linden AM, Bergeron M, Baez M, Schoepp DD. (2003) Systemic administration of the potent mGlu8 receptor agonist (S)-3,4-DCPG induces c-Fos in stress-related brain regions in wild-type, but not mGlu8 receptor knockout mice. Neuropharmacology, 45 (4): 473-83. [PMID:12907308]

22. Linden AM, Johnson BG, Peters SC, Shannon HE, Tian M, Wang Y, Yu JL, Köster A, Baez M, Schoepp DD. (2002) Increased anxiety-related behavior in mice deficient for metabotropic glutamate 8 (mGlu8) receptor. Neuropharmacology, 43 (2): 251-9. [PMID:12213279]

23. Malherbe P, Kratzeisen C, Lundstrom K, Richards JG, Faull RL, Mutel V. (1999) Cloning and functional expression of alternative spliced variants of the human metabotropic glutamate receptor 8. Brain Res Mol Brain Res, 67 (2): 201-10. [PMID:10216218]

24. Messenger MJ, Dawson LG, Duty S. (2002) Changes in metabotropic glutamate receptor 1-8 gene expression in the rodent basal ganglia motor loop following lesion of the nigrostriatal tract. Neuropharmacology, 43 (2): 261-71. [PMID:12213280]

25. Moldrich RX, Beart PM, Jane DE, Chapman AG, Meldrum BS. (2001) Anticonvulsant activity of 3,4-dicarboxyphenylglycines in DBA/2 mice. Neuropharmacology, 40 (5): 732-5. [PMID:11311902]

26. Panatier A, Poulain DA, Oliet SH. (2004) Regulation of transmitter release by high-affinity group III mGluRs in the supraoptic nucleus of the rat hypothalamus. Neuropharmacology, 47 (3): 333-41. [PMID:15275822]

27. Peltekova V, Han G, Soleymanlou N, Hampson DR. (2000) Constraints on proper folding of the amino terminal domains of group III metabotropic glutamate receptors. Brain Res Mol Brain Res, 76 (1): 180-90. [PMID:10719229]

28. Pin JP, Acher F. (2002) The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Neurol Disord, 1 (3): 297-317. [PMID:12769621]

29. Pin JP, De Colle C, Bessis AS, Acher F. (1999) New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur J Pharmacol, 375 (1-3): 277-94. [PMID:10443583]

30. Pothecary CA, Jane DE, Salt TE. (2002) Reduction of excitatory transmission in the retino-collicular pathway via selective activation of mGlu8 receptors by DCPG. Neuropharmacology, 43 (2): 231-4. [PMID:12213277]

31. Saugstad JA, Kinzie JM, Shinohara MM, Segerson TP, Westbrook GL. (1997) Cloning and expression of rat metabotropic glutamate receptor 8 reveals a distinct pharmacological profile. Mol Pharmacol, 51 (1): 119-25. [PMID:9016353]

32. Scherer SW, Soder S, Duvoisin RM, Huizenga JJ, Tsui LC. (1997) The human metabotropic glutamate receptor 8 (GRM8) gene: a disproportionately large gene located at 7q31.3-q32.1. Genomics, 44 (2): 232-6. [PMID:9299241]

33. Schmid S, Fendt M. (2006) Effects of the mGluR8 agonist (S)-3,4-DCPG in the lateral amygdala on acquisition/expression of fear-potentiated startle, synaptic transmission, and plasticity. Neuropharmacology, 50 (2): 154-64. [PMID:16188284]

34. Schoepp DD, Jane DE, Monn JA. (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology, 38 (10): 1431-76. [PMID:10530808]

35. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S et al.. (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci, 17 (19): 7503-22. [PMID:9295396]

36. Tang Z, El Far O, Betz H, Scheschonka A. (2005) Pias1 interaction and sumoylation of metabotropic glutamate receptor 8. J Biol Chem, 280 (46): 38153-9. [PMID:16144832]

37. Thomas NK, Wright RA, Howson PA, Kingston AE, Schoepp DD, Jane DE. (2001) (S)-3,4-DCPG, a potent and selective mGlu8a receptor agonist, activates metabotropic glutamate receptors on primary afferent terminals in the neonatal rat spinal cord. Neuropharmacology, 40 (3): 311-8. [PMID:11166323]

38. Tong Q, Kirchgessner AL. (2003) Localization and function of metabotropic glutamate receptor 8 in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol, 285 (5): G992-G1003. [PMID:12829438]

39. Tong Q, Ouedraogo R, Kirchgessner AL. (2002) Localization and function of group III metabotropic glutamate receptors in rat pancreatic islets. Am J Physiol Endocrinol Metab, 282 (6): E1324-33. [PMID:12006363]

40. Wada E, Shigemoto R, Kinoshita A, Ohishi H, Mizuno N. (1998) Metabotropic glutamate receptor subtypes in axon terminals of projection fibers from the main and accessory olfactory bulbs: a light and electron microscopic immunohistochemical study in the rat. J Comp Neurol, 393 (4): 493-504. [PMID:9550154]

41. Wu S, Wright RA, Rockey PK, Burgett SG, Arnold JS, Rosteck Jr PR, Johnson BG, Schoepp DD, Belagaje RM. (1998) Group III human metabotropic glutamate receptors 4, 7 and 8: molecular cloning, functional expression, and comparison of pharmacological properties in RGT cells. Brain Res Mol Brain Res, 53 (1-2): 88-97. [PMID:9473604]

42. Zhai J, Tian MT, Wang Y, Yu JL, Köster A, Baez M, Nisenbaum ES. (2002) Modulation of lateral perforant path excitatory responses by metabotropic glutamate 8 (mGlu8) receptors. Neuropharmacology, 43 (2): 223-30. [PMID:12213276]

Contributors

Show »

How to cite this page