Top ▲

NTS1 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 309

Nomenclature: NTS1 receptor

Family: Neurotensin receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 418 20q13.33 NTSR1 neurotensin receptor 1 43-44,70
Mouse 7 424 2 103.04 cM Ntsr1 neurotensin receptor 1 43
Rat 7 424 3q43 Ntsr1 neurotensin receptor 1 68
Previous and Unofficial Names Click here for help
NTR1 | NTRH [8] | NTSR1 | NTR | neurotensin receptor type 1 | Levocabastin-insensitive neurotensin receptor | NT-1R | neurotensin receptor 1 (high affinity)
Database Links Click here for help
Specialist databases
GPCRdb ntr1_human (Hs), ntr1_mouse (Mm), ntr1_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  The crystal structure of the neurotensin receptor NTS1 in complex with neurotensin (8-13)
PDB Id:  4GRV
Ligand:  neurotensin-(8-13)
Resolution:  2.8Å
Species:  Rat
References:  72
Associated Proteins Click here for help
Interacting Proteins
Name Effect References
NTS3/sortilin Modulates cellular signalling of neurotensin in the HT29 cell line. 47
Natural/Endogenous Ligands Click here for help
large neuromedin N {Sp: Human} , large neuromedin N {Sp: Mouse} , large neuromedin N {Sp: Rat}
large neurotensin {Sp: Human}
neuromedin N {Sp: Human} , neuromedin N {Sp: Mouse, Rat}
neurotensin {Sp: Human, Mouse, Rat, Bovine}
Comments: Neurotensin is the most potent endogenous agonist
Potency order of endogenous ligands (Human)
neurotensin (NTS, P30990) > neuromedin N (NTS, P30990)  [38]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I]neurotensin (human, mouse, rat) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Rn Full agonist 9.6 – 9.9 pKd 42,66
pKd 9.6 – 9.9 [42,66]
JMV449 Peptide Rn Full agonist 10.0 pKi 66
pKi 10.0 (Ki 1x10-10 M) [66]
EISAI-2 Peptide Rn Full agonist 9.8 pKi 66
pKi 9.8 [66]
EISAI-1 Peptide Rn Full agonist 9.5 pKi 66
pKi 9.5 [66]
neurotensin {Sp: Human, Mouse, Rat, Bovine} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Rn Full agonist 8.2 – 10.0 pKi 22,41,66
pKi 8.2 – 10.0 [22,41,66]
neurotensin {Sp: Human, Mouse, Rat, Bovine} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.3 – 9.7 pKi 22,61
pKi 8.3 – 9.7 [22,61]
JMV458 Peptide Click here for species-specific activity table Hs Full agonist 8.8 pKi 61
pKi 8.8 [61]
neuromedin N {Sp: Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Rn Full agonist 8.7 pKi 66
pKi 8.7 [66]
JMV457 Peptide Click here for species-specific activity table Hs Full agonist 5.8 pKi 61
pKi 5.8 [61]
JMV2004 Peptide Click here for species-specific activity table Hs Full agonist 5.7 pKi 61
pKi 5.7 [61]
JMV431 Peptide Click here for species-specific activity table Hs Full agonist 5.3 pKi 61
pKi 5.3 [61]
large neurotensin {Sp: Human} Peptide Ligand is endogenous in the given species Hs Full agonist 8.7 pIC50 30
pIC50 8.7 [30]
ABS-201 Peptide Mm Full agonist 8.0 pIC50 17,74
pIC50 8.0 (IC50 1x10-8 M) [17,74]
KH28 Peptide Hs Full agonist 7.9 pIC50 37
pIC50 7.9 (IC50 1.2x10-8 M) [37]
ABS-212 Peptide Rn Full agonist 7.6 pIC50 40,46
pIC50 7.6 (IC50 2.3x10-8 M) [40,46]
Thr10contulakin-G Peptide Hs Full agonist 7.6 pIC50 20
pIC50 7.6 [20]
large neuromedin N {Sp: Human} Peptide Ligand is endogenous in the given species Hs Full agonist 7.4 pIC50 30
pIC50 7.4 [30]
Thr10contulakin-G Peptide Click here for species-specific activity table Rn Full agonist 7.1 pIC50 20
pIC50 7.1 [20]
contulakin-G Peptide Click here for species-specific activity table Rn Full agonist 6.3 pIC50 20
pIC50 6.3 [20]
contulakin-G Peptide Hs Full agonist 6.0 pIC50 20
pIC50 6.0 [20]
View species-specific agonist tables
Agonist Comments
The sequence of neurotensin is identical for all mammalian species.

Neurotensin and neuromedin N are synthesised from a common precursor [24].

Neurotensin and [125I]neurotensin bind with high affinity to NTS1 from all species 79-84.

[125I]-Trp11-neurotensin is specific for murine NTS1 receptors and exhibits low affinity for NTS1 receptors of human or other species [48,59].

[125I]-azidobenzoyl-neurotensin(2-13) is a photoreactive and radioactive analogue for covalent labelling of neurotensin receptors (including NTS1) from any species [15-16].

