Top ▲

RXFP1

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 351

Nomenclature: RXFP1

Family: Relaxin family peptide receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 757 4q32.1 RXFP1 relaxin family peptide receptor 1 73
Mouse 7 758 3 E3 Rxfp1 relaxin/insulin-like family peptide receptor 1 124
Rat 7 758 2q33 Rxfp1 relaxin family peptide receptor 1 124
Previous and Unofficial Names Click here for help
LGR7 [72-73] | RXFPR1 | relaxin receptor 1 | leucine-rich repeat-containing G-protein-coupled receptor 7 [72-73] | RX1 | relaxin/insulin like family peptide receptor 1
Database Links Click here for help
Specialist databases
GPCRDB rxfp1_human (Hs), rxfp1_mouse (Mm), rxfp1_rat (Rn)
Other databases
Alphafold
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
relaxin-1 {Sp: Human}
relaxin {Sp: Human}
relaxin-3 {Sp: Human}
Comments: Relaxin is the most potent endogenous agonist and is the cognate ligand for RXFP1. There is cross reactivity between relaxin family peptides and their receptors: relaxin binds to and activates RXFP1 and RXFP2 and is a biased agonist at RXFP3; relaxin-3 binds to and activates RXFP1, RXFP3 and RXFP4.
Potency order of endogenous ligands (Human)
relaxin (RLN2, P04090) = relaxin-1 (RLN1, P04808) > relaxin-3 (RLN3, Q8WXF3)  [133]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[33P]relaxin (human) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 9.3 – 9.7 pKd 59,133
pKd 9.3 – 9.7 (Kd 5x10-10 – 2x10-10 M) [59,133]
relaxin {Sp: Rhesus macaque} Peptide Click here for species-specific activity table Hs Full agonist 9.4 pKd 59
pKd 9.4 [59]
europium-labelled relaxin Peptide Ligand is labelled Hs Agonist 9.3 pKd 128
pKd 9.3 (Kd 5x10-10 M) [128]
relaxin {Sp: Pig} Peptide Click here for species-specific activity table Hs Full agonist 9.1 pKd 59
pKd 9.1 [59]
europium-labelled relaxin Peptide Ligand is labelled Hs Full agonist 9.0 pKd 69
pKd 9.0 (Kd 1x10-9 M) [69]
relaxin {Sp: Rat} Peptide Hs Full agonist 7.3 pKd 59
pKd 7.3 [59]
A(4-24)(B7-24)H2 Peptide Click here for species-specific activity table Hs Full agonist 7.0 pKd 68
pKd 7.0 [68]
relaxin {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 9.2 – 10.2 pKi 59,67,133
pKi 9.2 – 10.2 [59,67,133]
A(4-24)(F23A)H2 Peptide Hs Full agonist 9.2 pKi 21
pKi 9.2 [21]
relaxin-3 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 7.5 – 8.0 pKi 59,133
pKi 7.5 – 8.0 [59,133]
INSL3 {Sp: Human} Peptide Click here for species-specific activity table Hs Full agonist 5.7 pKi 11
pKi 5.7 [11]
(B7-33)H2 Peptide Hs Full agonist 5.5 pKi 32,66
pKi 5.5 [32,66]
relaxin {Sp: Human} Peptide Click here for species-specific activity table Hs Full agonist 10.4 pEC50 67
pEC50 10.4 [67]
A(4-24)(F23A)H2 Peptide Hs Full agonist 9.8 pEC50 21
pEC50 9.8 [21]
TamRLX Peptide Click here for species-specific activity table Ligand is labelled Hs Agonist 9.1 pEC50 64
pEC50 9.1 (EC50 8.7x10-10 M) [64]
relaxin-1 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.8 pEC50 12
pEC50 8.8 [12]
A(4-24)(B7-24)H2 Peptide Click here for species-specific activity table Hs Full agonist 8.2 pEC50 68
pEC50 8.2 [68]
compound 54 Peptide Hs Full agonist 7.9 pEC50 98
pEC50 7.9 (EC50 1.2x10-8 M) [98]
[125I]relaxin (human) Peptide Ligand is labelled Ligand is radioactive Hs Full agonist - -
Nanoluciferase-labelled relaxin Peptide Ligand is labelled Hs Agonist - - 147
[147]
Agonist Comments
Human relaxin and porcine relaxin activate RXFP1 and RXFP2 and are biased agonists at RXFP3 (untested at RXFP4).
Rat relaxin selectively activates RXFP1 not RXFP2 (untested at RXFP3 and RXFP4).
Human relaxin-3 activates RXFP1 but not RXFP2, is the cognate ligand for RXFP3 and also activates RXFP4.
Rhesus monkey relaxin activates RXFP1 and RXFP2 (untested at RXFP3 and RXFP4).
Affinity values were determined in HEK 293 cells expressing human RXFP1.

Compounds 54, 59 and 64 are long-acting single-chain (B-chain) relaxin peptide mimetics. Testing of these peptides was cAMP accumulation in OVCAR5 cells expressing endogenous RXFP1 [98].

