P2Y<sub>4</sub> receptor | P2Y receptors | IUPHAR/BPS Guide to PHARMACOLOGY

Top ▲

P2Y4 receptor

Target not currently curated in GtoImmuPdb

Target id: 325

Nomenclature: P2Y4 receptor

Family: P2Y receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 365 Xq13-q21 P2RY4 pyrimidinergic receptor P2Y4 8,33
Mouse 7 361 X C2 P2ry4 pyrimidinergic receptor P2Y, G-protein coupled, 4 24,37
Rat 7 361 Xq31 P2ry4 pyrimidinergic receptor P2Y4 3,43
Previous and Unofficial Names
pyrimidinoceptor | uridine nucleotide receptor | NRU | UNR | P2Y ATP receptor 4 | P2Y purinoceptor 4 | P2Y4R | pyrimidinergic receptor P2Y
Database Links
Specialist databases
GPCRDB p2ry4_human (Hs), p2ry4_mouse (Mm), p2ry4_rat (Rn)
Other databases
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
RefSeq Nucleotide
RefSeq Protein
Natural/Endogenous Ligands
uridine triphosphate
Potency order of endogenous ligands (Human)
uridine triphosphate>ATP (at rat recombinant receptors, UTP = ATP)

Download all structure-activity data for this target as a CSV file

Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
MRS4062 Hs Full agonist 7.6 pEC50 28
pEC50 7.6 (EC50 2.3x10-8 M) [28]
MRS2927 Hs Full agonist 7.2 pEC50 28
pEC50 7.2 (EC50 6.2x10-8 M) [28]
N4-phenylethoxycytidine-5'-triphosphate Hs Full agonist 7.1 pEC50 28
pEC50 7.1 (EC50 7.3x10-8 M) [28]
(N)methanocarba-UTP Hs Full agonist 7.1 pEC50 20
pEC50 7.1 [20]
diquafosol Hs Full agonist 6.4 pEC50 4
pEC50 6.4 [4]
uridine triphosphate Hs Full agonist 6.3 pEC50 19
pEC50 6.3 [19]
denufosol Hs Full agonist 6.1 pEC50 47
pEC50 6.1 [47]
ATP Rn Partial agonist 5.7 – 6.3 pEC50 3,18-19
pEC50 5.7 – 6.3 [3,18-19]
Ap4A Rn Partial agonist 5.9 pEC50 19
pEC50 5.9 [19]
ITP Rn Partial agonist 5.7 – 5.8 pEC50 3,19
pEC50 5.7 – 5.8 [3,19]
uridine triphosphate Rn Partial agonist 5.6 pEC50 3
pEC50 5.6 [3]
guanosine-5'-triphosphate Rn Partial agonist 5.6 pEC50 19
pEC50 5.6 [19]
ATP Hs Agonist 5.4 pEC50 1
pEC50 5.4 (EC50 4.3x10-6 M) [1]
2-amino-uridine-5'-monophosphate Hs Partial agonist 5.3 pEC50 9
pEC50 5.3 (EC50 4.98x10-6 M) [9]
guanosine-5'-triphosphate Hs Partial agonist 5.2 pEC50 19
pEC50 5.2 [19]
CTP Rn Partial agonist 5.1 pEC50 19
pEC50 5.1 [19]
ITP Hs Partial agonist 5.1 pEC50 19
pEC50 5.1 [19]
UTPγS ? Agonist - - 25
View species-specific agonist tables
Agonist Comments
Reference [19] EC50 values are found using Ca2+ functional assays. ATP acts as a partial agonist at the murine, but as an antagonist at the human P2Y4 receptor [19]
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
ATP Hs Antagonist 6.2 pKd 19
pKd 6.2 [19]
PPADS Hs Antagonist 2.0 – 5.0 pEC50 17
pEC50 2.0 – 5.0 [17]
reactive blue-2 Rn Antagonist 4.7 pIC50 3
pIC50 4.7 [3]
View species-specific antagonist tables
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Secondary Transduction Mechanisms
Transducer Effector/Response
Phospholipase A2 stimulation
Comments:  In guinea pig gallbladder smooth muscle cells, P2Y4 activation is followed by phospholipase A2 and COX-1 stimulation [2].