Xenopsin and contulakin-G are natural analogues of neurotensin from Xenopus laevis [5] and Conus geographus resepctively [20].

[α-bodipy]neurotensin(2-13) is a fluorescent synthetic analogue of neurotensin [7].

KH28, ABS212 and ABS-201 are able to cross the blood-brain barrier. ABS-201 and ABS212 are stable bioavailable NT analogues.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]meclinertant Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Antagonist 8.5 pKd 42
pKd 8.5 (Kd 3.2x10-9 M) [42]
meclinertant Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.4 pKi 61
pKi 8.4 [61]
meclinertant Small molecule or natural product Rn Antagonist 8.0 – 8.6 pKi 41-42
pKi 8.0 – 8.6 [41-42]
SR48527 Small molecule or natural product Rn Antagonist 7.1 – 7.5 pKi 42
pKi 7.1 – 7.5 [42]
SR142948A Small molecule or natural product Hs Antagonist 8.9 pIC50 36
pIC50 8.9 [36]
meclinertant Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.5 – 8.2 pIC50 36
pIC50 7.5 – 8.2 (IC50 3.16x10-8 – 6.31x10-9 M) [36]
View species-specific antagonist tables
Antagonist Comments
SR142948A binds to both NTS1 and NTS2 with similar nanomolar affinities.