A(4-24)(B7-24)H2 is a synthetic peptide comprising the minimal active core of relaxin, with improved selectivity over RXFP2. A(4-24)(F23A)H2 has a minimised A-chain including an F23A mutation, generating improved selectivity for RXFP1 over RXFP2. A single chain derivative of relaxin, B7-33 is a functionally selective agonist at RXFP1 that preferentially activates ERK1/2 over cAMP. B7-33 has anti-fibrotic properties like relaxin but unlike relaxin does not promote tumour growth in vivo [66]. Short linear peptides derived from a naturally occurring protein containing a collagen-like repeat, have been reported to act at RXFP1 [130]. Although the effects produced by the peptides CGEN-25009 and CGEN-25010 in several systems were extremely variable and the effects of human relaxin in these systems unusual [130], there is some evidence to suggest relaxin-like activity of these peptides in THP-1 cells and in a fibrosis model [117]. In the latter study, CGEN-25009 and human relaxin increased cAMP, cGMP and nitrite, decreased collagen deposition and increased MMP2 activity in human dermal fibroblasts [117]. More recent studies with these peptides and the precursor protein C1q-tumor necrosis factor-related protein 8 (CTRP8) demonstrated activation of RXFP1 [55] with cAMP production and a PI3K mediated pro-migratory phenotype in glioblastoma cell lines and primary cells. Co-immunoprecipitation studies demonstrated a direct interaction between human CTRP8 and RXFP1. Although these studies suggest that CTRP8 or peptide fragments are able to activate RXFP1, it remains to be seen whether they are native ligands.
Antagonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
B-R13/17K H2 relaxin Peptide Hs Antagonist 5.0 – 6.3 pKi 70,107
pKi 5.0 – 6.3 [70,107]
B-R13/17K H2 relaxin Peptide Hs Antagonist 5.7 – 6.7 pIC50 70,107
pIC50 5.7 – 6.7 [70,107]
Antagonist Comments
RXFP1-truncate is a naturally occurring splice variant of the receptor that includes the LDLa region that acts as a functional antagonist of RXFP1 [125]. It has been identified in mouse, rat and pig, and in rodents levels rise in late pregnancy suggesting that it may have a physiological role in antagonising the actions of relaxin. B-R13/17K H2 is also referred to as AT-001, and has mutations R13K and R17K within the relaxin binding motif. B-R13/17K H2 is a partial agonist in recombinant systems with high RXFP1 expression and an antagonist in physiological systems with lower receptor expression.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
ML290 Small molecule or natural product Hs Biased agonist 7.0 pEC50 86,148-149
pEC50 7.0 (EC50 9.4x10-8 M) [86,148-149]
Allosteric Modulator Comments
ML290 is the first small molecule activator of RXFP1. The actions of ML290 are species-specific being active at the human RXFP1 with no agonist action at the mouse receptor. ML290 is a biased allosteric agonist at RXFP1.
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Gi/Go family
Adenylyl cyclase stimulation
Adenylyl cyclase inhibition
Comments:  RXFP1 displays complex cAMP signalling. RXFP1 couples to Gs to increase cAMP, an effect that is negatively modulated by coupling to GoB. RXFP1 also couples to Gi3 to activate a delayed surge of cAMP accumulation via a Gβγ-PI3K-PKCζ pathway that activates AC5. cAMP accumulation may also occur in response to relaxin by a G protein-independent mechanism, and in some cells may be downstream of tyrosine kinase inhibition of phosphodiesterase activity. A constitutive RXFP1-dependent cAMP response occurs in single rat cardiac fibroblasts, HeLa cells, and HEK293 cells expressing RXFP1. The response is dependent upon a protein complex, or signalosome, linked to the relaxin receptor, and the signalosome is highly sensitive to attomolar concentrations of relaxin.
References:  4,9,57-58,60-61,63,72-73,92,108-110
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Gi/Go family
Guanylate cyclase stimulation
Other - See Comments
Comments:  Responses also include kinase activation and other signalling pathways. Guanylate cyclase stimulation occurs secondary to increased NOS activity. Depending on the cell type under investigation, relaxin may activate endothelial nitric oxide synthase (eNOS) and neuronal NOS (nNOS) or stimulate the expression of inducible NOS (iNOS). In rat isolated lungs, the relaxin-mediated iNOS upregulation depends on a subtle balance between stimulatory ERK1/2 activation and counter-regulatory PI3K stimulation.
When stimulated by relaxin, RXFP1 activates a number of MAP kinases (including MEK, ERK1/2, Akt and p38), depending on the cell type in question. Activation of ERK1/2 is dependent on G protein coupling in rat renal myofibroblasts. The allosteric agonist ML-290 stimulates many of the pathways activated by relaxin but does not cause ERK1/2 activation.
Activation of PI3K and NOS-NO-cGMP signalling pathways by RXFP1 leads to inhibition of TGF-β1 signalling, and this is responsible for the anti-fibrotic effects of relaxin.
Relaxin activates the glucocorticoid receptor, a nuclear receptor that acts as a ligand-dependent transcription factor. The activation, and the subsequent changes in gene transcription, may account for the many effects of relaxin upon the expression levels of a variety of proteins, including those involved in connective tissue metabolism.
References:  2-3,5,7-8,24,40-43,105,111,123,152
Tissue Distribution Click here for help
Uterus, endometrium, cervix, vagina, nipple, breast, sperm, skin, cartilage, bladder, utero-sacral ligament, fascia.
Species:  Human
Technique:  Immunocytochemistry.
References:  27,33-34,46,50,54,76,87,94-95
Ovary, uterus, endometrium, cervix, vagina, placenta, nipple, testes, prostate, brain, heart, kidney, adrenal, lung, intestine, skin, pituitary, bladder, utero-sacral ligament, fascia, eye, fetal membranes.
Species:  Human
Technique:  RT-PCR.
References:  33-34,46,62,73,76,84,94-95,101-102,106
Diseased liver; advanced liver fibrosis due to non-alcoholic steatohepatitis (NASH) or autoimmune hepatitis.
Species:  Human
Technique:  In situ hybridisation.
References:  103
Diseased liver; human end-stage cirrhotic liver.
Species:  Human
Technique:  Immunofluorescence
References:  45
Oviduct, endometrium
Species:  Human
Technique:  Receptor autoradiography
References:  17,137
Uterine smooth muscle, endometrium, cervix, vagina
Species:  Mouse
Technique:  Immunohistochemistry
References:  73,100,132
Uterus, cerebral cortex, ventricle, atria, lung, nipple, gut spleen, skin, endometrium, myometrium, uterus, cervix, vagina, placenta, testes, prostate.
Species:  Mouse
Technique:  RT-PCR
References:  77,100,119,124,131
Cervix, vagina, brain
Species:  Mouse
Technique:  Northern blot
References:  124
Oviduct, uterus, cervix, vagina, nipple, testes, brain, pituitary, heart.
Species:  Mouse
Technique:  Receptor gene assay.
References:  56,89,116
Brain
Species:  Mouse
Technique:  In situ hybridisation
References:  56,116
Ovary, uterus, brain.
Species:  Mouse
Technique:  Receptor autoradiography.
References:  150
Diseased liver
Species:  Rat
Technique:  RT-PCR, immunofluorescence
References:  45
Uterus, cervix, vagina, nipple, mammary gland, brain, heart, adrenal.
Species:  Rat
Technique:  Receptor autoradiography.
References:  97,113,136
Uterus, cervix, vagina, nipple, mammary gland, testes, vascular endothelium/smooth muscle, ligaments/tendons, lung, kidney, uterine artery.
Species:  Rat
Technique:  Immunocytochemistry.
References:  51,73,78,85,91,93,129,142-144
Brain
Species:  Rat
Technique:  In situ hybridisation
References:  97
Uterine smooth muscle, endometrium, brain, testes, heart, prostate
Species:  Rat
Technique:  RT-PCR
References:  19,51,88,90,118,142-143,145
Ovary, oviduct, uterus, testes, brain, kidney, heart, intestine, colon, adrenal.
Species:  Rat
Technique:  Northern blotting.
References:  72,124
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Cell invasiveness
Species:  Human
Tissue:  HEC-1B and Ishikawa endometrial cells
Response measured:  Increased invasiveness
References:  53
Positive chronotropic effect in rat isolated atrium.
Species:  Rat
Tissue:  Right atrium.
Response measured:  Increase in rate of spontaneous beating.
References:  81,135
Positive inotropic effect in rat isolated atrium.
Species:  Rat
Tissue:  Left atrium.
Response measured:  Increase in developed tension.
References:  81,135
Measurement of cAMP levels in HEK 293T cells transfected with the human RXFP1 receptor.
Species:  Human
Tissue:  HEK 293T cells.
Response measured:  cAMP accumulation.
References:  22,58-59,61,73,86,133
Activation of ERK1/2
Species:  Rat
Tissue:  Renal myofibroblasts
Response measured:  Increased phosphorylation of ERK1/2
References:  25-26,105,146
Nitric oxide formation and increased cGMP
Species:  Rat
Tissue:  Aortic rings, renal myofibroblasts, lung
Response measured:  Increased NOS expression
References:  3,25,43,105
Nitric oxide formation and increased cGMP
Species:  Mouse
Tissue:  Ileum, gastric fundus
Response measured:  Increased NOS expression
References:  6-7
Activation of ERK1/2
Species:  Mouse
Tissue:  Fibrochondrocytes
Response measured:  Increased phosphorylation of ERK1/2
References:  2
Measurement of cAMP levels in cells/tissues endogenously expressing RXFP1 receptors
Species:  Mouse
Tissue:  Pubic symphysis
Response measured:  cAMP accumulation
References:  18
Measurement of cAMP levels in cells/tissues endogenously expressing RXFP1 receptors
Species:  Rat
Tissue:  Uterine strips and uterine longitudional muscle from oestrogen-primed rats, myometrial cells, anterior pituitary cells, left atria, skeletal muscle
Response measured:  cAMP accumulation
References:  30,71,88,92,112,120
Relaxation of pre-contracted rat uterus.
Species:  Rat
Tissue:  Uterus.
Response measured:  Relaxation.
References:  36-37,135
Measurement of cAMP levels in cells/tissues endogenously expressing RXFP1 receptors.
Species:  Human
Tissue:  THP-1 cells, MCF7 cells, endometrial cells, endometrial glandular epithelial cells, myometrial cells, umbilical vein endothelial cells (HUVEC), artery and vein smooth muscle cells (HUASMC, HUVSMC), cardiac fibroblasts (HCF), ovarian cancer cell line (OVCAR)
Response measured:  cAMP accumulation
References:  4,9-10,15,23,47,63,86,92,98,109-110,114,121-122
Activation of ERK1/2
Species:  Human
Tissue:  Endometrial stromal cells, THP-1 cells, cononary artery cells, pulmonary artery smooth muscle cells, HeLa cells, umbilical vein endothelial cells (HUVECs), umbilical artery and vein smooth muscle cells (HUASMC, HUVSMC), cardiac fibroblasts (HCF).
Response measured:  Increased phosphorylation of ERK1/2