In human HaCaT keratinocytes, UTP (acting on the P2Y2/P2Y4 receptor subtypes) activates ERK1/2 phosphorylation, which in turn leads to IL-6 production [21]. P2Y4-mediated ERK1/2 activation was also detected in human midbrain-derived neuroprogenitor cells [30].
References:  26
Tissue Distribution
Adipose tissue-derived mesenchymal stem cells
Species:  Human
Technique:  RT-PCR and Western blotting
References:  48
Rheumatoid synoviocytes
Species:  Human
Technique:  RT-PCR
References:  5
Bronchial epithelium
Species:  Human
Technique:  Real-time PCR
References:  45
Cardiac microvessels
Species:  Human
Technique:  RT-PCR
References:  15
Intestine > pituitary >> brain > adipose > lung, skeletal muscle, spleen, lymphocytes, prostate > heart, pancreas, placenta, > kidney, stomach, bone > foetal liver > liver, macrophages > bone marrow cartilage.
Species:  Human
Technique:  RT-PCR.
References:  31
Cardiac endothelial cells
Species:  Mouse
Technique:  In situ hybridisation, RT-PCR
References:  15
Jejunal epithelia.
Species:  Mouse
Technique:  in situ hybridisation.
References:  24
Trigeminal ganglia
Species:  Mouse
Technique:  Immunohistochemistry
References:  41
Apical membrane of kidney collecting duct cells
Species:  Mouse
Technique:  RT-PCR and immunocytochemistry
References:  44
Cochlea strial marginal cells
Species:  Rat
Technique:  RT-PCR
References:  16,27
Aortic smooth muscle cells
Species:  Rat
Technique:  RT-PCR
References:  11
Dorsal and ventral horn neurons
Species:  Rat
Technique:  in situ hybridisation
References:  22
Trigeminal ganglia
Species:  Rat
Technique:  RT-PCR
References:  6
Cardiac tissue during development
Species:  Rat
Technique:  RT-PCR and immunocytochemistry
References:  7
Endolymphatic sac epithelia
Species:  Rat
Technique:  RT-PCR
References:  32
Müller retinal cells
Species:  Rat
Technique:  Immunohistochemistry
References:  46
Species:  Rat
Technique:  RT-PCR
References:  23
Sensory ganglia: dorsal root ganglia, nodose ganglion and trigeminal ganglion.
Species:  Rat
Technique:  RT-PCR and Immunohistochemistry.
References:  36
Enteric glial cells
Species:  Guinea pig
Technique:  Immunohistochemistry
References:  12
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of IP levels and Ca2+ concentration in 1321N1 cells transfected with the mouse P2Y4 receptor.
Species:  Mouse
Tissue:  1321N1 cells
Response measured:  IP accumulation and increase in [Ca2+].
References:  24
Measurement of MAPK pathway activation in spontaneously hypertensive rat (SHR) derived aortic smooth muscle cells.
Species:  Rat
Tissue:  SHR derived cells.
Response measured:  Tyrosine phosphorylation of p42 and p44 MAPK.
References:  13
Bioelectrical measurement of short-circuit current (ISC) in response to P2Y4 agonist stimulation in jejunal epithelial cells.
Species:  Mouse
Tissue:  Jejunal epithelia.
Response measured:  Increase in ISC.
References:  24
Physiological Functions
Regulation of chloride epithelial transport.
Species:  Mouse
Tissue:  Jejunum.
References:  10,34
Modulation of rod bipolar cell activity
Species:  Rat
Tissue:  Retina
References:  42
Activation of luminal K+ secretion
Species:  Mouse
Tissue:  Colon
References:  29
Presynaptic inhibition of glutamate release
Species:  Rat
Tissue:  Hippocampus
References:  35
Inhibition of K+ secretion across strial marginal epithelial cells
Species:  Rat
Tissue:  Cochlea strial marginal cells
References:  26
Down-regulation of aquaporin-2 expression
Species:  Rat
Tissue:  Transfected Xenopus oocytes
References:  44
Induction of thrombospondin-1 expression following trauma
Species:  Rat
Tissue:  Brain astrocytes
References:  39
Modulation of adipogenic and osteogenic differentiation
Species:  Human
Tissue:  Adipose tissue-derived mesenchymal stem cells
References:  48
Production and secretion of amyloid precursor protein
Species:  Rat
Tissue:  Cortical astrocytes
References:  38
Physiological Consequences of Altering Gene Expression
P2Y4 receptor knockout mice exhibit reduced K+ secretion in the luminal membrane of the distal colonic mucosa when compared to wild-type mice.
P2Y2/P2Y4 double knockout mice have completely abolished K+ secretion in the distal colonic mucosa.
Species:  Mouse
Technique:  Gene knockout
References:  29
P2Y4 receptor knockout mice exhibit abolished chloride secretory responses as seen in wild-type mouse jejunum.
Species:  Mouse
Technique:  Gene targeting in embryonic stem cells.
References:  34
P2Y4-deficient mice display lower exercise capacity and a reduced effort-induced adaptive cardiac hypertrophy
Species:  Mouse
Tissue:  Cardiac tissue
Technique:  Targeting in embryonic stem cells
References:  14
P2Y4-deficient mice show a marked cardiac angiogenic defect, with the resulting phenotype of microcardia
Species:  Mouse
Tissue:  Cardiac tissue
Technique:  Targeting in embryonic stem cells
References:  15
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
P2ry4tm1Brob P2ry4tm1Brob/P2ry4tm1Brob
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:1926594  MP:0000501 abnormal digestive secretion PMID: 12644577 
P2ry4tm1Brob P2ry4tm1Brob/Y
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:1926594  MP:0000501 abnormal digestive secretion PMID: 12644577 
P2ry4tm1Brob P2ry4tm1Brob/P2ry4tm1Brob
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:1926594  MP:0002081 perinatal lethality PMID: 12644577 
General Comments
Other tissue functions reported for P2Y4 include:
  • inhibition of K+ secretion across strial marginal epithelial cells in gerbil [26]
  • induction of gallbladder smooth muscle excitability in guinea pig [2]
  • The receptor was also detected using immunohistochemistry in guinea pig enteric glial cells [12,40].