SR48692 has a 10-30 times higher affinity for NTS1 than for NTS2 [35,42].
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  2-3,32,39,53,67,71
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Gi/Go family
Adenylyl cyclase stimulation
Adenylyl cyclase inhibition
Guanylate cyclase stimulation
Other - See Comments
Comments:  Binding of neurotensin to the human NTS1 receptor indicates activation of MAP kinases and stimulates transcription of Krox-24, c-fos and Elk-1 [56,58].
References:  4,14,32-33,53,73
Tissue Distribution Click here for help
Brain: cerebral cortex (cingulate and paraolfactory gyrus), basal gangla (caudate nucleus, putamen, nucleus accumbens), limbic system (basal and central amygdaloid nucleus) and brainstem (substantia nigra, ventral tegmental area).
Species:  Human
Technique:  Radioligand binding.
References:  64
Colon.
Species:  Human
Technique:  Radioligand binding.
References:  6
Endocrine pancreas
Species:  Mouse
Technique:  Immunohistochemistry
References:  19
Brain: hypothalamus, epithalamus, ventral thalamus, septum, amygdala, pallidum.
Species:  Rat
Technique:  in situ hybridisation.
References:  1
Brain: islands of Calleja, diagonal band of Broca, magnocellular preoptic nucleus, presubiculum and parasubiculum, suprachiasmatic nucleus, anterodorsal nucleus of the thalamus, substantia nigra, ventral tegmental area, pontine nuclei and dorsal motor nucleus of the vagus.
Species:  Rat
Technique:  Immunohistochemistry.
References:  11
Substantia nigra: pars compacta > pars reticula.
Species:  Rat
Technique:  immunocytochemistry.
References:  12
Substantia nigra pars compacta, ventral tegmental area.
Species:  Rat
Technique:  Radioligand binding.
References:  12
Spinal chord, dorsal root ganglia
Species:  Rat
Technique:  Immunohistochemistry
References:  63
Brain: diagonal band, medial septal nucleus, nucleus basalis magnocellularis, suprachiasmatic nucleus, supramammillary area, substantia nigra and ventral tegmental area.
Species:  Rat
Technique:  in situ hybridisation.
References:  27
Brain: basal forebrain, nucleus basalis, substantia nigra, substantia gelatinosa, ventral caudate-putamen, lateral reticular nucleus.
Species:  Rat
Technique:  Immunohistochemistry and Western blotting.
References:  29
Brain: olfactory bulb and tubercle, parts of the neocortex, lateral septum, diagonal band of Broca, caudate putamen, amygdala, dentate gyrus, anterior dorsal nucleus of the thalamus, suprachiasmatic nucleus of the hypothalamus, medial habenula, zona incerta, substantia nigra and ventral tegmental area.
Species:  Rat
Technique:  Radioligand binding.
References:  50
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of phosphatidyl inositol turnover in CHO cells transfected with the rat NTS1 receptor.
Species:  Rat
Tissue:  CHO cells stably expressing recombinant NTS1 receptors.
Response measured:  Stimulation of phosphoinositides hydrolysis.
References:  32,39,66,71
Measurement of Ca2+ levels in CHO cells transfected with the rat NTS1 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Stimulation of Ca2+ release from intracellular stores.
References:  31-32
Measurement of [35S]GTPγS incorporation in CHO cells transfected with the rat NTS1 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Stimulation of [35S]-GTPγS.
References:  32,38,52
Measurement of arachidonic acid release in CHO cells transfected with the rat NTS1 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Stimulation of arachidonic acid release.
References:  32,52
Measurement of MAP kinase activity in CHO cells transfected with the human NTS1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of MAP kinase activity.
References:  56
Measurement of chloride current in Xenopus oocytes transfected with the rat NTS1 receptor.
Species:  Rat
Tissue:  Xenopus oocytes.
Response measured:  Activation of Ca2+-dependent chloride current.
References:  8
Measurement of IPs accumulation in neonatal rat brain prisms endogenously expressing the NTS1 receptor.
Species:  Rat
Tissue:  Neonatal brain prisms.
Response measured:  Stimulation on IP accumulation.
References:  54
Measurement of Ca2+ and IP3 levels in human HL-60 cells endogenously expressing the NTS1 receptor.
Species:  Human
Tissue:  HL-60 cells.
Response measured:  Increase in Ca2+ and IP3 levels.
References:  18
Measurement of cAMP accumulation in CHO cells transfected with the rat NTS1 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Stimulation of cAMP accumulation.
References:  66,73
Measurement of phosphatidyl inositol turnover in the human colonic adenocarcinoma cell line HT-29 endogenously expressing the NTS1 receptor.
Species:  Human
Tissue:  HL-29 cells.
Response measured:  Stimulation of phosphoinositides hydrolysis.
References:  2,53
Measurement of cGMP levels in mouse neuroblastoma N1E115 cells endogenously expressing the HTS1 receptor.
Species:  Mouse
Tissue:  Neuroblastoma N1E115 cells.
Response measured:  Increase in cGMP concentration.
References:  3-4,33,53,67
Measurement of Ca2+ levels and phosphatidyl inositol turnover in the cardiovascular system.
Species:  Human
Tissue:  Umbilical vein and aortic endothelial cells.
Response measured:  Stimulation of Ca2+ release and phosphatidyl inositol turnover.
References:  65
Physiological Functions Click here for help
Modulation of turning behaviour.
Species:  Mouse
Tissue:  In vivo (brain).
References:  25
Stimulation of domamine efflux.
Species:  Mouse
Tissue:  In vivo (brain).
References:  45
Thermal regulation.
Species:  Mouse
Tissue:  In vivo.
References:  55,60
Regulation of feeding and weight control.
Species:  Mouse
Tissue:  In vivo.
References:  60
Regulation of locomotion.
Species:  Mouse
Tissue:  In vivo.
References:  60
Role in spacial learning.
Species:  Rat
Tissue:  In vivo.
References:  69
Interaction with the dopaminergic system.
Species:  Rat
Tissue:  In vivo.
References:  57
Smooth muscle contraction.
Species:  Human
Tissue:  Colonic smooth muscle strips.
References:  21
Smooth muscle contraction or relaxation.
Species:  Human
Tissue:  Segments of the duodenum or proximal colon.
References:  51
Analgesic effect
Species:  Mouse
Tissue:  In vivo
References:  49,62
Analgesic effect
Species:  Monkey
Tissue:  In vivo
References:  28
Thermoregulation modulator
Species:  Mouse
Tissue:  In vivo
References:  17
Analgesic effect (acute, tonic, neuropathic pain)
Species:  Rat
Tissue:  In vivo
References:  13,34,63
Physiological Consequences of Altering Gene Expression Click here for help
NTS1 receptor knockout mice exhibit abolished neurotensin-induced dopamine efflux in the nucleus accumbens, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  45
NTS1 receptor knockout mice have lost several responses to neurotensin, including central (hypothermia, hot-plate analgesia and motor ccordination) and gastrointestinal (colonic propulsion) effects.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  55
NTS1 receptor knockout mice exhibit hyperthermia, a small increase in body weight and an increase in food intake compared to the wild-type mice. They lack the hypolocomotive response to neurotensin seen in wild-type mice. There is no difference in neuotensin-induced analgesia between the knockout and wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  60
Rats overexpressing the NTS1 in the nucleus accumbens exhibit reduced dopaminergic transmission.
Species:  Rat
Tissue: 
Technique:  Retroviral infection.
References:  23
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Ntsr1tm2Pang Ntsr1tm2Pang/Ntsr1tm2Pang
involves: 129P2/OlaHsd * C57BL/6J
MGI:97386  MP:0001777 abnormal body temperature regulation PMID: 19223157 
Ntsr1tm1Fer Ntsr1tm1Fer/Ntsr1tm1Fer
Not Specified
MGI:97386  MP:0001905 abnormal dopamine level PMID: 15030383 
Ntsr1tm1Pang Ntsr1tm1Pang/Ntsr1tm1Pang
C57BL/6-Ntsr1
MGI:97386  MP:0003088 abnormal prepulse inhibition PMID: 19596359 
Ntsr1tm1Pang Ntsr1tm1Pang/Ntsr1tm1Pang
C57BL/6-Ntsr1
MGI:97386  MP:0001486 abnormal startle reflex PMID: 19596359 
Ntsr1tm2Pang Ntsr1tm2Pang/Ntsr1tm2Pang
involves: 129P2/OlaHsd * C57BL/6J
MGI:97386  MP:0002733 abnormal thermal nociception PMID: 19223157 
Ntsr1tm2Dgen Ntsr1tm2Dgen/Ntsr1tm2Dgen
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:97386  MP:0005534 decreased body temperature PMID: 11752130 
Ntsr1tm2Dgen Ntsr1tm2Dgen/Ntsr1tm2Dgen
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:97386  MP:0001982 decreased chemically-elicited antinociception PMID: 11752130 
Ntsr1tm1Pang Ntsr1tm1Pang/Ntsr1tm1Pang
C57BL/6-Ntsr1
MGI:97386  MP:0001489 decreased startle reflex PMID: 19596359 
Ntsr1tm2Dgen Ntsr1tm2Dgen/Ntsr1tm2Dgen
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:97386  MP:0003290 hypoperistalsis PMID: 11752130 
Ntsr1+|Ntsr1tm2Dgen Ntsr1tm2Dgen/Ntsr1+
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:97386  MP:0003290 hypoperistalsis PMID: 11752130 
Ntsr1tm2Dgen Ntsr1tm2Dgen/Ntsr1tm2Dgen
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:97386  MP:0001405 impaired coordination PMID: 11752130 
Ntsr1tm1Fer Ntsr1tm1Fer/Ntsr1tm1Fer
C57BL/6
MGI:97386  MP:0005533 increased body temperature PMID: 12384239 
Ntsr1tm1Fer Ntsr1tm1Fer/Ntsr1tm1Fer
C57BL/6
MGI:97386  MP:0001260 increased body weight PMID: 12384239 
Ntsr1tm2Pang Ntsr1tm2Pang/Ntsr1tm2Pang
involves: 129P2/OlaHsd * C57BL/6J
MGI:97386  MP:0002574 increased vertical activity PMID: 19223157 
Ntsr1tm1Fer Ntsr1tm1Fer/Ntsr1tm1Fer
C57BL/6
MGI:97386  MP:0000008 increased white adipose tissue amount PMID: 12384239 
Ntsr1tm1Hmno Ntsr1tm1Hmno/Ntsr1tm1Hmno
B6.129P2-Ntsr1
MGI:97386  MP:0002169 no abnormal phenotype detected PMID: 14725975 
Ntsr1tm1Dgen Ntsr1tm1Dgen/Ntsr1tm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:97386  MP:0002169 no abnormal phenotype detected
Ntsr1tm1Fer Ntsr1tm1Fer/Ntsr1tm1Fer
C57BL/6
MGI:97386  MP:0001433 polyphagia PMID: 12384239 
Biologically Significant Variants Click here for help
Type:  RNA editing
Species:  Rat
Description:  No splice variants of the NTS1 receptor have been found. There are two isoforms of the NTS1 receptor, corresponding to two translation initiation sites.
References:  9-10
General Comments
A special issue of the journal "peptides" entitled "Neurotensin: Roles and Mechanisms" has recently been published [26].