References:  39-40,121-122,146,152
Measurement of cGMP levels in cells endogenously expressing RXFP1 receptors
Species:  Human
Tissue:  Umbilical vein endothelial cells (HUVEC), umbilical artery and vein smooth muscle cells (HUASMC, HUVSMC), cardiac fibroblasts (HCF), coronary artery endothelial cells
Response measured:  cGMP accumulation
References:  26,121-122
Phosphorylation, expression or activation of signaling proteins
Species:  Human
Tissue:  H9C2 cardiomyocytes, NIH3T3 fibroblasts
Response measured:  Akt phosphorylation, increased ADAM10 and NCID expression, PI-3-kinase activation
References:  16
MAPK phosphorylation in HEK293T cells expressing RXFP1 in response to biased agonist ML290
Species:  Human
Tissue:  HEK293T
Response measured:  Increased p38MAPK phosphorylation
References:  86
Measurement of cAMP and cGMP levels in response to biased agonist ML290
Species:  Human
Tissue:  Primary vascular endothelial and smooth muscle cells
Response measured:  Increased cAMP and cGMP
References:  86,121
Measurement of cGMP levels in response to biased agonist ML290
Species:  Human
Tissue:  Cardiac fibroblasts
Response measured:  Increased cGMP
References:  86
Relaxation of pre-contracted tracheal rings or lung slices
Species:  Rat
Tissue:  Tracheal rings, lung slices
Response measured:  Relaxation
References:  93
Positive chronotropic effects of relaxin peptide analogs in pithed rats.
Species:  Rat
Tissue: 
Response measured:  Heart rate
References:  98
Physiological Functions Click here for help
Relaxation of the uterus.
Species:  Rat
Tissue:  Uterus.
References:  135
Growth of the vagina.
Species:  Rat
Tissue:  Vagina.
References:  13
Plasma osmolarity regulation.
Species:  Rat
Tissue:  Subfornical organ; organum vasculosum of the lamina terminalis.
References:  134
Increased renal glomerular filtration rate and plasma flow, and decreased vascular resistance.
Species:  Rat
Tissue:  Kidney.
References:  13,29
Inotropic and chronotropic effects in the heart.
Species:  Rat
Tissue:  Right and left atria.
References:  81,135
Nipple and mammary gland growth and development.
Species:  Rat
Tissue:  Nipple and mammary gland.
References:  13
Implantation.
Species:  Human
Tissue:  Uterine endometrium.
References:  13
Wound healing.
Species:  Rat
Tissue:  Wounds.
References:  13
Cardiac protection.
Species:  Rat
Tissue:  Heart.
References:  13
Growth of interpubic ligament.
Species:  Mouse
Tissue:  Pubic symphysis.
References:  13,153
Increase in size and softening of the cervix. Lowered aquaporin expression.
Species:  Mouse
Tissue:  Cervix.
References:  13,132,153
Inhibition of collagen synthesis and promotion of collagen breakdown.
Species:  Mouse
Tissue:  Fibroblasts, bladder fibrosis
References:  13,75
Vasodilatation.
Species:  Rat
Tissue:  Blood vessels- vasodilator effects in gluteal resistance or subcutaneous arteries but little or no effect in pulmonary, myometrial or placental vessels.
References:  28,40,79,104,111
Formation and growth of tumours
Species:  Human
Tissue:  Endometrial, mammary, thyroid, prostate tumours; oesteosarcoma, glioblastoma
References:  48-49,55,65,82,96,138,141
Vasodilatation– vasodilator effects in gluteal resistance or subcutaneous arteries but little or no effect in pulmonary, myometrial or placental vessels
Species:  Mouse
Tissue:  Blood vessels
References:  28,104
Inotropic effects in the heart.
Species:  Human
Tissue:  Atria
References:  38
Cardiac protection
Species:  Human
Tissue:  Heart
References:  44,139-140
Vasodilatation– vasodilator effects in gluteal resistance or subcutaneous arteries but little or no effect in pulmonary, myometrial or placental vessels
Species:  Human
Tissue:  Blood vessels, RXFP1 expression reduced in varicose saphenous veins
References:  1,28,52,104,115
Growth and development of the uterus. (Rodent studies tend to show less of an effect, pig studies are very clear).
Species:  Rat
Tissue:  Uterus.
References:  13
Reduced sensitivity of mesangial cells
Species:  Rat
Tissue:  Reduced sensitivity to AII in pregnancy and with relaxin treatment
References:  20
Antifibrotic effects
Species:  Rat
Tissue:  Primary renal myofibroblasts, AT1 blockers irbesartan and candesartan block signal transduction and fibrosis mediated by RXFP1
References:  26
Antifibrotic effects
Species:  Human
Tissue:  Cardiac myofibroblasts, AT1 blockers irbesartan and candesartan block signal transduction and fibrosis mediated by RXFP1
References:  26
Knee laxity
Species:  Rat
Tissue:  Changes in knee laxity with oestrus cycle correlated with changes in RXFP1 expression
References:  31
Antifibrotic effects in bladder
Species:  Human
Tissue:  Primary smooth muscle bladder cells, RXFP1/2, MMP2 and TGF 1 expression
References:  33
Invasiveness and gene expression
Species:  Human
Tissue:  Prostate epithelial cells PNT1A, increased invasiveness, cross regulation of AT1 and AT2 receptors
References:  35
Reduction of portal hypertension
Species:  Rat
Tissue:  Reduction of portal hypertension in CCl4 model, increased NO signaling, reduced contractile filament expression in myofibroblasts
References:  45
Sperm viability
Species:  Human
Tissue:  Maintained motility, mitochrondrial activity, lowered apoptosis, increased activation, cAMP and Ca2+
References:  50
Wound healing in eye
Species:  Mouse
Tissue:  Increased cell proliferation and migration, increased expression of MMPs and TIMPs and enhanced wound healing
References:  62
Anti-fibrotic effects in the liver
Species:  Mouse
Tissue:  Relaxin acts via RXFP1 expressing hepatic macrophages to switch them from the profibrogenic to the pro-resolution phenotype which then promotes the quiescence of activated hepatic stellate cells.
References:  74
Physiological Consequences of Altering Gene Expression Click here for help
Male mice lacking the RXFP1 receptor show reduced fertility due to disrupted spermatogenesis associated with increased apoptosis of meiotic spermatocytes.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  89
Mice lacking the RXFP1 receptor show an increase in tissue collagen.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  83,99
Female mice lacking the RXFP1 receptor show normal fertility and parturition but 15% of pups die soon after birth and 100% within 24-48 hours due to maternal failure of nipple and mammary gland development.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  80,89
RXFP1 has role in blood vessel maturation and reducing inflammation
Species:  Mouse
Tissue:  Blood vessels
Technique:  Gene targeting in embryonic stem cells.
References:  14,127
Loss of effect of relaxin to reduce the effect of TGF on collagen deposition
Species:  Human
Tissue:  HEK293T cells expressing RXFP1
Technique:  Knockdown of RXFP1 by microRNA.
References:  151
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0001119 abnormal female reproductive system morphology PMID: 14701741 
Rxfp1tm1Aia|Tg(Ins2-Insl3)4Imad Rxfp1tm1Aia/Rxfp1tm1Aia,Tg(Ins2-Insl3)4Imad/0
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MGI:3054959  MP:0005149 abnormal gubernaculum morphology PMID: 15256493 
Rxfp1tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MP:0001882 abnormal lactation PMID: 15256493 
Rxfp1tm1Aia|Rxfp2tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia,Rxfp2tm1Aia/Rxfp2tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2153463  MGI:2682211  MP:0001882 abnormal lactation PMID: 15256493 
Rxfp1tm1Aia|Tg(Ins2-Insl3)4Imad Rxfp1tm1Aia/Rxfp1tm1Aia,Tg(Ins2-Insl3)4Imad/0
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MGI:3054959  MP:0001882 abnormal lactation PMID: 15256493 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0001145 abnormal male reproductive system morphology PMID: 14701741 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0006078 abnormal nipple morphology PMID: 14701741 
Rxfp1tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MP:0006078 abnormal nipple morphology PMID: 15256493 
Rxfp1tm1Aia|Rxfp2tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia,Rxfp2tm1Aia/Rxfp2tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2153463  MGI:2682211  MP:0006078 abnormal nipple morphology PMID: 15256493 
Rxfp1tm1Aia|Tg(Ins2-Insl3)4Imad Rxfp1tm1Aia/Rxfp1tm1Aia,Tg(Ins2-Insl3)4Imad/0
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MGI:3054959  MP:0006078 abnormal nipple morphology PMID: 15256493 
Rxfp1tm1Aia|Tg(Ins2-Insl3)4Imad Rxfp1tm1Aia/Rxfp1tm1Aia,Tg(Ins2-Insl3)4Imad/0
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MGI:3054959  MP:0001126 abnormal ovary morphology PMID: 15256493 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0002907 abnormal parturition PMID: 14701741 
Rxfp1tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MP:0002907 abnormal parturition PMID: 15256493 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0001156 abnormal spermatogenesis PMID: 14701741 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0005159 azoospermia PMID: 14701741 
Rxfp1tm1Aia|Rxfp2tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia,Rxfp2tm1Aia/Rxfp2tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2153463  MGI:2682211  MP:0002286 cryptorchism PMID: 15256493 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0004929 decreased epididymis weight PMID: 14701741 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0004852 decreased testis weight PMID: 14701741 
Rxfp1tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MP:0006050 pulmonary fibrosis PMID: 15256493 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0001923 reduced female fertility PMID: 14701741 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0001921 reduced fertility PMID: 14701741 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0001922 reduced male fertility PMID: 14701741 
Biologically Significant Variants Click here for help
Type:  Splice variant
Species:  Mouse
Description:  An exon-4 deleted transcript of the RXFP1 receptor is expressed in the endometrium, myometrium, uterus and cervix/vagina of pregnant female mice and rats. It has been suggested that this RXFP1 receptor splice variant (RXFP1-truncate) acts as a functional antagonist of relaxin in late pregnancy.
References:  125-126
General Comments
Many studies have examined RXFP1 tissue expression using a range of techniques. Most provide complimentary data but RT-PCR studies are subject to the usual caveats regarding the extent of amplification of physiologically relevant copy numbers of mRNA. Receptor autoradiography has also been used to provide quantitative data on properties of RXFP1 in particular tissue locations which is in good agreement with other methods.