    Show »

    1. A-González N, Castrillo A. (2011) Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim. Biophys. Acta, 1812 (8): 982-94. [PMID:21193033]

    2. Bartoo AC, Nelson MT, Mawe GM. (2008) ATP induces guinea pig gallbladder smooth muscle excitability via the P2Y4 receptor and COX-1 activity. Am. J. Physiol. Gastrointest. Liver Physiol., 294 (6): G1362-8. [PMID:18436624]

    3. Bogdanov YD, Wildman SS, Clements MP, King BF, Burnstock G. (1998) Molecular cloning and characterization of rat P2Y4 nucleotide receptor. Br. J. Pharmacol., 124 (3): 428-30. [PMID:9647463]

    4. Brunschweiger A, Müller CE. (2006) P2 receptors activated by uracil nucleotides--an update. Curr. Med. Chem., 13 (3): 289-312. [PMID:16475938]

    5. Caporali F, Capecchi PL, Gamberucci A, Lazzerini PE, Pompella G, Natale M, Lorenzini S, Selvi E, Galeazzi M, Laghi Pasini F. (2008) Human rheumatoid synoviocytes express functional P2X7 receptors. J Mol Med, 86: 937-949. [PMID:18545980]

    6. Ceruti S, Fumagalli M, Villa G, Verderio C, Abbracchio MP. (2008) Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures. Cell Calcium, 43 (6): 576-90. [PMID:18031810]

    7. Cheung KK, Ryten M, Burnstock G. (2003) Abundant and dynamic expression of G protein-coupled P2Y receptors in mammalian development. Dev. Dyn., 228 (2): 254-66. [PMID:14517997]