References

Show »

1. Alexander MJ, Leeman SE. (1998) Widespread expression in adult rat forebrain of mRNA encoding high-affinity neurotensin receptor. J Comp Neurol, 402 (4): 475-500. [PMID:9862322]

2. Amar S, Kitabgi P, Vincent JP. (1986) Activation of phosphatidylinositol turnover by neurotensin receptors in the human colonic adenocarcinoma cell line HT29. FEBS Lett, 201 (1): 31-6. [PMID:3011505]

3. Amar S, Kitabgi P, Vincent JP. (1987) Stimulation of inositol phosphate production by neurotensin in neuroblastoma N1E115 cells: implication of GTP-binding proteins and relationship with the cyclic GMP response. J Neurochem, 49 (4): 999-1006. [PMID:3040912]

4. Amar S, Mazella J, Checler F, Kitabgi P, Vincent JP. (1985) Regulation of cyclic GMP levels by neurotensin in neuroblastoma clone N1E115. Biochem Biophys Res Commun, 129 (1): 117-25. [PMID:2988544]

5. Araki K, Tachibana S, Uchiyama M, Nakajima T, Yasuhara T. (1975) Isolation and structure of a new active peptide xenopsin on rat stomach strip and some biogenic amines in the skin of Xenopus laevis. Chem Pharm Bull (Tokyo), 23: 3132-3140. [PMID:1218451]

6. Azriel Y, Burcher E. (2001) Characterization and autoradiographic localization of neurotensin binding sites in human sigmoid colon. J Pharmacol Exp Ther, 297 (3): 1074-81. [PMID:11356931]

7. Beaudet A, Nouel D, Stroh T, Vandenbulcke F, Dal-Farra C, Vincent JP. (1998) Fluorescent ligands for studying neuropeptide receptors by confocal microscopy. Braz J Med Biol Res, 31 (11): 1479-89. [PMID:9921286]

8. Botto JM, Guillemare E, Vincent JP, Mazella J. (1997) Effects of SR 48692 on neurotensin-induced calcium-activated chloride currents in the Xenopus oocyte expression system: agonist-like activity on the levocabastine-sensitive neurotensin receptor and absence of antagonist effect on the levocabastine insensitive neurotensin receptor. Neurosci Lett, 223 (3): 193-6. [PMID:9080465]