References

Show »

1. Adams J, Schott S, Bern A, Renz M, Ikenberg K, Garbe C, Busch C. (2012) A novel role for relaxin-2 in the pathogenesis of primary varicosis. PLoS One, 7 (6): e39021. [PMID:22737225]

2. Ahmad N, Wang W, Nair R, Kapila S. (2012) Relaxin induces matrix-metalloproteinases-9 and -13 via RXFP1: induction of MMP-9 involves the PI3K, ERK, Akt and PKC-ζ pathways. Mol Cell Endocrinol, 363 (1-2): 46-61. [PMID:22835547]

3. Alexiou K, Wilbring M, Matschke K, Dschietzig T. (2013) Relaxin protects rat lungs from ischemia-reperfusion injury via inducible NO synthase: role of ERK-1/2, PI3K, and forkhead transcription factor FKHRL1. PLoS ONE, 8 (9): e75592. [PMID:24098703]

4. Anand-Ivell R, Heng K, Bartsch O, Ivell R. (2007) Relaxin signalling in THP-1 cells uses a novel phosphotyrosine-dependent pathway. Mol Cell Endocrinol, 272 (1-2): 1-13. [PMID:17509748]

5. Baccari MC, Bani D, Bigazzi M, Calamai F. (2004) Influence of relaxin on the neurally induced relaxant responses of the mouse gastric fundus. Biol Reprod, 71 (4): 1325-9. [PMID:15215200]

6. Baccari MC, Nistri S, Quattrone S, Bigazzi M, Bani Sacchi T, Calamai F, Bani D. (2004) Depression by relaxin of neurally induced contractile responses in the mouse gastric fundus. Biol Reprod, 70 (1): 222-8. [PMID:14522837]

7. Baccari MC, Nistri S, Vannucchi MG, Calamai F, Bani D. (2007) Reversal by relaxin of altered ileal spontaneous contractions in dystrophic (mdx) mice through a nitric oxide-mediated mechanism. Am J Physiol Regul Integr Comp Physiol, 293 (2): R662-8. [PMID:17522128]

8. Bani D, Failli P, Bello MG, Thiemermann C, Bani Sacchi T, Bigazzi M, Masini E. (1998) Relaxin activates the L-arginine-nitric oxide pathway in vascular smooth muscle cells in culture. Hypertension, 31 (6): 1240-7. [PMID:9622136]

9. Bartsch O, Bartlick B, Ivell R. (2001) Relaxin signalling links tyrosine phosphorylation to phosphodiesterase and adenylyl cyclase activity. Mol Hum Reprod, 7 (9): 799-809. [PMID:11517286]

10. Bartsch O, Bartlick B, Ivell R. (2004) Phosphodiesterase 4 inhibition synergizes with relaxin signaling to promote decidualization of human endometrial stromal cells. J Clin Endocrinol Metab, 89 (1): 324-34. [PMID:14715868]

11. Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. (2013) Relaxin family peptides and their receptors. Physiol Rev, 93 (1): 405-80. [PMID:23303914]

12. Bathgate RA, Lin F, Hanson NF, Otvos L, Guidolin A, Giannakis C, Bastiras S, Layfield SL, Ferraro T, Ma S, Zhao C, Gundlach AL, Samuel CS, Tregear GW, Wade JD. (2006) Relaxin-3: Improved Synthesis Strategy and Demonstration of Its High-Affinity Interaction with the Relaxin Receptor LGR7 Both In Vitro and In Vivo. Biochemistry, 45: 1043-1053. [PMID:16411781]

13. Bathgate RAD, Hsueh AJW, Sherwood OD. (2005) Physiology and molecular biology of the relaxin peptide family. In Physiology of Reproduction. Edited by Knobil E, Neill JD (Elsevier) 679-968. [ISBN:0125154003]

14. Bezhaeva T, de Vries MR, Geelhoed WJ, van der Veer EP, Versteeg S, van Alem CMA, Voorzaat BM, Eijkelkamp N, van der Bogt KE, Agoulnik AI et al.. (2018) Relaxin receptor deficiency promotes vascular inflammation and impairs outward remodeling in arteriovenous fistulas. FASEB J,: fj201800437R [Epub ahead of print]. [PMID:29882709]

15. Bigazzi M, Brandi ML, Bani G, Sacchi TB. (1992) Relaxin influences the growth of MCF-7 breast cancer cells. Mitogenic and antimitogenic action depends on peptide concentration. Cancer, 70 (3): 639-43. [PMID:1320450]

16. Boccalini G, Sassoli C, Bani D, Nistri S. (2018) Relaxin induces up-regulation of ADAM10 metalloprotease in RXFP1-expressing cells by PI3K/AKT signaling. Mol Cell Endocrinol, 472: 80-86. [PMID:29180109]

17. Bond CP, Parry LJ, Samuel CS, Gehring HM, Lederman FL, Rogers PA, Summers RJ. (2004) Increased expression of the relaxin receptor (LGR7) in human endometrium during the secretory phase of the menstrual cycle. J Clin Endocrinol Metab, 89 (7): 3477-85. [PMID:15240635]

18. Braddon SA. (1978) Relaxin-dependent adenosine 6',5'-monophosphate concentration changes in the mouse pubic symphysis. Endocrinology, 102 (4): 1292-9. [PMID:217619]

19. Cardoso LC, Nascimento AR, Royer C, Porto CS, Lazari MF. (2010) Locally produced relaxin may affect testis and vas deferens function in rats. Reproduction, 139 (1): 185-96. [PMID:19812235]

20. Carvalho LN, Cristovam PC, Passos CS, Boim MA. (2012) Mesangial cells cultured from pregnant rats display reduced reactivity to angiotensin II: the role of relaxin, nitric oxide and AT2 receptor. Cell Physiol Biochem, 30 (6): 1456-64. [PMID:23207895]

21. Chan LJ, Rosengren KJ, Layfield SL, Bathgate RA, Separovic F, Samuel CS, Hossain MA, Wade JD. (2012) Identification of key residues essential for the structural fold and receptor selectivity within the A-chain of human gene-2 (H2) relaxin. J Biol Chem, 287 (49): 41152-64. [PMID:23024363]

22. Chen CZ, Southall N, Xiao J, Marugan JJ, Ferrer M, Hu X, Jones RE, Feng S, Agoulnik IU, Zheng W et al.. (2013) Identification of small-molecule agonists of human relaxin family receptor 1 (RXFP1) by using a homogenous cell-based cAMP assay. J Biomol Screen, 18 (6): 670-7. [PMID:23212924]

23. Chen GA, Huang JR, Tseng L. (1988) The effect of relaxin on cyclic adenosine 3',5'-monophosphate concentrations in human endometrial glandular epithelial cells. Biol Reprod, 39 (3): 519-25. [PMID:2848594]

24. Chow BS, Chew EG, Zhao C, Bathgate RA, Hewitson TD, Samuel CS. (2012) Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases: the additional involvement of iNOS. PLoS ONE, 7 (8): e42714. [PMID:22936987]

25. Chow BS, Kocan M, Bosnyak S, Sarwar M, Wigg B, Jones ES, Widdop RE, Summers RJ, Bathgate RA, Hewitson TD et al.. (2014) Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney Int, 86 (1): 75-85. [PMID:24429402]

26. Chow BSM, Kocan M, Shen M, Wang Y, Han L, Chew JY, Wang C, Bosnyak S, Mirabito-Colafella KM, Barsha G et al.. (2019) AT1R-AT2R-RXFP1 Functional Crosstalk in Myofibroblasts: Impact on the Therapeutic Targeting of Renal and Cardiac Fibrosis. J Am Soc Nephrol, 30 (11): 2191-2207. [PMID:31511361]

27. Clifton KB, Rodner C, Wolf JM. (2014) Detection of relaxin receptor in the dorsoradial ligament, synovium, and articular cartilage of the trapeziometacarpal joint. J Orthop Res, 32 (8): 1061-7. [PMID:24797570]

28. Conrad KP. (2010) Unveiling the vasodilatory actions and mechanisms of relaxin. Hypertension, 56 (1): 2-9. [PMID:20497994]

29. Conrad KP, Novak J. (2004) Emerging role of relaxin in renal and cardiovascular function. Am J Physiol Regul Integr Comp Physiol, 287: R250-R261. [PMID:15271674]

30. Cronin MJ, Malaska T, Bakhit C. (1987) Human relaxin increases cyclic AMP levels in cultured anterior pituitary cells. Biochem Biophys Res Commun, 148 (3): 1246-51. [PMID:2446608]

31. Dehghan F, Soori R, Dehghan P, Gholami K, Muniandy S, Azarbayjani MA, Yusof A. (2016) Changes in Knee Laxity and Relaxin Receptor Isoforms Expression (RXFP1/RXFP2) in the Knee throughout Estrous Cycle Phases in Rodents. PLoS One, 11 (8): e0160984. [PMID:27513858]

32. Devarakonda T, Mauro AG, Guzman G, Hovsepian S, Cain C, Das A, Praveen P, Hossain MA, Salloum FN. (2020) B7-33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction-Related Adverse Cardiac Remodeling in Mice. J Am Heart Assoc, 9 (8): e015748. [PMID:32295457]