    8. Communi D, Pirotton S, Parmentier M, Boeynaems JM. (1995) Cloning and functional expression of a human uridine nucleotide receptor. J. Biol. Chem., 270: 30849-30852. [PMID:8537336]

    9. El-Tayeb A, Qi A, Nicholas RA, Müller CE. (2011) Structural modifications of UMP, UDP, and UTP leading to subtype-selective agonists for P2Y2, P2Y4, and P2Y6 receptors. J. Med. Chem., 54 (8): 2878-90. [PMID:21417463]

    10. Ghanem E, Robaye B, Leal T, Leipziger J, Van Driessche W, Beauwens R, Boeynaems JM. (2005) The role of epithelial P2Y2 and P2Y4 receptors in the regulation of intestinal chloride secretion. Br. J. Pharmacol., 146 (3): 364-9. [PMID:16056234]

    11. Govindan S, Taylor EJ, Taylor CW. (2010) Ca(2+) signalling by P2Y receptors in cultured rat aortic smooth muscle cells. Br. J. Pharmacol., 160 (8): 1953-62. [PMID:20649593]

    12. Gulbransen BD, Sharkey KA. (2009) Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology, 136 (4): 1349-58. [PMID:19250649]

    13. Harper S, Webb TE, Charlton SJ, Ng LL, Boarder MR. (1998) Evidence that P2Y4 nucleotide receptors are involved in the regulation of rat aortic smooth muscle cells by UTP and ATP. Br. J. Pharmacol., 124 (4): 703-10. [PMID:9690862]

    14. Horckmans M, Léon-Gómez E, Robaye B, Balligand JL, Boeynaems JM, Dessy C, Communi D. (2012) Gene deletion of P2Y4 receptor lowers exercise capacity and reduces myocardial hypertrophy with swimming exercise. Am. J. Physiol. Heart Circ. Physiol., 303 (7): H835-43. [PMID:22865387]

    15. Horckmans M, Robaye B, Léon-Gόmez E, Lantz N, Unger P, Dol-Gleizes F, Clouet S, Cammarata D, Schaeffer P, Savi P et al.. (2012) P2Y(4) nucleotide receptor: a novel actor in post-natal cardiac development. Angiogenesis, 15 (3): 349-60. [PMID:22437266]

    16. Hur DG, Lee JH, Oh SH, Kim YH, Lee JH, Shin DH, Chang SO, Kim CS. (2007) KCNQ1/KCNE1 K+ channel and P2Y4 receptor are co-expressed from the time of birth in the apical membrane of rat strial marginal cells. Acta Otolaryngol Suppl, (558): 30-5. [PMID:17882567]

    17. Jacobson KA, Ivanov AA, de Castro S, Harden TK, Ko H. (2009) Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal., 5 (1): 75-89. [PMID:18600475]

    18. Jacobson KA, Jarvis MF, Williams M. (2002) Purine and pyrimidine (P2) receptors as drug targets. J. Med. Chem., 45 (19): 4057-93. [PMID:12213051]

    19. Kennedy C, Qi AD, Herold CL, Harden TK, Nicholas RA. (2000) ATP, an agonist at the rat P2Y(4) receptor, is an antagonist at the human P2Y(4) receptor. Mol. Pharmacol., 57 (5): 926-31. [PMID:10779375]

    20. Kim HS, Ravi RG, Marquez VE, Maddileti S, Wihlborg AK, Erlinge D, Malmsjö M, Boyer JL, Harden TK, Jacobson KA. (2002) Methanocarba modification of uracil and adenine nucleotides: high potency of Northern ring conformation at P2Y1, P2Y2, P2Y4, and P2Y11 but not P2Y6 receptors. J. Med. Chem., 45 (1): 208-18. [PMID:11754592]

    21. Kobayashi D, Ohkubo S, Nakahata N. (2006) Contribution of extracellular signal-regulated kinase to UTP-induced interleukin-6 biosynthesis in HaCaT keratinocytes. J. Pharmacol. Sci., 102 (4): 368-76. [PMID:17130674]