9. Botto JM, Vincent JP, Mazella J. (1997) Existence of two translation initiation sites leading to the expression of two proteins from the rat high-affinity neurotensin-receptor cDNA: possible regulation by the 5' end non-coding region. Biochem J, 324 ( Pt 2): 389-93. [PMID:9182695]

10. Boudin H, Lazaroff B, Bachelet CM, Pélaprat D, Rostène W, Beaudet A. (2000) Immunologic differentiation of two high-affinity neurotensin receptor isoforms in the developing rat brain. J Comp Neurol, 425 (1): 45-57. [PMID:10940941]

11. Boudin H, Pélaprat D, Rostène W, Beaudet A. (1996) Cellular distribution of neurotensin receptors in rat brain: immunohistochemical study using an antipeptide antibody against the cloned high affinity receptor. J Comp Neurol, 373 (1): 76-89. [PMID:8876464]

12. Boudin H, Pélaprat D, Rostène W, Pickel VM, Beaudet A. (1998) Correlative ultrastructural distribution of neurotensin receptor proteins and binding sites in the rat substantia nigra. J Neurosci, 18 (20): 8473-84. [PMID:9763490]

13. Boules M, Shaw A, Liang Y, Barbut D, Richelson E. (2009) NT69L, a novel analgesic, shows synergy with morphine. Brain Res, 1294: 22-8. [PMID:19651107]

14. Bozou JC, Amar S, Vincent JP, Kitabgi P. (1986) Neurotensin-mediated inhibition of cyclic AMP formation in neuroblastoma N1E115 cells: involvement of the inhibitory GTP-binding component of adenylate cyclase. Mol Pharmacol, 29 (5): 489-96. [PMID:3010077]

15. Chabry J, Gaudriault G, Vincent JP, Mazella J. (1993) Implication of various forms of neurotensin receptors in the mechanism of internalization of neurotensin in cerebral neurons. J Biol Chem, 268 (23): 17138-44. [PMID:8394329]

16. Chabry J, Labbé-Jullié C, Gully D, Kitabgi P, Vincent JP, Mazella J. (1994) Stable expression of the cloned rat brain neurotensin receptor into fibroblasts: binding properties, photoaffinity labeling, transduction mechanisms, and internalization. J Neurochem, 63: 19-27. [PMID:8207427]

17. Choi KE, Hall CL, Sun JM, Wei L, Mohamad O, Dix TA, Yu SP. (2012) A novel stroke therapy of pharmacologically induced hypothermia after focal cerebral ischemia in mice. FASEB J, 26 (7): 2799-810. [PMID:22459147]

18. Choi SY, Chae HD, Park TJ, Ha H, Kim KT. (1999) Characterization of high affinity neurotensin receptor NTR1 in HL-60 cells and its down regulation during granulocytic differentiation. Br J Pharmacol, 126 (4): 1050-6. [PMID:10193787]

19. Coppola T, Béraud-Dufour S, Antoine A, Vincent JP, Mazella J. (2008) Neurotensin protects pancreatic beta cells from apoptosis. Int J Biochem Cell Biol, 40 (10): 2296-302. [PMID:18456542]

20. Craig AG, Norberg T, Griffin D, Hoeger C, Akhtar M, Schmidt K, Low W, Dykert J, Richelson E, Navarro V et al.. (1999) Contulakin-G, an O-glycosylated invertebrate neurotensin. J Biol Chem, 274 (20): 13752-9. [PMID:10318778]

21. Croci T, Aureggi G, Guagnini F, Manara L, Gully D, Fur GL, Maffrand JP, Mukenge S, Ferla G, Ferrara P et al.. (1999) In vitro functional evidence of different neurotensin-receptors modulating the motor response of human colonic muscle strips. Br J Pharmacol, 127 (8): 1922-8. [PMID:10482925]

22. Cusack B, Jansen K, McCormick DJ, Chou T, Pang Y, Richelson E. (2000) A single amino acid of the human and rat neurotensin receptors (subtype 1) determining the pharmacological profile of a species-selective neurotensin agonist. Biochem Pharmacol, 60 (6): 793-801. [PMID:10930533]

23. Cáceda R, Kinkead B, Owens MJ, Nemeroff CB. (2005) Virally mediated increased neurotensin 1 receptor in the nucleus accumbens decreases behavioral effects of mesolimbic system activation. J Neurosci, 25 (50): 11748-56. [PMID:16354933]

24. Dobner PR, Barber DL, Villa-Komaroff L, McKiernan C. (1987) Cloning and sequence analysis of cDNA for the canine neurotensin/neuromedin N precursor. Proc Natl Acad Sci USA, 84 (10): 3516-20. [PMID:3472221]

25. Dubuc I, Sarret P, Labbé-Jullié C, Botto JM, Honoré E, Bourdel E, Martinez J, Costentin J, Vincent JP, Kitabgi P et al.. (1999) Identification of the receptor subtype involved in the analgesic effect of neurotensin. J Neurosci, 19 (1): 503-10. [PMID:9870978]

26. edCarraway RE, Pothoulakis C, Leeman S. (2006) Neurotensin: Roles and Mechanisms. Peptides, 27: 2361-2534.