33. Diaz EC, Briggs M, Wen Y, Zhuang G, Wallace SL, Dobberfuhl AD, Kao CS, Chen BC. (2020) Characterizing relaxin receptor expression and exploring relaxin's effect on tissue remodeling/fibrosis in the human bladder. BMC Urol, 20 (1): 44. [PMID:32321501]

34. Dietrich W, Elenskaia K, Obermayr E, Horvat R, Mayerhofer K, Umek W, Zeillinger R, Hanzal E. (2012) Relaxin and gonadal steroid receptors in uterosacral ligaments of women with and without pelvic organ prolapse. Int Urogynecol J, 23 (4): 495-500. [PMID:22124513]

35. Domińska K, Ochędalski T, Kowalska K, Matysiak-Burzyńska ZE, Płuciennik E, Piastowska-Ciesielska AW. (2016) A common effect of angiotensin II and relaxin 2 on the PNT1A normal prostate epithelial cell line. J Physiol Biochem, 72 (3): 381-92. [PMID:27119161]

36. Downing SJ, Hollingsworth M. (1991) Antagonism of relaxin by glibenclamide in the uterus of the rat in vivo. Br J Pharmacol, 104 (1): 71-6. [PMID:1664766]

37. Downing SJ, McIlwrath A, Hollingsworth M. (1992) Cyclic adenosine 3'5'-monophosphate and the relaxant action of relaxin in the rat uterus in vivo. J Reprod Fertil, 96 (2): 857-63. [PMID:1339864]

38. Dschietzig T, Alexiou K, Kinkel HT, Baumann G, Matschke K, Stangl K. (2011) The positive inotropic effect of relaxin-2 in human atrial myocardium is preserved in end-stage heart failure: role of G(i)-phosphoinositide-3 kinase signaling. J Card Fail, 17 (2): 158-66. [PMID:21300306]

39. Dschietzig T, Bartsch C, Baumann G, Stangl K. (2009) RXFP1-inactive relaxin activates human glucocorticoid receptor: further investigations into the relaxin-GR pathway. Regul Pept, 154 (1-3): 77-84. [PMID:19101597]

40. Dschietzig T, Bartsch C, Richter C, Laule M, Baumann G, Stangl K. (2003) Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist: attenuation of endothelin-1-mediated vasoconstriction by stimulation of endothelin type-B receptor expression via ERK-1/2 and nuclear factor-kappaB. Circ Res, 92 (1): 32-40. [PMID:12522118]

41. Dschietzig T, Bartsch C, Stangl V, Baumann G, Stangl K. (2004) Identification of the pregnancy hormone relaxin as glucocorticoid receptor agonist. FASEB J, 18 (13): 1536-8. [PMID:15289446]

42. Dschietzig T, Bartsch C, Wessler S, Baumann G, Stangl K. (2009) Autoregulation of human relaxin-2 gene expression critically involves relaxin and glucocorticoid receptor binding to glucocorticoid response half-sites in the relaxin-2 promoter. Regul Pept, 155 (1-3): 163-73. [PMID:19289144]

43. Dschietzig T, Brecht A, Bartsch C, Baumann G, Stangl K, Alexiou K. (2012) Relaxin improves TNF-α-induced endothelial dysfunction: the role of glucocorticoid receptor and phosphatidylinositol 3-kinase signalling. Cardiovasc Res, 95 (1): 97-107. [PMID:22510373]

44. Dschietzig T, Teichman S, Unemori E, Wood S, Boehmer J, Richter C, Baumann G, Stangl K. (2009) Intravenous recombinant human relaxin in compensated heart failure: a safety, tolerability, and pharmacodynamic trial. J Card Fail, 15 (3): 182-90. [PMID:19327619]

45. Fallowfield JA, Hayden AL, Snowdon VK, Aucott RL, Stutchfield BM, Mole DJ, Pellicoro A, Gordon-Walker TT, Henke A, Schrader J et al.. (2014) Relaxin modulates human and rat hepatic myofibroblast function and ameliorates portal hypertension in vivo. Hepatology, 59 (4): 1492-504. [PMID:23873655]

46. Fede C, Albertin G, Petrelli L, Sfriso MM, Biz C, De Caro R, Stecco C. (2016) Hormone receptor expression in human fascial tissue. Eur J Histochem, 60 (4): 2710. [PMID:28076930]

47. Fei DT, Gross MC, Lofgren JL, Mora-Worms M, Chen AB. (1990) Cyclic AMP response to recombinant human relaxin by cultured human endometrial cells--a specific and high throughput in vitro bioassay. Biochem Biophys Res Commun, 170 (1): 214-22. [PMID:1695506]

48. Feng S, Agoulnik IU, Bogatcheva NV, Kamat AA, Kwabi-Addo B, Li R, Ayala G, Ittmann MM, Agoulnik AI. (2007) Relaxin promotes prostate cancer progression. Clin Cancer Res, 13 (6): 1695-702. [PMID:17363522]

49. Feng S, Agoulnik IU, Truong A, Li Z, Creighton CJ, Kaftanovskaya EM, Pereira R, Han HD, Lopez-Berestein G, Klonisch T et al.. (2010) Suppression of relaxin receptor RXFP1 decreases prostate cancer growth and metastasis. Endocr Relat Cancer, 17 (4): 1021-33. [PMID:20861284]

50. Ferlin A, Menegazzo M, Gianesello L, Selice R, Foresta C. (2012) Effect of relaxin on human sperm functions. J Androl, 33 (3): 474-82. [PMID:21903973]

51. Filonzi M, Cardoso LC, Pimenta MT, Queiróz DB, Avellar MC, Porto CS, Lazari MF. (2007) Relaxin family peptide receptors Rxfp1 and Rxfp2: mapping of the mRNA and protein distribution in the reproductive tract of the male rat. Reprod Biol Endocrinol, 5: 29. [PMID:17623071]

52. Fisher C, MacLean M, Morecroft I, Seed A, Johnston F, Hillier C, McMurray J. (2002) Is the pregnancy hormone relaxin also a vasodilator peptide secreted by the heart?. Circulation, 106 (3): 292-5. [PMID:12119241]

53. Fue M, Miki Y, Takagi K, Hashimoto C, Yaegashi N, Suzuki T, Ito K. (2018) Relaxin 2/RXFP1 Signaling Induces Cell Invasion via the β-Catenin Pathway in Endometrial Cancer. Int J Mol Sci, 19 (8). [PMID:30126180]

54. Giordano N, Volpi N, Franci D, Corallo C, Fioravanti A, Papakostas P, Montella A, Biagioli M, Fimiani M, Grasso G et al.. (2012) Expression of RXFP1 in skin of scleroderma patients and control subjects. Scand J Rheumatol, 41 (5): 391-5. [PMID:23043266]

55. Glogowska A, Kunanuvat U, Stetefeld J, Patel TR, Thanasupawat T, Krcek J, Weber E, Wong GW, Del Bigio MR, Hoang-Vu C et al.. (2013) C1q-tumour necrosis factor-related protein 8 (CTRP8) is a novel interaction partner of relaxin receptor RXFP1 in human brain cancer cells. J Pathol, 231 (4): 466-79. [PMID:24014093]

56. Gundlach AL, Ma S, Sang Q, Shen PJ, Piccenna L, Sedaghat K, Smith CM, Bathgate RA, Lawrence AJ, Tregear GW et al.. (2009) Relaxin family peptides and receptors in mammalian brain. Ann N Y Acad Sci, 1160: 226-35. [PMID:19416194]

57. Halls ML, Bathgate RA, Summers RJ. (2005) Signal switching after stimulation of LGR7 receptors by human relaxin 2. Ann N Y Acad Sci, 1041: 288-91. [PMID:15956719]

58. Halls ML, Bathgate RA, Summers RJ. (2006) Relaxin family peptide receptors RXFP1 and RXFP2 modulate cAMP signaling by distinct mechanisms. Mol Pharmacol, 70 (1): 214-26. [PMID:16569707]

59. Halls ML, Bond CP, Sudo S, Kumagai J, Ferraro T, Layfield S, Bathgate RA, Summers RJ. (2005) Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8). J Pharmacol Exp Ther, 313 (2): 677-87. [PMID:15649866]

60. Halls ML, Cooper DM. (2010) Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, beta-arrestin 2, PDE4D3 complex. EMBO J, 29 (16): 2772-87. [PMID:20664520]

61. Halls ML, van der Westhuizen ET, Wade JD, Evans BA, Bathgate RA, Summers RJ. (2009) Relaxin family peptide receptor (RXFP1) coupling to G(alpha)i3 involves the C-terminal Arg752 and localization within membrane Raft Microdomains. Mol Pharmacol, 75 (2): 415-28. [PMID:19029286]

62. Hampel U, Klonisch T, Makrantonaki E, Sel S, Schulze U, Garreis F, Seltmann H, Zouboulis CC, Paulsen FP. (2012) Relaxin 2 is functional at the ocular surface and promotes corneal wound healing. Invest Ophthalmol Vis Sci, 53 (12): 7780-90. [PMID:23111608]

63. Heng K, Ivell R, Wagaarachchi P, Anand-Ivell R. (2008) Relaxin signalling in primary cultures of human myometrial cells. Mol Hum Reprod, 14 (10): 603-11. [PMID:18805799]

64. Hoare BL, Bruell S, Sethi A, Gooley PR, Lew MJ, Hossain MA, Inoue A, Scott DJ, Bathgate RAD. (2019) Multi-Component Mechanism of H2 Relaxin Binding to RXFP1 through NanoBRET Kinetic Analysis. iScience, 11: 93-113. [PMID:30594862]

65. Hombach-Klonisch S, Bialek J, Trojanowicz B, Weber E, Holzhausen HJ, Silvertown JD, Summerlee AJ, Dralle H, Hoang-Vu C, Klonisch T. (2006) Relaxin enhances the oncogenic potential of human thyroid carcinoma cells. Am J Pathol, 169 (2): 617-32. [PMID:16877360]

66. Hossain MA, Kocan M, Yao ST, Royce SG, Nair VB, Siwek C, Patil NA, Harrison IP, Rosengren KJ, Selemidis S et al.. (2016) A single-chain derivative of the relaxin hormone is a functionally selective agonist of the G protein-coupled receptor, RXFP1. Chem Sci, 7 (6): 3805-3819. [PMID:30155023]

67. Hossain MA, Rosengren KJ, Haugaard-Jönsson LM, Zhang S, Layfield S, Ferraro T, Daly NL, Tregear GW, Wade JD, Bathgate RA. (2008) The A-chain of human relaxin family peptides has distinct roles in the binding and activation of the different relaxin family peptide receptors. J Biol Chem, 283 (25): 17287-97. [PMID:18434306]

68. Hossain MA, Rosengren KJ, Samuel CS, Shabanpoor F, Chan LJ, Bathgate RA, Wade JD. (2011) The minimal active structure of human relaxin-2. J Biol Chem, 286 (43): 37555-65. [PMID:21878627]

69. Hossain MA, Rosengren KJ, Zhang S, Bathgate RA, Tregear GW, van Lierop BJ, Robinson AJ, Wade JD. (2009) Solid phase synthesis and structural analysis of novel A-chain dicarba analogs of human relaxin-3 (INSL7) that exhibit full biological activity. Org Biomol Chem, 7 (8): 1547-53. [PMID:19343240]

70. Hossain MA, Samuel CS, Binder C, Hewitson TD, Tregear GW, Wade JD, Bathgate RA. (2010) The chemically synthesized human relaxin-2 analog, B-R13/17K H2, is an RXFP1 antagonist. Amino Acids, 39 (2): 409-16. [PMID:20043231]

71. Hsu CJ, McCormack SM, Sanborn BM. (1985) The effect of relaxin on cyclic adenosine 3',5'-monophosphate concentrations in rat myometrial cells in culture. Endocrinology, 116 (5): 2029-35. [PMID:2985368]

72. Hsu SY, Kudo M, Chen T, Nakabayashi K, Bhalla A, van der Spek PJ, van Duin M, Hsueh AJ. (2000) The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol Endocrinol, 14 (8): 1257-71. [PMID:10935549]

73. Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJ. (2002) Activation of orphan receptors by the hormone relaxin. Science, 295 (5555): 671-4. [PMID:11809971]

74. Hu M, Wang Y, Liu Z, Yu Z, Guan K, Liu M, Wang M, Tan J, Huang L. (2021) Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis. Nat Nanotechnol, 16 (4): 466-477. [PMID:33495618]

75. Ikeda Y, Zabbarova IV, Birder LA, Wipf P, Getchell SE, Tyagi P, Fry CH, Drake MJ, Kanai AJ. (2018) Relaxin-2 therapy reverses radiation-induced fibrosis and restores bladder function in mice. Neurourol Urodyn, 37 (8): 2441-2451. [PMID:29806709]

76. Ivell R, Balvers M, Pohnke Y, Telgmann R, Bartsch O, Milde-Langosch K, Bamberger AM, Einspanier A. (2003) Immunoexpression of the relaxin receptor LGR7 in breast and uterine tissues of humans and primates. Reprod Biol Endocrinol, 1: 114. [PMID:14633277]

77. Ivell R, Kotula-Balak M, Glynn D, Heng K, Anand-Ivell R. (2011) Relaxin family peptides in the male reproductive system--a critical appraisal. Mol Hum Reprod, 17 (2): 71-84. [PMID:20952422]

78. Jelinic M, Leo CH, Post Uiterweer ED, Sandow SL, Gooi JH, Wlodek ME, Conrad KP, Parkington H, Tare M, Parry LJ. (2014) Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment. FASEB J, 28 (1): 275-87. [PMID:24036884]

79. Jeyabalan A, Novak J, Danielson LA, Kerchner LJ, Opett SL, Conrad KP. (2003) Essential role for vascular gelatinase activity in relaxin-induced renal vasodilation, hyperfiltration, and reduced myogenic reactivity of small arteries. Circ Res, 93 (12): 1249-57. [PMID:14593002]

80. Kaftanovskaya EM, Huang Z, Lopez C, Conrad K, Agoulnik AI. (2015) Conditional deletion of the relaxin receptor gene in cells of smooth muscle lineage affects lower reproductive tract in pregnant mice. Biol Reprod, 92 (4): 91. [PMID:25715795]

81. Kakouris H, Eddie LW, Summers RJ. (1992) Cardiac effects of relaxin in rats. Lancet, 339 (8801): 1076-8. [PMID:1349104]

82. Kamat AA, Feng S, Agoulnik IU, Kheradmand F, Bogatcheva NV, Coffey D, Sood AK, Agoulnik AI. (2006) The role of relaxin in endometrial cancer. Cancer Biol Ther, 5 (1): 71-7. [PMID:16322684]

83. Kamat AA, Feng S, Bogatcheva NV, Truong A, Bishop CE, Agoulnik AI. (2004) Genetic targeting of relaxin and insulin-like factor 3 receptors in mice. Endocrinology, 145 (10): 4712-20. [PMID:15256493]

84. Kern A, Hubbard D, Amano A, Bryant-Greenwood GD. (2008) Cloning, expression, and functional characterization of relaxin receptor (leucine-rich repeat-containing g protein-coupled receptor 7) splice variants from human fetal membranes. Endocrinology, 149 (3): 1277-94. [PMID:18079195]

85. Kim JH, Lee SK, Lee SK, Kim JH, Fredericson M. (2016) Relaxin Receptor RXFP1 and RXFP2 Expression in Ligament, Tendon, and Shoulder Joint Capsule of Rats. J Korean Med Sci, 31 (6): 983-8. [PMID:27247510]

86. Kocan M, Sarwar M, Ang SY, Xiao J, Marugan JJ, Hossain MA, Wang C, Hutchinson DS, Samuel CS, Agoulnik AI et al.. (2017) ML290 is a biased allosteric agonist at the relaxin receptor RXFP1. Sci Rep, 7 (1): 2968. [PMID:28592882]

87. Kohsaka T, Min G, Lukas G, Trupin S, Campbell ET, Sherwood OD. (1998) Identification of specific relaxin-binding cells in the human female. Biol Reprod, 59 (4): 991-9. [PMID:9746753]

88. Kompa AR, Samuel CS, Summers RJ. (2002) Inotropic responses to human gene 2 (B29) relaxin in a rat model of myocardial infarction (MI): effect of pertussis toxin. Br J Pharmacol, 137 (5): 710-8. [PMID:12381685]

89. Krajnc-Franken MA, van Disseldorp AJ, Koenders JE, Mosselman S, van Duin M, Gossen JA. (2004) Impaired nipple development and parturition in LGR7 knockout mice. Mol Cell Biol, 24 (2): 687-96. [PMID:14701741]

90. Kubota Y, Temelcos C, Bathgate RA, Smith KJ, Scott D, Zhao C, Hutson JM. (2002) The role of insulin 3, testosterone, Müllerian inhibiting substance and relaxin in rat gubernacular growth. Mol Hum Reprod, 8 (10): 900-5. [PMID:12356938]

91. Kuenzi MJ, Sherwood OD. (1995) Immunohistochemical localization of specific relaxin-binding cells in the cervix, mammary glands, and nipples of pregnant rats. Endocrinology, 136 (4): 1367-73. [PMID:7895647]

92. Kuznetsova L, Plesneva S, Derjabina N, Omeljaniuk E, Pertseva M. (1999) On the mechanism of relaxin action: the involvement of adenylyl cyclase signalling system. Regul Pept, 80 (1-2): 33-9. [PMID:10235632]

93. Lam M, Royce SG, Donovan C, Jelinic M, Parry LJ, Samuel CS, Bourke JE. (2016) Serelaxin Elicits Bronchodilation and Enhances β-Adrenoceptor-Mediated Airway Relaxation. Front Pharmacol, 7: 406. [PMID:27833558]

94. Lowndes K, Amano A, Yamamoto SY, Bryant-Greenwood GD. (2006) The human relaxin receptor (LGR7): expression in the fetal membranes and placenta. Placenta, 27 (6-7): 610-8. [PMID:16165207]

95. Luna JJ, Riesewijk A, Horcajadas JA, Van Os Rd Rd, Domínguez F, Mosselman S, Pellicer A, Simón C. (2004) Gene expression pattern and immunoreactive protein localization of LGR7 receptor in human endometrium throughout the menstrual cycle. Mol Hum Reprod, 10 (2): 85-90. [PMID:14742692]

96. Ma J, Niu M, Yang W, Zang L, Xi Y. (2013) Role of relaxin-2 in human primary osteosarcoma. Cancer Cell Int, 13 (1): 59. [PMID:23758748]

97. Ma S, Shen PJ, Burazin TC, Tregear GW, Gundlach AL. (2006) Comparative localization of leucine-rich repeat-containing G-protein-coupled receptor-7 (RXFP1) mRNA and [33P]-relaxin binding sites in rat brain: restricted somatic co-expression a clue to relaxin action?. Neuroscience, 141 (1): 329-44. [PMID:16725278]

98. Mallart S, Ingenito R, Bianchi E, Bresciani A, Esposito S, Gallo M, Magotti P, Monteagudo E, Orsatti L, Roversi D et al.. (2021) Identification of Potent and Long-Acting Single-Chain Peptide Mimetics of Human Relaxin-2 for Cardiovascular Diseases. J Med Chem, 64 (4): 2139-2150. [PMID:33555858]

99. Marshall SA, McGuane JT, Soh YM, Gehring HM, Simpson E, Parry LJ. (2018) Abnormal extracellular matrix remodelling in the cervix of pregnant relaxin-deficient mice is not associated with reduced matrix metalloproteinase expression or activity. Reprod Fertil Dev, 30 (9): 1214-1224. [PMID:29533760]

100. Marshall SA, Ng L, Unemori EN, Girling JE, Parry LJ. (2016) Relaxin deficiency results in increased expression of angiogenesis- and remodelling-related genes in the uterus of early pregnant mice but does not affect endometrial angiogenesis prior to implantation. Reprod Biol Endocrinol, 14: 11. [PMID:27005936]

101. Maseelall PB, Seungdamrong A, Weiss G, Wojtczuk AS, Donnelly R, Stouffer RL, Goldsmith LT. (2009) Expression of LGR7 in the primate corpus luteum implicates the corpus luteum as a relaxin target organ. Ann N Y Acad Sci, 1160: 147-51. [PMID:19416177]

102. Mazella J, Tang M, Tseng L. (2004) Disparate effects of relaxin and TGFbeta1: relaxin increases, but TGFbeta1 inhibits, the relaxin receptor and the production of IGFBP-1 in human endometrial stromal/decidual cells. Hum Reprod, 19 (7): 1513-8. [PMID:15155604]

103. McBride A, Hoy AM, Bamford MJ, Mossakowska DE, Ruediger MP, Griggs J, Desai S, Simpson K, Caballero-Hernandez I, Iredale JP et al.. (2017) In search of a small molecule agonist of the relaxin receptor RXFP1 for the treatment of liver fibrosis. Sci Rep, 7 (1): 10806. [PMID:28883402]

104. McGuane JT, Debrah JE, Sautina L, Jarajapu YP, Novak J, Rubin JP, Grant MB, Segal M, Conrad KP. (2011) Relaxin induces rapid dilation of rodent small renal and human subcutaneous arteries via PI3 kinase and nitric oxide. Endocrinology, 152 (7): 2786-96. [PMID:21558316]

105. Mookerjee I, Hewitson TD, Halls ML, Summers RJ, Mathai ML, Bathgate RA, Tregear GW, Samuel CS. (2009) Relaxin inhibits renal myofibroblast differentiation via RXFP1, the nitric oxide pathway, and Smad2. FASEB J, 23 (4): 1219-29. [PMID:19073841]

106. Muda M, He C, Martini PG, Ferraro T, Layfield S, Taylor D, Chevrier C, Schweickhardt R, Kelton C, Ryan PL et al.. (2005) Splice variants of the relaxin and INSL3 receptors reveal unanticipated molecular complexity. Mol Hum Reprod, 11 (8): 591-600. [PMID:16051677]

107. Neschadim A, Pritzker LB, Pritzker KP, Branch DR, Summerlee AJ, Trachtenberg J, Silvertown JD. (2014) Relaxin receptor antagonist AT-001 synergizes with docetaxel in androgen-independent prostate xenografts. Endocr Relat Cancer, 21 (3): 459-71. [PMID:24812057]

108. Nguyen BT, Dessauer CW. (2005) Relaxin stimulates cAMP production in MCF-7 cells upon overexpression of type V adenylyl cyclase. Ann N Y Acad Sci, 1041: 296-9. [PMID:15956721]

109. Nguyen BT, Dessauer CW. (2005) Relaxin stimulates protein kinase C zeta translocation: requirement for cyclic adenosine 3',5'-monophosphate production. Mol Endocrinol, 19 (4): 1012-23. [PMID:15604116]

110. Nguyen BT, Yang L, Sanborn BM, Dessauer CW. (2003) Phosphoinositide 3-kinase activity is required for biphasic stimulation of cyclic adenosine 3',5'-monophosphate by relaxin. Mol Endocrinol, 17 (6): 1075-84. [PMID:12595573]

111. Nistri S, Bani D. (2003) Relaxin receptors and nitric oxide synthases: search for the missing link. Reprod Biol Endocrinol, 1: 5-5. [PMID:12646076]

112. Osa T, Inoue H, Okabe K. (1991) Effects of porcine relaxin on contraction, membrane response and cyclic AMP content in rat myometrium in comparison with the effects of isoprenaline and forskolin. Br J Pharmacol, 104 (4): 950-60. [PMID:1687369]

113. Osheroff PL, Ling VT, Vandlen RL, Cronin MJ, Lofgren JA. (1990) Preparation of biologically active 32P-labeled human relaxin. Displaceable binding to rat uterus, cervix, and brain. J Biol Chem, 265 (16): 9396-401. [PMID:2160976]

114. Parsell DA, Mak JY, Amento EP, Unemori EN. (1996) Relaxin binds to and elicits a response from cells of the human monocytic cell line, THP-1. J Biol Chem, 271 (44): 27936-41. [PMID:8910395]

115. Petersen LK, Svane D, Uldbjerg N, Forman A. (1991) Effects of human relaxin on isolated rat and human myometrium and uteroplacental arteries. Obstet Gynecol, 78 (5 Pt 1): 757-62. [PMID:1923192]

116. Piccenna L, Shen PJ, Ma S, Burazin TC, Gossen JA, Mosselman S, Bathgate RA, Gundlach AL. (2005) Localization of LGR7 gene expression in adult mouse brain using LGR7 knock-out/LacZ knock-in mice: correlation with LGR7 mRNA distribution. Ann N Y Acad Sci, 1041: 197-204. [PMID:15956708]

117. Pini A, Shemesh R, Samuel CS, Bathgate RA, Zauberman A, Hermesh C, Wool A, Bani D, Rotman G. (2010) Prevention of bleomycin-induced pulmonary fibrosis by a novel antifibrotic peptide with relaxin-like activity. J Pharmacol Exp Ther, 335 (3): 589-99. [PMID:20826567]

118. Samuel CS, Unemori EN, Mookerjee I, Bathgate RA, Layfield SL, Mak J, Tregear GW, Du XJ. (2004) Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology, 145 (9): 4125-33. [PMID:15155573]

119. Samuel CS, Zhao C, Bathgate RA, Bond CP, Burton MD, Parry LJ, Summers RJ, Tang ML, Amento EP, Tregear GW. (2003) Relaxin deficiency in mice is associated with an age-related progression of pulmonary fibrosis. FASEB J, 17 (1): 121-3. [PMID:12424226]

120. Sanborn BM, Kuo HS, Weisbrodt NW, Sherwood OD. (1980) The interaction of relaxin with the rat uterus. I. Effect on cyclic nucleotide levels and spontaneous contractile activity. Endocrinology, 106 (4): 1210-5. [PMID:6244146]

121. Sarwar M, Samuel CS, Bathgate RA, Stewart DR, Summers RJ. (2015) Serelaxin-mediated signal transduction in human vascular cells: bell-shaped concentration-response curves reflect differential coupling to G proteins. Br J Pharmacol, 172 (4): 1005-19. [PMID:25297987]

122. Sarwar M, Samuel CS, Bathgate RA, Stewart DR, Summers RJ. (2016) Enhanced serelaxin signalling in co-cultures of human primary endothelial and smooth muscle cells. Br J Pharmacol, 173 (3): 484-96. [PMID:26493539]

123. Sassoli C, Chellini F, Pini A, Tani A, Nistri S, Nosi D, Zecchi-Orlandini S, Bani D, Formigli L. (2013) Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS ONE, 8 (5): e63896. [PMID:23704950]

124. Scott DJ, Layfield S, Riesewijk A, Morita H, Tregear GW, Bathgate RA. (2004) Identification and characterization of the mouse and rat relaxin receptors as the novel orthologues of human leucine-rich repeat-containing G-protein-coupled receptor 7. Clin Exp Pharmacol Physiol, 31 (11): 828-32. [PMID:15566402]

125. Scott DJ, Layfield S, Yan Y, Sudo S, Hsueh AJ, Tregear GW, Bathgate RA. (2006) Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique low density lipoprotein class A modules. J Biol Chem, 281 (46): 34942-54. [PMID:16963451]

126. Scott DJ, Tregear GW, Bathgate RA. (2005) LGR7-truncate is a splice variant of the relaxin receptor LGR7 and is a relaxin antagonist in vitro. Ann N Y Acad Sci, 1041: 22-6. [PMID:15956683]

127. Segal MS, Sautina L, Li S, Diao Y, Agoulnik AI, Kielczewski J, McGuane JT, Grant MB, Conrad KP. (2012) Relaxin increases human endothelial progenitor cell NO and migration and vasculogenesis in mice. Blood, 119 (2): 629-36. [PMID:22028476]

128. Shabanpoor F, Bathgate RA, Belgi A, Chan LJ, Nair VB, Wade JD, Hossain MA. (2012) Site-specific conjugation of a lanthanide chelator and its effects on the chemical synthesis and receptor binding affinity of human relaxin-2 hormone. Biochem Biophys Res Commun, 420 (2): 253-6. [PMID:22425984]

129. Shao W, Rosales CB, Gonzalez C, Prieto MC, Navar LG. (2018) Effects of serelaxin on renal microcirculation in rats under control and high-angiotensin environments. Am J Physiol Renal Physiol, 314 (1): F70-F80. [PMID:28978531]

130. Shemesh R, Toporik A, Levine Z, Hecht I, Rotman G, Wool A, Dahary D, Gofer E, Kliger Y, Soffer MA et al.. (2008) Discovery and validation of novel peptide agonists for G-protein-coupled receptors. J Biol Chem, 283 (50): 34643-9. [PMID:18854305]

131. Siebel AL, Gehring HM, Reytomas IG, Parry LJ. (2003) Inhibition of oxytocin receptor and estrogen receptor-alpha expression, but not relaxin receptors (LGR7), in the myometrium of late pregnant relaxin gene knockout mice. Endocrinology, 144 (10): 4272-5. [PMID:12959965]

132. Soh YM, Tiwari A, Mahendroo M, Conrad KP, Parry LJ. (2012) Relaxin regulates hyaluronan synthesis and aquaporins in the cervix of late pregnant mice. Endocrinology, 153 (12): 6054-64. [PMID:23087172]

133. Sudo S, Kumagai J, Nishi S, Layfield S, Ferraro T, Bathgate RA, Hsueh AJ. (2003) H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2. J Biol Chem, 278 (10): 7855-62. [PMID:12506116]

134. Sunn N, Egli M, Burazin TC, Burns P, Colvill L, Davern P, Denton DA, Oldfield BJ, Weisinger RS, Rauch M et al.. (2002) Circulating relaxin acts on subfornical organ neurons to stimulate water drinking in the rat. Proc Natl Acad Sci USA, 99 (3): 1701-6. [PMID:11830674]

135. Tan YY, Wade JD, Tregear GW, Summers RJ. (1998) Comparison of relaxin receptors in rat isolated atria and uterus by use of synthetic and native relaxin analogues. Br J Pharmacol, 123 (4): 762-70. [PMID:9517397]

136. Tan YY, Wade JD, Tregear GW, Summers RJ. (1999) Quantitative autoradiographic studies of relaxin binding in rat atria, uterus and cerebral cortex: characterization and effects of oestrogen treatment. Br J Pharmacol, 127 (1): 91-8. [PMID:10369460]

137. Tang XM, Chegini N. (1995) Human fallopian tube as an extraovarian source of relaxin: messenger ribonucleic acid expression and cellular localization of immunoreactive protein and 125I-relaxin binding sites. Biol Reprod, 52 (6): 1343-9. [PMID:7543297]

138. Tashima LS, Mazoujian G, Bryant-Greenwood GD. (1994) Human relaxins in normal, benign and neoplastic breast tissue. J Mol Endocrinol, 12 (3): 351-64. [PMID:7916973]

139. Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, Ponikowski P, Unemori E, Voors AA, Adams Jr KF et al.. (2013) Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet, 381 (9860): 29-39. [PMID:23141816]

140. Teerlink JR, Metra M, Felker GM, Ponikowski P, Voors AA, Weatherley BD, Marmor A, Katz A, Grzybowski J, Unemori E et al.. (2009) Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet, 373 (9673): 1429-39. [PMID:19329178]

141. Thompson VC, Morris TG, Cochrane DR, Cavanagh J, Wafa LA, Hamilton T, Wang S, Fazli L, Gleave ME, Nelson CC. (2006) Relaxin becomes upregulated during prostate cancer progression to androgen independence and is negatively regulated by androgens. Prostate, 66 (16): 1698-709. [PMID:16998820]

142. Vodstrcil LA, Shynlova O, Verlander JW, Wlodek ME, Parry LJ. (2010) Decreased expression of the rat myometrial relaxin receptor (RXFP1) in late pregnancy is partially mediated by the presence of the conceptus. Biol Reprod, 83 (5): 818-24. [PMID:20686184]

143. Vodstrcil LA, Shynlova O, Westcott K, Laker R, Simpson E, Wlodek ME, Parry LJ. (2010) Progesterone withdrawal, and not increased circulating relaxin, mediates the decrease in myometrial relaxin receptor (RXFP1) expression in late gestation in rats. Biol Reprod, 83 (5): 825-32. [PMID:20686183]

144. Vodstrcil LA, Tare M, Novak J, Dragomir N, Ramirez RJ, Wlodek ME, Conrad KP, Parry LJ. (2012) Relaxin mediates uterine artery compliance during pregnancy and increases uterine blood flow. FASEB J, 26 (10): 4035-44. [PMID:22744867]

145. Vodstrcil LA, Wlodek ME, Parry LJ. (2007) Effects of uteroplacental restriction on the relaxin-family receptors, Lgr7 and Lgr8, in the uterus of late pregnant rats. Reprod Fertil Dev, 19 (4): 530-8. [PMID:17524297]

146. Wang C, Pinar AA, Widdop RE, Hossain MA, Bathgate RAD, Denton KM, Kemp-Harper BK, Samuel CS. (2020) The anti-fibrotic actions of relaxin are mediated through AT2 R-associated protein phosphatases via RXFP1-AT2 R functional crosstalk in human cardiac myofibroblasts. FASEB J, 34 (6): 8217-8233. [PMID:32297670]

147. Wu QP, Zhang L, Shao XX, Wang JH, Gao Y, Xu ZG, Liu YL, Guo ZY. (2016) Application of the novel bioluminescent ligand-receptor binding assay to relaxin-RXFP1 system for interaction studies. Amino Acids, 48 (4): 1099-1107. [PMID:26767372]

148. Xiao J, Chen CZ, Huang Z, Agoulnik IU, Ferrer M, Southall N, Hu X, Zheng W, Agoulnik AI, Marugan JJ. (2010) Discovery, optimization, and biological activity of the first potent and selective small-molecule agonist series of human relaxin receptor 1 (RXFP1). Probe Reports from the NIH Molecular Libraries Program,. [PMID:23905199]

149. Xiao J, Huang Z, Chen CZ, Agoulnik IU, Southall N, Hu X, Jones RE, Ferrer M, Zheng W, Agoulnik AI et al.. (2013) Identification and optimization of small-molecule agonists of the human relaxin hormone receptor RXFP1. Nat Commun, 4: 1953. [PMID:23764525]

150. Yang S, Rembiesa B, Büllesbach EE, Schwabe C. (1992) Relaxin receptors in mice: demonstration of ligand binding in symphyseal tissues and uterine membrane fragments. Endocrinology, 130 (1): 179-85. [PMID:1309327]

151. Yong KL, Callander GE, Bergin R, Samuel CS, Bathgate RA. (2013) Development of human cells with RXFP1 knockdown using retroviral delivery of microRNA against human RXFP1. Ital J Anat Embryol, 118 (1 Suppl): 10-2. [PMID:24640558]

152. Zhang Q, Liu SH, Erikson M, Lewis M, Unemori E. (2002) Relaxin activates the MAP kinase pathway in human endometrial stromal cells. J Cell Biochem, 85 (3): 536-44. [PMID:11967993]

153. Zhao L, Roche PJ, Gunnersen JM, Hammond VE, Tregear GW, Wintour EM, Beck F. (1999) Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology, 140 (1): 445-53. [PMID:9886856]

Contributors

Show »

How to cite this page