    22. Kobayashi K, Fukuoka T, Yamanaka H, Iyamanaka H, Dai Y, Obata K, Tokunaga A, Noguchi K. (2006) Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J. Comp. Neurol., 498 (4): 443-54. [PMID:16874807]

    23. Kudirka JC, Panupinthu N, Tesseyman MA, Dixon SJ, Bernier SM. (2007) P2Y nucleotide receptor signaling through MAPK/ERK is regulated by extracellular matrix: involvement of beta3 integrins. J. Cell. Physiol., 213 (1): 54-64. [PMID:17620283]

    24. Lazarowski ER, Rochelle LG, O'Neal WK, Ribeiro CM, Grubb BR, Zhang V, Harden TK, Boucher RC. (2001) Cloning and functional characterization of two murine uridine nucleotide receptors reveal a potential target for correcting ion transport deficiency in cystic fibrosis gallbladder. J. Pharmacol. Exp. Ther., 297 (1): 43-9. [PMID:11259526]

    25. Lazarowski ER, Watt WC, Stutts MJ, Brown HA, Boucher RC, Harden TK. (1996) Enzymatic synthesis of UTP gamma S, a potent hydrolysis resistant agonist of P2U-purinoceptors. Br. J. Pharmacol., 117 (1): 203-9. [PMID:8825364]

    26. Lee JH, Heo JH, Chang SO, Kim CS, Oh SH. (2006) Reactive blue 2, an antagonist of rat P2Y4, increases K+ secretion in rat cochlea strial marginal cells. Hear. Res., 219 (1-2): 66-73. [PMID:16839719]

    27. Marcus DC, Liu J, Lee JH, Scherer EQ, Scofield MA, Wangemann P. (2005) Apical membrane P2Y4 purinergic receptor controls K+ secretion by strial marginal cell epithelium. Cell Commun. Signal, 3: 13. [PMID:16266433]

    28. Maruoka H, Jayasekara MP, Barrett MO, Franklin DA, de Castro S, Kim N, Costanzi S, Harden TK, Jacobson KA. (2011) Pyrimidine nucleotides with 4-alkyloxyimino and terminal tetraphosphate δ-ester modifications as selective agonists of the P2Y(4) receptor. J. Med. Chem., 54 (12): 4018-33. [PMID:21528910]

    29. Matos JE, Robaye B, Boeynaems JM, Beauwens R, Leipziger J. (2005) K+ secretion activated by luminal P2Y2 and P2Y4 receptors in mouse colon. J. Physiol. (Lond.), 564 (Pt 1): 269-79. [PMID:15718265]

    30. Milosevic J, Brandt A, Roemuss U, Arnold A, Wegner F, Schwarz SC, Storch A, Zimmermann H, Schwarz J. (2006) Uracil nucleotides stimulate human neural precursor cell proliferation and dopaminergic differentiation: involvement of MEK/ERK signalling. J Neurochem, 99: 913-923. [PMID:17076658]

    31. Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC, Murdock PR. (2001) Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim. Biophys. Acta, 1521 (1-3): 107-19. [PMID:11690642]

    32. Mori T, Miyashita T, Akiyama K, Inamoto R, Mori N. (2009) The expression of P2Y1, 2, 4, and 6 receptors in rat endolymphatic sac epithelia. Neuroreport, 20 (4): 419-23. [PMID:19223794]

    33. Nguyen T, Erb L, Weisman GA, Marchese A, Heng HH, Garrad RC, George SR, Turner JT, O'Dowd BF. (1995) Cloning, expression, and chromosomal localization of the human uridine nucleotide receptor gene. J. Biol. Chem., 270: 30845-30848. [PMID:8537335]

    34. Robaye B, Ghanem E, Wilkin F, Fokan D, Van Driessche W, Schurmans S, Boeynaems JM, Beauwens R. (2003) Loss of nucleotide regulation of epithelial chloride transport in the jejunum of P2Y4-null mice. Mol. Pharmacol., 63 (4): 777-83. [PMID:12644577]