27. Elde R, Schalling M, Ceccatelli S, Nakanishi S, Hökfelt T. (1990) Localization of neuropeptide receptor mRNA in rat brain: initial observations using probes for neurotensin and substance P receptors. Neurosci Lett, 120 (1): 134-8. [PMID:1705671]

28. Fantegrossi WE, Ko MC, Woods JH, Richelson E. (2005) Antinociceptive, hypothermic, hypotensive, and reinforcing effects of a novel neurotensin receptor agonist, NT69L, in rhesus monkeys. Pharmacol Biochem Behav, 80 (2): 341-9. [PMID:15680187]

29. Fassio A, Evans G, Grisshammer R, Bolam JP, Mimmack M, Emson PC. (2000) Distribution of the neurotensin receptor NTS1 in the rat CNS studied using an amino-terminal directed antibody. Neuropharmacology, 39 (8): 1430-42. [PMID:10818259]

30. Friry C, Feliciangeli S, Richard F, Kitabgi P, Rovere C. (2002) Production of recombinant large proneurotensin/neuromedin N-derived peptides and characterization of their binding and biological activity. Biochem Biophys Res Commun, 290 (4): 1161-8. [PMID:11811984]

31. Gailly P. (1998) Ca2+ entry in CHO cells, after Ca2+ stores depletion, is mediated by arachidonic acid. Cell Calcium, 24 (4): 293-304. [PMID:9883283]

32. Gailly P, Najimi M, Hermans E. (2000) Evidence for the dual coupling of the rat neurotensin receptor with pertussis toxin-sensitive and insensitive G-proteins. FEBS Lett, 483 (2-3): 109-13. [PMID:11042263]

33. Gilbert JA, Richelson E. (1984) Neurotensin stimulates formation of cyclic GMP in murine neuroblastoma clone N1E-115. Eur J Pharmacol, 99 (2-3): 245-6. [PMID:6329783]

34. Guillemette A, Dansereau MA, Beaudet N, Richelson E, Sarret P. (2012) Intrathecal administration of NTS1 agonists reverses nociceptive behaviors in a rat model of neuropathic pain. Eur J Pain, 16 (4): 473-84. [PMID:22396077]

35. Gully D, Canton M, Boigegrain R, Jeanjean F, Molimard JC, Poncelet M, Gueudet C, Heaulme M, Leyris R, Brouard A et al.. (1993) Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc Natl Acad Sci USA, 90 (1): 65-9. [PMID:8380498]

36. Gully D, Labeeuw B, Boigegrain R, Oury-Donat F, Bachy A, Poncelet M, Steinberg R, Suaud-Chagny MF, Santucci V, Vita N et al.. (1997) Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. J Pharmacol Exp Ther, 280 (2): 802-12. [PMID:9023294]

37. Hadden MK, Orwig KS, Kokko KP, Mazella J, Dix TA. (2005) Design, synthesis, and evaluation of the antipsychotic potential of orally bioavailable neurotensin (8-13) analogues containing non-natural arginine and lysine residues. Neuropharmacology, 49 (8): 1149-59. [PMID:16095636]

38. Hermans E, Geurts M, Maloteaux JM. (1997) Agonist and antagonist modulation of [35S]-GTP gamma S binding in transfected CHO cells expressing the neurotensin receptor. Br J Pharmacol, 121 (8): 1817-23. [PMID:9283723]

39. Hermans E, Maloteaux JM, Octave JN. (1992) Phospholipase C activation by neurotensin and neuromedin N in Chinese hamster ovary cells expressing the rat neurotensin receptor. Brain Res Mol Brain Res, 15 (3-4): 332-8. [PMID:1331689]

40. Hughes FM, Shaner BE, May LA, Zotian L, Brower JO, Woods RJ, Cash M, Morrow D, Massa F, Mazella J et al.. (2010) Identification and functional characterization of a stable, centrally active derivative of the neurotensin (8-13) fragment as a potential first-in-class analgesic. J Med Chem, 53 (12): 4623-32. [PMID:20481538]

41. Labbé-Jullié C, Barroso S, Nicolas-Etève D, Reversat JL, Botto JM, Mazella J, Bernassau JM, Kitabgi P. (1998) Mutagenesis and modeling of the neurotensin receptor NTR1. Identification of residues that are critical for binding SR 48692, a nonpeptide neurotensin antagonist. J Biol Chem, 273 (26): 16351-7. [PMID:9632698]

42. Labbé-Jullié C, Botto JM, Mas MV, Chabry J, Mazella J, Vincent JP, Gully D, Maffrand JP, Kitabgi P. (1995) [3H]SR 48692, the first nonpeptide neurotensin antagonist radioligand: characterization of binding properties and evidence for distinct agonist and antagonist binding domains on the rat neurotensin receptor. Mol Pharmacol, 47 (5): 1050-6. [PMID:7746272]

43. Laurent P, Clerc P, Mattei MG, Forgez P, Dumont X, Ferrara P, Caput D, Rostene W. (1994) Chromosomal localization of mouse and human neurotensin receptor genes. Mamm Genome, 5: 303-306. [PMID:8075503]

44. Le F, Groshan K, Zeng XP, Richelson E. (1997) Characterization of the genomic structure, promoter region, and a tetranucleotide repeat polymorphism of the human neurotensin receptor gene. J Biol Chem, 272 (2): 1315-22. [PMID:8995438]

45. Leonetti M, Brun P, Clerget M, Steinberg R, Soubrié P, Renaud B, Suaud-Chagny MF. (2004) Specific involvement of neurotensin type 1 receptor in the neurotensin-mediated in vivo dopamine efflux using knock-out mice. J Neurochem, 89 (1): 1-6. [PMID:15030383]

46. Li H, Hua T, Wang W, Wu X, Miao C, Huang W, Xiao Y, Yang J, Bradley JL, Peberdy MA et al.. (2019) The Effects of Pharmacological Hypothermia Induced by Neurotensin Receptor Agonist ABS 201 on Outcomes of CPR. Shock, 51 (5): 667-673. [PMID:30986796]

47. Martin S, Navarro V, Vincent JP, Mazella J. (2002) Neurotensin receptor-1 and -3 complex modulates the cellular signaling of neurotensin in the HT29 cell line. Gastroenterology, 123 (4): 1135-43. [PMID:12360476]

48. Mazella J, Poustis C, Labbe C, Checler F, Kitabgi P, Granier C, van Rietschoten J, Vincent JP. (1983) Monoiodo-[Trp11]neurotensin, a highly radioactive ligand of neurotensin receptors. Preparation, biological activity, and binding properties to rat brain synaptic membranes. J Biol Chem, 258 (6): 3476-81. [PMID:6300046]

49. Mechanic JA, Sutton JE, Berson AE, Wu X, Kwan J, Schreiber R, Pang Z, Button DC. (2009) Involvement of the neurotensin receptor 1 in the behavioral effects of two neurotensin agonists, NT-2 and NT69L: lack of hypothermic, antinociceptive and antipsychotic actions in receptor knockout mice. Eur Neuropsychopharmacol, 19 (7): 466-75. [PMID:19223157]

50. Moyse E, Rostène W, Vial M, Leonard K, Mazella J, Kitabgi P, Vincent JP, Beaudet A. (1987) Distribution of neurotensin binding sites in rat brain: a light microscopic radioautographic study using monoiodo [125I]Tyr3-neurotensin. Neuroscience, 22 (2): 525-36. [PMID:3313097]

51. Mulè F, Serio R, Postorino A, Vetri T, Bonvissuto F. (1996) Antagonism by SR 48692 of mechanical responses to neurotensin in rat intestine. Br J Pharmacol, 117 (3): 488-492. [PMID:8821538]

52. Najimi M, Gailly P, Maloteaux JM, Hermans E. (2002) Distinct regions of C-terminus of the high affinity neurotensin receptor mediate the functional coupling with pertussis toxin sensitive and insensitive G-proteins. FEBS Lett, 512: 329-333. [PMID:11852105]

53. Oury-Donat F, Thurneyssen O, Gonalons N, Forgez P, Gully D, Le Fur G, Soubrie P. (1995) Characterization of the effect of SR48692 on inositol monophosphate, cyclic GMP and cyclic AMP responses linked to neurotensin receptor activation in neuronal and non-neuronal cells. Br J Pharmacol, 116 (2): 1899-905. [PMID:8528577]

54. Pereyra-Alfonso S, López Ordieres MG, del V Armanino M, de Lores Arnaiz GR. (2005) High-affinity neurotensin receptor is involved in phosphoinositide hydrolysis stimulation by carbachol in neonatal rat brain. Brain Res Dev Brain Res, 154 (2): 247-54. [PMID:15707678]

55. Pettibone DJ, Hess JF, Hey PJ, Jacobson MA, Leviten M, Lis EV, Mallorga PJ, Pascarella DM, Snyder MA, Williams JB et al.. (2002) The effects of deleting the mouse neurotensin receptor NTR1 on central and peripheral responses to neurotensin. J Pharmacol Exp Ther, 300 (1): 305-13. [PMID:11752130]

56. Poinot-Chazel C, Portier M, Bouaboula M, Vita N, Pecceu F, Gully D, Monroe JG, Maffrand JP, Le Fur G, Casellas P. (1996) Activation of mitogen-activated protein kinase couples neurotensin receptor stimulation to induction of the primary response gene Krox-24. Biochem J, 320 ( Pt 1): 145-51. [PMID:8947479]

57. Poncelet M, Souilhac J, Gueudet C, Terranova JP, Gully D, Le Fur G, Soubrié P. (1994) Effects of SR 48692, a selective non-peptide neurotensin receptor antagonist, on two dopamine-dependent behavioural responses in mice and rats. Psychopharmacology (Berl.), 116 (2): 237-41. [PMID:7862953]

58. Portier M, Combes T, Gully D, Maffrand JP, Casellas P. (1998) Neurotensin type 1 receptor-mediated activation of krox24, c-fos and Elk-1: preventing effect of the neurotensin antagonists SR 48692 and SR 142948. FEBS Lett, 432 (1-2): 88-93. [PMID:9710257]

59. Poustis C, Mazella J, Kitabgi P, Vincent JP. (1984) High-affinity neurotensin binding sites in differentiated neuroblastoma N1E115 cells. J Neurochem, 42 (4): 1094-100. [PMID:6699640]

60. Remaury A, Vita N, Gendreau S, Jung M, Arnone M, Poncelet M, Culouscou JM, Le Fur G, Soubrié P, Caput D et al.. (2002) Targeted inactivation of the neurotensin type 1 receptor reveals its role in body temperature control and feeding behavior but not in analgesia. Brain Res, 953 (1-2): 63-72. [PMID:12384239]

61. Richard F, Barroso S, Martinez J, Labbé-Jullié C, Kitabgi P. (2001) Agonism, inverse agonism, and neutral antagonism at the constitutively active human neurotensin receptor 2. Mol Pharmacol, 60 (6): 1392-8. [PMID:11723247]

62. Roussy G, Beaudry H, Lafrance M, Belleville K, Beaudet N, Wada K, Gendron L, Sarret P. (2010) Altered morphine-induced analgesia in neurotensin type 1 receptor null mice. Neuroscience, 170 (4): 1286-94. [PMID:20727387]

63. Roussy G, Dansereau MA, Doré-Savard L, Belleville K, Beaudet N, Richelson E, Sarret P. (2008) Spinal NTS1 receptors regulate nociceptive signaling in a rat formalin tonic pain model. J Neurochem, 105 (4): 1100-14. [PMID:18182046]

64. Sarrieau A, Javoy-Agid F, Kitabgi P, Dussaillant M, Vial M, Vincent JP, Agid Y, Rostène WH. (1985) Characterization and autoradiographic distribution of neurotensin binding sites in the human brain. Brain Res, 348 (2): 375-80. [PMID:4075096]

65. Schaeffer P, Laplace MC, Savi P, Pflieger AM, Gully D, Herbert JM. (1995) Human umbilical vein endothelial cells express high affinity neurotensin receptors coupled to intracellular calcium release. J Biol Chem, 270 (7): 3409-13. [PMID:7852427]

66. Skrzydelski D, Lhiaubet AM, Lebeau A, Forgez P, Yamada M, Hermans E, Rostene W, Pelaprat D. (2003) Differential involvement of intracellular domains of the rat NTS1 neurotensin receptor in coupling to G proteins: a molecular basis for agonist-directed trafficking of receptor stimulus. Mol Pharmacol, 64 (2): 421-9. [PMID:12869647]

67. Snider RM, Forray C, Pfenning M, Richelson E. (1986) Neurotensin stimulates inositol phospholipid metabolism and calcium mobilization in murine neuroblastoma clone N1E-115. J Neurochem, 47 (4): 1214-8. [PMID:3018165]

68. Tanaka K, Masu M, Nakanishi S. (1990) Structure and functional expression of the cloned rat neurotensin receptor. Neuron, 4 (6): 847-54. [PMID:1694443]

69. Tirado-Santiago G, Lázaro-Muñoz G, Rodríguez-González V, Maldonado-Vlaar CS. (2006) Microinfusions of neurotensin antagonist SR 48692 within the nucleus accumbens core impair spatial learning in rats. Behav Neurosci, 120 (5): 1093-102. [PMID:17014260]

70. Vita N, Laurent P, Lefort S, Chalon P, Dumont X, Kaghad M, Gully D, Le Fur G, Ferrara P, Caput D. (1993) Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor. FEBS Lett, 317 (1-2): 139-42. [PMID:8381365]

71. Watson MA, Yamada M, Yamada M, Cusack B, Veverka K, Bolden-Watson C, Richelson E. (1992) The rat neurotensin receptor expressed in Chinese hamster ovary cells mediates the release of inositol phosphates. J Neurochem, 59 (5): 1967-70. [PMID:1328536]

72. White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG et al.. (2012) Structure of the agonist-bound neurotensin receptor. Nature, 490 (7421): 508-13. [PMID:23051748]

73. Yamada M, Yamada M, Watson MA, Richelson E. (1993) Neurotensin stimulates cyclic AMP formation in CHO-rNTR-10 cells expressing the cloned rat neurotensin receptor. Eur J Pharmacol, 244 (1): 99-101. [PMID:8380559]

74. Zhao Y, Wei ZZ, Lee JH, Gu X, Sun J, Dix TA, Wei L, Yu SP. (2020) Pharmacological hypothermia induced neurovascular protection after severe stroke of transient middle cerebral artery occlusion in mice. Exp Neurol, 325: 113133. [PMID:31770520]

Contributors

Show »

How to cite this page