    35. Rodrigues RJ, Almeida T, Richardson PJ, Oliveira CR, Cunha RA. (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J. Neurosci., 25 (27): 6286-95. [PMID:16000618]

    36. Ruan HZ, Burnstock G. (2003) Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem. Cell Biol., 120 (5): 415-26. [PMID:14564529]

    37. Suarez-Huerta N, Pouillon V, Boeynaems J, Robaye B. (2001) Molecular cloning and characterization of the mouse P2Y4 nucleotide receptor. Eur. J. Pharmacol., 416 (3): 197-202. [PMID:11290369]

    38. Tran MD. (2011) P2 receptor stimulation induces amyloid precursor protein production and secretion in rat cortical astrocytes. Neurosci. Lett., 492 (3): 155-9. [PMID:21300137]

    39. Tran MD, Furones-Alonso O, Sanchez-Molano J, Bramlett HM. (2012) Trauma-induced expression of astrocytic thrombospondin-1 is regulated by P2 receptors coupled to protein kinase cascades. Neuroreport, 23 (12): 721-6. [PMID:22776902]

    40. Van Nassauw L, Costagliola A, Van Op den Bosch J, Cecio A, Vanderwinden JM, Burnstock G, Timmermans JP. (2006) Region-specific distribution of the P2Y4 receptor in enteric glial cells and interstitial cells of Cajal within the guinea-pig gastrointestinal tract. Auton Neurosci, 126-127: 299-306. [PMID:16616701]

    41. Vit JP, Jasmin L, Bhargava A, Ohara PT. (2006) Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain. Neuron Glia Biol, 2: 247-257. [PMID:18568096]

    42. Ward MM, Puthussery T, Fletcher EL. (2008) Localization and possible function of P2Y(4) receptors in the rodent retina. Neuroscience, 155 (4): 1262-74. [PMID:18625291]

    43. Webb TE, Henderson DJ, Roberts JA, Barnard EA. (1998) Molecular cloning and characterization of the rat P2Y4 receptor. J. Neurochem., 71: 1348-1357. [PMID:9751165]

    44. Wildman SS, Boone M, Peppiatt-Wildman CM, Contreras-Sanz A, King BF, Shirley DG, Deen PM, Unwin RJ. (2009) Nucleotides downregulate aquaporin 2 via activation of apical P2 receptors. J. Am. Soc. Nephrol., 20 (7): 1480-90. [PMID:19423692]

    45. Wong AM, Chow AW, Au SC, Wong CC, Ko WH. (2009) Apical versus basolateral P2Y(6) receptor-mediated Cl(-) secretion in immortalized bronchial epithelia. Am. J. Respir. Cell Mol. Biol., 40 (6): 733-45. [PMID:19011163]

    46. Wurm A, Erdmann I, Bringmann A, Reichenbach A, Pannicke T. (2009) Expression and function of P2Y receptors on Müller cells of the postnatal rat retina. Glia, 57 (15): 1680-90. [PMID:19373936]

    47. Yerxa BR, Sabater JR, Davis CW, Stutts MJ, Lang-Furr M, Picher M, Jones AC, Cowlen M, Dougherty R, Boyer J et al.. (2002) Pharmacology of INS37217 [P(1)-(uridine 5')-P(4)- (2'-deoxycytidine 5')tetraphosphate, tetrasodium salt], a next-generation P2Y(2) receptor agonist for the treatment of cystic fibrosis. J. Pharmacol. Exp. Ther., 302 (3): 871-80. [PMID:12183642]

    48. Zippel N, Limbach CA, Ratajski N, Urban C, Luparello C, Pansky A, Kassack MU, Tobiasch E. (2012) Purinergic receptors influence the differentiation of human mesenchymal stem cells. Stem Cells Dev., 21 (6): 884-900. [PMID:21740266]


    Show »

    How to cite this page

    Select citation format: