Top ▲

B2 receptor

Click here for help

Immunopharmacology Ligand target has curated data in GtoImmuPdb

Target id: 42

Nomenclature: B2 receptor

Family: Bradykinin receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 391 14q32.1-q32.2 BDKRB2 bradykinin receptor B2 82
Mouse 7 392 12 E Bdkrb2 bradykinin receptor, beta 2
Rat 7 396 6q32 Bdkrb2 bradykinin receptor B2 71
Previous and Unofficial Names Click here for help
B2BKR | B2BRA | BK-2 receptor | BK2R | bradykinin receptor
Database Links Click here for help
Specialist databases
GPCRDB bkrb2_human (Hs), bkrb2_mouse (Mm), bkrb2_rat (Rn)
Other databases
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
bradykinin {Sp: Human, Mouse, Rat}
[des-Arg9]bradykinin {Sp: Human, Mouse, Rat}
[des-Arg10]kallidin {Sp: Human}
[Hyp3]bradykinin {Sp: Human}
kallidin {Sp: Human}
Lys-[Hyp3]-bradykinin {Sp: Human, Mouse, Rat}
T-kinin {Sp: Human, Rat}
Comments: Bradykinin and kallidin are the most potent endogenous ligands
Potency order of endogenous ligands (Human)
kallidin (KNG1, P01042) > bradykinin (KNG1, P01042) >> [des-Arg9]bradykinin (KNG1, P01042), [des-Arg10]kallidin (KNG1, P01042)

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]BK (human, mouse, rat) Peptide Ligand is labelled Ligand is radioactive Mm Full agonist 9.4 pKd 108
pKd 9.4 (Kd 3.99x10-10 M) [108]
JMV1116 Peptide Rn Full agonist 10.0 – 10.2 pKi 4
pKi 10.0 – 10.2 [4]
JMV1116 Peptide Hs Full agonist 9.1 – 9.2 pKi 4
pKi 9.1 – 9.2 [4]
labradimil Peptide Rn Full agonist 7.7 – 8.0 pKi 4,30
pKi 7.7 – 8.0 [4,30]
FR190997 Small molecule or natural product Hs Full agonist 7.3 pKi 5
pKi 7.3 [5]
bradykinin {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Mm Full agonist 9.3 pIC50 53
pIC50 9.3 [53]
kallidin {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 9.3 pIC50 53
pIC50 9.3 [53]
kallidin {Sp: Human} Peptide Click here for species-specific activity table Mm Full agonist 9.3 pIC50 53
pIC50 9.3 [53]
FR191413 Small molecule or natural product Hs Full agonist 9.2 pIC50 93
pIC50 9.2 [93]
Met-Lys-bradykinin Peptide Click here for species-specific activity table Hs Full agonist 8.7 pIC50 53
pIC50 8.7 [53]
Met-Lys-bradykinin Peptide Mm Full agonist 8.4 pIC50 53
pIC50 8.4 [53]
bradykinin {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 7.0 – 9.3 pIC50 6,53
pIC50 7.0 – 9.3 [6,53]
[Tyr8]bradykinin Peptide Mm Full agonist 8.1 pIC50 53
pIC50 8.1 [53]
[Tyr8]bradykinin Peptide Hs Full agonist 8.0 pIC50 53
pIC50 8.0 [53]
[des-Arg9]bradykinin {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Mm Full agonist 5.2 pIC50 53
pIC50 5.2 [53]
[des-Arg9]bradykinin {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 5.1 pIC50 53
pIC50 5.1 [53]
[des-Arg10]kallidin {Sp: Human} Peptide Click here for species-specific activity table Mm Partial agonist 4.6 pIC50 53
pIC50 4.6 [53]
labradimil Peptide Hs Agonist - - 15,92
[15,92]
[125I][Tyr8]bradykinin Peptide Ligand is labelled Ligand is radioactive Hs Full agonist - -
NG291 Peptide Hs Agonist - - 15,92
[15,92]
View species-specific agonist tables
Agonist Comments
[125I-Tyr8]bradykinin is a useful tool for receptor autoradiography, and has been used to reveal receptor binding sites in rat [66] and guinea pig [67] spinal cord.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
icatibant Peptide Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 8.4 pA2 43
pA2 8.4 [43]
FR173657 Small molecule or natural product Hs Antagonist 8.2 pA2 87
pA2 8.2 [87]
[125I]-HPP-icatibant Peptide Ligand is labelled Ligand is radioactive Rn Antagonist 10.5 pKd 22
pKd 10.5 (Kd 3x10-11 M) [22]
[3H]NPC17731 Peptide Ligand is labelled Ligand is radioactive Hs Antagonist 9.1 – 9.4 pKd 113-114
pKd 9.1 – 9.4 (Kd 7.7x10-10 – 3.9x10-10 M) [113-114]
icatibant Peptide Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 10.2 pKi 4
pKi 10.2 (Ki 6.4x10-11 M) [4]
icatibant Peptide Approved drug Click here for species-specific activity table Immunopharmacology Ligand Rn Antagonist 10.0 – 10.3 pKi 12
pKi 10.0 – 10.3 [12]
icatibant Peptide Approved drug Immunopharmacology Ligand Mm Antagonist 9.6 pKi 53
pKi 9.6 [53]
bradyzide Small molecule or natural product Rn Antagonist 9.2 – 9.5 pKi 12
pKi 9.2 – 9.5 [12]
compound 3 [PMID: 32636746] Small molecule or natural product Hs Antagonist 9.3 pKi 63
pKi 9.3 (Ki 5x10-10 M) [63]
Description: Ki values at the human B2 receptor derived from a [3H]BK binding competition assay.
B-9430 Peptide Click here for species-specific activity table Hs Antagonist 8.6 – 9.6 pKi 68,98
pKi 8.6 – 9.6 [68,98]
B-9430 Peptide Click here for species-specific activity table Mm Antagonist 8.5 – 9.5 pKi 68
pKi 8.5 – 9.5 [68]
JMV1431 Peptide Click here for species-specific activity table Hs Antagonist 8.4 pKi 3
pKi 8.4 [3]
anatibant Small molecule or natural product Hs Antagonist 8.2 pKi 83
pKi 8.2 (Ki 6.31x10-9 M) [83]
NPC 17731 Peptide Click here for species-specific activity table Hs Antagonist 8.1 pKi 61
pKi 8.1 [61]
anatibant Small molecule or natural product Rn Antagonist 7.8 pKi 83
pKi 7.8 [83]
WIN 64338 Small molecule or natural product Hs Antagonist 6.2 – 7.2 pKi 90,94
pKi 6.2 – 7.2 [90,94]
NPC 18565 Peptide Click here for species-specific activity table Hs Antagonist 6.6 pKi 61
pKi 6.6 [61]
bradyzide Small molecule or natural product Hs Antagonist 6.3 – 6.5 pKi 12
pKi 6.3 – 6.5 [12]
NPC-349 Peptide Mm Antagonist 8.9 pIC50 53
pIC50 8.9 [53]
icatibant Peptide Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 8.0 – 9.4 pIC50 6,53
pIC50 8.0 – 9.4 [6,53]
NPC-567 Peptide Mm Antagonist 8.7 pIC50 53
pIC50 8.7 [53]
FR173657 Small molecule or natural product Hs Antagonist 8.1 pIC50 6
pIC50 8.1 (IC50 7.95x10-9 M) [6]
FR167344 Small molecule or natural product Hs Antagonist 7.2 pIC50 6
pIC50 7.2 [6]
NPC-349 Peptide Hs Antagonist 7.0 pIC50 53
pIC50 7.0 [53]
[Thi5,8,D-Phe7]bradykinin Peptide Mm Antagonist 7.0 pIC50 53
pIC50 7.0 [53]
NPC-567 Peptide Hs Antagonist 6.9 pIC50 53
pIC50 6.9 [53]
[Thi5,8,D-Phe7]bradykinin Peptide Hs Antagonist 6.3 pIC50 53
pIC50 6.3 [53]
View species-specific antagonist tables
Antagonist Comments
The orally bioavailable small molecule B2 receptor antagonist PHA-022121 is currently in phase 1 clinical development [63].
Immunopharmacology Comments
Bradykinin is a vasoactive, pain inducing and pro-inflammatory (phlogistic) kinin released during acute inflammation, and its receptors, B1 and B2, are expressed on eosinophils, and neutrophils. The B2 receptor antagonist icatibant was evaluated in a Phase 2 trial for osteoarthritis [24], but development has not progressed further.
Cell Type Associations
Immuno Cell Type:  Granulocytes
Cell Ontology Term:   eosinophil (CL:0000771)
neutrophil (CL:0000775)
Immuno Process Associations
Immuno Process:  Inflammation
GO Annotations:  Associated to 2 GO processes
GO:0002438 acute inflammatory response to antigenic stimulus IMP
GO:0006954 inflammatory response IC
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Gi/Go family
Gq/G11 family
Adenylate cyclase stimulation
Adenylate cyclase inhibition
Phospholipase C stimulation
References:  37,44,46,57,60,64-65,107
Tissue Distribution Click here for help
Endothelium and tunica media of aorta and endocardium.
Species:  Human
Technique:  Immmunoblot, autoradiography.
References:  40
Medulla.
Species:  Human
Technique:  Autoradiography.
References:  25
Lung fibroblasts.
Species:  Human
Technique:  Immunohistochemistry.
References:  86
Gastric mucosa.
Species:  Human
Technique:  Immunohistochemistry.
References:  8
Clinical cancer specimens.
Species:  Human
Technique:  Immunohistochemistry.
References:  109
Murine tumor tissues.
Species:  Mouse
Technique:  Immunohistochemistry.
References:  109
Endothelium and tunica media of aorta and endocardium.
Species:  Mouse
Technique:  Immunoblot, autoradiography.
References:  40
Endothelium and tunica media of the aorta and endocardium.
Species:  Rat
Technique:  Immunoblot, autoradiography.
References:  40
Endothelial linings of the aorta, other elastic arteries, muscular arteries, capillaries, venules, and large veins. Small arterioles of the mesenterium, heart, urinary bladder, brain, salivary gland.
Species:  Rat
Technique:  Immunostaining.
References:  40
Lateral septal nucleus, median preoptic nucleus, dentate gyrus, amygdala, spinal trigeminal nucleus, mediovestibular nucleus, inferior cerebellar peduncles, and most of cortical regions.
Species:  Rat
Technique:  Autoradiography.
References:  16,76-77
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of cyclooxygenase-2 in rat aortic vascular smooth muscle cells endogenously expressing the B2 receptor.
Species:  Rat
Tissue:  Aortic vascular smooth muscle cells.
Response measured:  Increase in cyclooxygenase-2 levels.
References:  88
Measurement of anion secretion in cultured rat epididymal monolayers endogenously expressing the B2 receptor.
Species:  Rat
Tissue:  Cultured rat epididymal monolayers.
Response measured:  Increase in anion secretion.
References:  20
Measurement of IP3 levels in rat/mouse NG108-15 neuroblastoma-glioma hybrid cells endogenously expressing the B2 receptor.
Species:  Rat
Tissue:  NG108-15 neuroblastoma-glioma hybrid cells.
Response measured:  Increase in IP3
References:  54
Measurement of cAMP in rat/mouse NG108-15 neuroblastoma-glioma hybrid cells endogenously expressing the B2 receptor.
Species:  Rat
Tissue:  NG108-15 neuroblastoma-glioma hybrid cells.
Response measured:  Increase in cAMP.
References:  54
Measurement of IP in mouse Swiss 3T3 fibroblasts endogenously expressing the B2 receptor.
Species:  Mouse
Tissue:  Swiss 3T3 fibroblasts.
Response measured:  IP formation.
References:  11
Measurement of phosphorylation of MAPK in human umbilical vein endothelial cells endogenously expressing the B2 receptor.
Species:  Human
Tissue:  Umbilical vein endothelial cells.
Response measured:  Stimulation of MAPK phosphorylation.
References:  41
Measurement of PGE2 in mouse Swiss 3T3 fibroblasts endogenously expressing the B2 receptor.
Species:  Mouse
Tissue:  Swiss 3T3 fibroblasts.
Response measured:  Increase in PGE2.
References:  11
Measurement of levels of [3H]inositol phosphates in rat/mouse NG108-15 neuroblastoma-glioma hybrid cells.
Species:  Rat
Tissue:  NG108-15 neuroblastoma-glioma hybrid cells.
Response measured:  Increase in [3H]inositol triphosphate.
References:  112
Measurement of inositol triphosphate and intracellular free Ca2+ in human A431 epidermoid carcinoma cells endogenously expressing the B2 receptor.
Species:  Human
Tissue:  A431 epidermoid carcinoma cells.
Response measured:  Increase in inositol triphosphate and intracelluar Ca2+.
References:  102
Measurement of inositol phosphates, cytosolic free Ca2+, membrane potential and ionic currents in rat PC12 cells endogenously expressing the B2 receptor.
Species:  Rat
Tissue:  PC12 cells.
Response measured:  Accumulation of IP3, Ca2+, and hyperpolarization due to the opening of Ca2+-activated K+ channels.
References:  39
Measurement of intracellular free Ca2+ in human foreskin fibroblasts endogenously expressing the B2 receptor.
Species:  Human
Tissue:  Foreskin fibroblasts.
Response measured:  Elevation of intracellular free Ca2+ concentration.
References:  14
Measurement of translocation of PKC isoforms α, δ, ε and ζ in human foreskin fibroblasts endogenously expressing the B2 receptor and CHO cells transfected with the B2 receptor.
Species:  Human
Tissue:  CHO cells and foreskin fibroblasts.
Response measured:  Translocation of the PKC isoforms α, ε, and ζ.
References:  103
Measurement of translocation of PKC isoforms α, ε and ζ in human endothelial cells endogenously expressing the B2 receptor.
Species:  Human
Tissue:  Endothelial cells.
Response measured:  Translocation of PKC isoforms α, δ, ε and ζ.
References:  89
Measurement of IP3 and prostaglandin E2 in murine osteoblastic MC3T3-E1 cells endogenously expressing the B2 receptor.
Species:  Mouse
Tissue:  Osteoblastic MC3T3-E1 cells.
Response measured:  Accumulation of IP3 and PGE2.
References:  110
Measurement of cAMP accumulation in human airway smooth muscle cells endogenously expressing the B2 receptor.
Species:  Human
Tissue:  Airway smooth muscle cells.
Response measured:  Stimulation of cAMP accumulation via MAP kinase-dependent regulation of PLA2 and prostaglandin E2 release.
References:  84
Measurement of NO production in endothelial cells endogenously expressing the B2 receptor.
Species:  Human
Tissue:  Endothelial cells.
Response measured:  Stimulation of NO production.
References:  13
Measurement of phospholipase Cγ phosphorylation in human endothelial cells endogenously expressing the B2 receptor.
Species:  Human
Tissue:  Endothelial cells.
Response measured:  Simulation of phospholipase Cγ phosphorylation.
References:  42
Measurement of epidermal growth factor receptor phosphorylation in rat PC12 cells endogenously expressing the B2 receptor.
Species:  Rat
Tissue:  PC12 cells.
Response measured:  Phosphorylation of epidermal growth factor receptor.
References:  115
Measurement of phosphorylation of focal adhesion-associated proteins p125FAK and paxillin in mouse Swiss 3T3 cells endogenously expressing the B2 receptor.
Species:  Mouse
Tissue:  Swiss 3T3 cells.
Response measured:  Phosphorylation of focal adhesion-associated proteins p125FAK and paxillin.
References:  62
Measurement of interleukin expression in human lung WI-38 fibroblasts endogenously expressing the B2 receptor.
Species:  Human
Tissue:  Lung WI-38 fibroblasts.
Response measured:  Induction of IL-1beta expression.
References:  52,80
Measurement of contractile responses in human umbilical veins endogenously expressing the B2R.
Species:  Human
Tissue:  Human isolated umbilical vein.
Response measured:  Contraction.
References:  43,70,85
Physiological Functions Click here for help
Role in mechanism of plasma extravasation which occurs during the reverse passive Arthus reaction.
Species:  Mouse
Tissue:  In vivo.
References:  91
Depolarization of a ventral root.
Species:  Rat
Tissue:  Peripheral nerve and spinal cord.
References:  31
Modulation of blood pressure.
Species:  Rat
Tissue:  In vivo.
References:  32
Attenuation of cardiac remodeling.
Species:  Rat
Tissue:  In vivo.
References:  73
Mediation of vasolidation in forearm vasculature.
Species:  Human
Tissue:  In vivo.
References:  23
Mediation of normal vasomotor responses in resistance and epicardial coronary vessels under basal and flow-stimulated conditions in coronary circulation.
Species:  Human
Tissue:  In vivo.
References:  45
Blockade of the B2 receptor prevents tissue swelling and inflammation in peptidoglycan-induced arthritis in the Lewis rat.
Species:  Rat
Tissue:  In vivo.
References:  105
B2 receptor ablated mice display reversal of the increased vascular permeability in a mouse model of hereditary angiodema.
Species:  Mouse
Tissue:  In vivo.
References:  51
Modulation of acute vascular pain and induced hyperalgesia.
Species:  Rat
Tissue:  In vivo.
References:  97
Involvement in vacoconstriction and tachycardia.
Species:  Rat
Tissue:  In vivo.
References:  22
Modulation of smooth muscle cell contraction.
Species:  Human
Tissue:  Isolated human umbilical vein.
References:  70
Modulation of antigen-induced pulmonary inflammation.
Species:  Mouse
Tissue:  In vivo.
References:  36
Colocalisation and functional interaction between B1 receptor and inducible nitric oxide synthase (iNOS) in rat diabetic retina.
Species:  Rat
Tissue:  Retina.
References:  79
B2 receptor interacts with the nociceptor TRPV1, enhancing sensitization to heat.
Species:  Human
Tissue:  HEK293 cells expressing TRPV1 and B2R as well as in capsaicin-sensitive DRG neurons.
References:  21,99
Close interaction and reciprocal regulatory mechanism between B1R and TRPV1 on astrocytes and nociceptors in rat neuropathic pain.
Species:  Rat
Tissue: 
References:  18
B1R is co-localized with NADPH oxidase (NOX1 and NOX2) on endothelial and vascular smooth muscle cells and macrophages in rat diabetic blood vessels and B1R stimulation increases superoxide anion production.
Species:  Rat
Tissue:  Endothelial cells, vascular smooth muscle cells, macrophages.
References:  50
B1 receptor was found on astrocytes in a mouse brain tumour, and uncontrolled tumour growth occurs in B1 receptor knockout mice or SSR240612-treated mice, which was blunted by B2 receptor blockade or deletion.
Species:  Mouse
Tissue:  Tumour-derived astrocytes.
References:  75
B1 receptor antagonism abrogates amyloidosis, cerebrovascular and memory deficits in a mouse model of Alzheimer's disease. DOI: 10.1186/1742-2094-10-57
Species:  Mouse
Tissue:  In vivo.
References:  59
B1 receptor blockade is of therapeutic value in models of type 2 diabetes, obesity and insulin resistance.
Species:  Mouse
Tissue:  mouse and rat.
References:  27-29,34,100
B1R is expressed in platelets and plays a primary role in inflammation, organ damage, and lethal thrombosis in a rat model of septic shock in diabetes.
Species:  Rat
Tissue: 
References:  101
Upregulation of B1R in endothelial and glial cells in rat diabetic retina and a rat model of age-related macular degeneration. Therapeutic value of eye-drop application of a B1R antagonist in both ocular diseases.
Species:  Rat
Tissue: 
References:  47-49
Physiological Consequences of Altering Gene Expression Click here for help
Mice lacking both the B1 and B2 receptor are normotensive and protected from endotoxin- induced hypotension when compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  17
Bradykinin fails to produce responses in pharmacological preparations from ileum, uterus, and the superior cervical ganglia from B2 receptor knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  9
B2 receptor knockout mice display increased renal fibrosis when compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  96
B2 receptor knockout mice are refractory to ischemic preconditioning when compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  111
B2 receptor knockout mice display decreased renin and cyclooxygenase (COX)-2 expression in the kidney when compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  56
Transgenic mice overexpressing the B2 receptor are hypotensive and hyper-responsive to exogenous bradykinin.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  106
Mice lacking the B2 receptor display hypertension when subjected to a high-salt diet, when compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  2,19,104
B2 receptor knockout mice display an enhanced reponse to exogenous arginine-vasopressin.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  1
B2 receptor knockout mice are prone to renal dysplasia when compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  35
B2 receptor knockout mice display reduced glomerular capillary surface area when compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  95
B2 receptor knockout mice display insulin resistance when compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  33
B2 receptor knockout mice display reversal of the increased vascular permeability in a mouse model of hereditary angiodema.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  51
B1 receptor knockout mice provide a model of moderate systolic dysfunction, and is associated with increased oxidative stress.
Species:  Mouse
Tissue: 
Technique: 
References:  26
B1 and B2 receptor knockout mice (similarly to B1 and B2 receptor blockade) displayed a reduction in post-fracture pain sensitivity that was associated to COX-1/COX-2. DOI: 10.1186/s12967-019-2095-9
Species:  Mouse
Tissue:  In vivo closed tibial fracture pain model.
Technique: 
References:  72
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Bdkrb2tm1Jfh|Ins2+|Ins2Akita Bdkrb2tm1Jfh/Bdkrb2tm1Jfh,Ins2Akita/Ins2+
B6.129S7-Ins2 Bdkrb2
MGI:102845  MGI:96573  MP:0000488 abnormal intestinal epithelium morphology PMID: 16604193 
Bdkrb2tm1Jfh Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
B6.129S7-Bdkrb2
MGI:102845  MP:0002135 abnormal kidney morphology PMID: 17452647 
Bdkrb2/Bdkrb1tm1Mki Bdkrb2/Bdkrb1tm1Mki/Bdkrb2/Bdkrb1tm1Mki
involves: C57BL/6J
MGI:102845  MP:0002135 abnormal kidney morphology PMID: 17452647 
Acetm4Keb|Bdkrb2tm1Jfh Acetm4Keb/Acetm4Keb,Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
involves: 129S1/Sv * 129S7/SvEvBrd * 129X1/SvJ
MGI:102845  MGI:87874  MP:0000530 abnormal kidney vasculature morphology PMID: 12637363 
Bdkrb2tm1Jfh|Ins2+|Ins2Akita Bdkrb2tm1Jfh/Bdkrb2tm1Jfh,Ins2Akita/Ins2+
B6.129S7-Ins2 Bdkrb2
MGI:102845  MGI:96573  MP:0002786 abnormal Leydig cell morphology PMID: 16604193 
Bdkrb2tm1Jfh Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
B6.129S7-Bdkrb2
MGI:102845  MP:0002786 abnormal Leydig cell morphology PMID: 16604193 
Bdkrb2tm1Jfh|Ins2+|Ins2Akita Bdkrb2tm1Jfh/Bdkrb2tm1Jfh,Ins2Akita/Ins2+
B6.129S7-Ins2 Bdkrb2
MGI:102845  MGI:96573  MP:0006036 abnormal mitochondrial physiology PMID: 16604193 
Bdkrb2tm1Jfh Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
B6.129S7-Bdkrb2
MGI:102845  MP:0006036 abnormal mitochondrial physiology PMID: 16604193 
Bdkrb2tm1Jfh Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
B6.129S7-Bdkrb2
MGI:102845  MP:0004756 abnormal proximal convoluted tubule morphology PMID: 17452647 
Bdkrb2/Bdkrb1tm1Mki Bdkrb2/Bdkrb1tm1Mki/Bdkrb2/Bdkrb1tm1Mki
involves: C57BL/6J
MGI:102845  MP:0004756 abnormal proximal convoluted tubule morphology PMID: 17452647 
Acetm4Keb|Bdkrb2tm1Jfh Acetm4Keb/Acetm4Keb,Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
involves: 129S1/Sv * 129S7/SvEvBrd * 129X1/SvJ
MGI:102845  MGI:87874  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 12637363 
Bdkrb2tm1Jfh|Ins2+|Ins2Akita Bdkrb2tm1Jfh/Bdkrb2tm1Jfh,Ins2Akita/Ins2+
B6.129S7-Ins2 Bdkrb2
MGI:102845  MGI:96573  MP:0002216 abnormal seminiferous tubule morphology PMID: 16604193 
Bdkrb2tm1Jfh|Ins2+|Ins2Akita Bdkrb2tm1Jfh/Bdkrb2tm1Jfh,Ins2Akita/Ins2+
B6.129S7-Ins2 Bdkrb2
MGI:102845  MGI:96573  MP:0006378 abnormal spermatogonia morphology PMID: 16604193 
Bdkrb2tm1Jfh|Ins2+|Ins2Akita Bdkrb2tm1Jfh/Bdkrb2tm1Jfh,Ins2Akita/Ins2+
B6.129S7-Ins2 Bdkrb2
MGI:102845  MGI:96573  MP:0000414 alopecia PMID: 16604193 
Bdkrb2tm1Jfh Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
B6.129S7-Bdkrb2
MGI:102845  MP:0005566 decreased blood urea nitrogen level PMID: 17452647 
Bdkrb2/Bdkrb1tm1Mki Bdkrb2/Bdkrb1tm1Mki/Bdkrb2/Bdkrb1tm1Mki
involves: C57BL/6J
MGI:102845  MP:0005566 decreased blood urea nitrogen level PMID: 17452647 
Bdkrb2tm1Jfh|Ins2+|Ins2Akita Bdkrb2tm1Jfh/Bdkrb2tm1Jfh,Ins2Akita/Ins2+
B6.129S7-Ins2 Bdkrb2
MGI:102845  MGI:96573  MP:0010121 decreased bone mineral density PMID: 16604193 
Bdkrb2tm1Jfh Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
B6.129S7-Bdkrb2
MGI:102845  MP:0010121 decreased bone mineral density PMID: 16604193 
Bdkrb1tm2Bdr|Bdkrb2tm1Jfh Bdkrb1tm2Bdr/Bdkrb1tm2Bdr,Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
involves: 129S7/SvEvBrd * C57BL/6
MGI:102845  MGI:88144  MP:0005333 decreased heart rate PMID: 16497152 
Acetm4Keb|Bdkrb2tm1Jfh Acetm4Keb/Acetm4Keb,Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
involves: 129S1/Sv * 129S7/SvEvBrd * 129X1/SvJ
MGI:102845  MGI:87874  MP:0000208 decreased hematocrit PMID: 12637363 
Acetm4Keb|Bdkrb2tm1Jfh Acetm4Keb/Acetm4Keb,Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
involves: 129S1/Sv * 129S7/SvEvBrd * 129X1/SvJ
MGI:102845  MGI:87874  MP:0003918 decreased kidney weight PMID: 12637363 
Bdkrb1tm2Bdr|Bdkrb2tm1Jfh Bdkrb1tm2Bdr/Bdkrb1tm2Bdr,Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
involves: 129S7/SvEvBrd * C57BL/6
MGI:102845  MGI:88144  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 16497152 
Bdkrb2tm1Jfh|Ins2+|Ins2Akita Bdkrb2tm1Jfh/Bdkrb2tm1Jfh,Ins2Akita/Ins2+
B6.129S7-Ins2 Bdkrb2
MGI:102845  MGI:96573  MP:0008844 decreased subcutaneous adipose tissue amount PMID: 16604193 
Bdkrb1tm2Bdr|Bdkrb2tm1Jfh Bdkrb1tm2Bdr/Bdkrb1tm2Bdr,Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
involves: 129S7/SvEvBrd * C57BL/6
MGI:102845  MGI:88144  MP:0008734 decreased susceptibility to endotoxin shock PMID: 16497152 
Acetm4Keb|Bdkrb2tm1Jfh Acetm4Keb/Acetm4Keb,Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
involves: 129S1/Sv * 129S7/SvEvBrd * 129X1/SvJ
MGI:102845  MGI:87874  MP:0006264 decreased systemic arterial systolic blood pressure PMID: 12637363 
Acetm4Keb|Bdkrb2tm1Jfh Acetm4Keb/Acetm4Keb,Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
involves: 129S1/Sv * 129S7/SvEvBrd * 129X1/SvJ
MGI:102845  MGI:87874  MP:0002988 decreased urine osmolality PMID: 12637363 
Bdkrb2tm1Jfh Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
B6.129S7-Bdkrb2
MGI:102845  MP:0005565 increased blood urea nitrogen level PMID: 17452647 
Bdkrb2/Bdkrb1tm1Mki Bdkrb2/Bdkrb1tm1Mki/Bdkrb2/Bdkrb1tm1Mki
involves: C57BL/6J
MGI:102845  MP:0005565 increased blood urea nitrogen level PMID: 17452647 
Bdkrb2tm1Jfh Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
B6.129S7-Bdkrb2
MGI:102845  MP:0005553 increased circulating creatinine level PMID: 17452647 
Bdkrb2/Bdkrb1tm1Mki Bdkrb2/Bdkrb1tm1Mki/Bdkrb2/Bdkrb1tm1Mki
involves: C57BL/6J
MGI:102845  MP:0005553 increased circulating creatinine level PMID: 17452647 
Bdkrb2tm1Jfh Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
B6.129S7-Bdkrb2
MGI:102845  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 17452647 
Bdkrb2/Bdkrb1tm1Mki Bdkrb2/Bdkrb1tm1Mki/Bdkrb2/Bdkrb1tm1Mki
involves: C57BL/6J
MGI:102845  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 17452647 
Acetm4Keb|Bdkrb2tm1Jfh Acetm4Keb/Acetm4Keb,Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
involves: 129S1/Sv * 129S7/SvEvBrd * 129X1/SvJ
MGI:102845  MGI:87874  MP:0003675 kidney cysts PMID: 12637363 
Bdkrb2tm1Jfh|Ins2+|Ins2Akita Bdkrb2tm1Jfh/Bdkrb2tm1Jfh,Ins2Akita/Ins2+
B6.129S7-Ins2 Bdkrb2
MGI:102845  MGI:96573  MP:0000160 kyphosis PMID: 16604193 
Bdkrb2tm1Jfh Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
involves: 129S7/SvEvBrd * C57BL/6
MGI:102845  MP:0002169 no abnormal phenotype detected PMID: 7775424 
Bdkrb2tm1Jfh|Serping1Gt1Aed Bdkrb2tm1Jfh/Bdkrb2tm1Jfh,Serping1Gt1Aed/Serping1Gt1Aed
involves: 129S5/SvEvBrd * C57BL/6
MGI:102845  MGI:894696  MP:0002169 no abnormal phenotype detected PMID: 11956243 
Bdkrb2tm1Jfh|Ins2+|Ins2Akita Bdkrb2tm1Jfh/Bdkrb2tm1Jfh,Ins2Akita/Ins2+
B6.129S7-Ins2 Bdkrb2
MGI:102845  MGI:96573  MP:0002083 premature death PMID: 16604193 
Bdkrb2tm1Jfh Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
B6.129S7-Bdkrb2
MGI:102845  MP:0002083 premature death PMID: 16604193 
Acetm4Keb|Bdkrb2tm1Jfh Acetm4Keb/Acetm4Keb,Bdkrb2tm1Jfh/Bdkrb2tm1Jfh
involves: 129S1/Sv * 129S7/SvEvBrd * 129X1/SvJ
MGI:102845  MGI:87874  MP:0001864 vasculitis PMID: 12637363 
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  The B2 C-58T polymorphism has been linked with insulin resistance.
References:  38
Type:  Insertion/deletion
Species:  Human
Description:  The -/- genotype of the B2 receptor gene exon 1 insertion/deletion polymorphism predicts an increased function of the B1 receptor.
References:  55
Type:  Single nucleotide polymorphisms, insertion/deletions
Species:  Human
Description:  Several B2 polymorphisms (21 +9/-9 Exon 1, -58C/T have been associated with cardiovascular disease.
References:  10,74
Type:  Insertion/deletion
Species:  Human
Description:  The B2 receptor 21 +9/-9 polymorphism has been linked with renal disease.
References:  69
Type:  Single nucleotide polymorphisms, insertion/deletions
Species:  Human
Description:  The B2 receptor polymorphism -58 T/C has been associated with airway disease.
References:  58
General Comments
B1 and B2 receptors are overexpressed in the hippocampus of humans with temporal lobe epilepsy [81]. B1 receptor is overexpressed in the retina of humans affected with the wet form of age-related macular degeneration [78], and in the retina of diabetic patients [7].

References

Show »

1. Alfie ME, Alim S, Mehta D, Shesely EG, Carretero OA. (1999) An enhanced effect of arginine vasopressin in bradykinin B2 receptor null mutant mice. Hypertension, 33 (6): 1436-40. [PMID:10373229]

2. Alfie ME, Sigmon DH, Pomposiello SI, Carretero OA. (1997) Effect of high salt intake in mutant mice lacking bradykinin-B2 receptors. Hypertension, 29 (1 Pt 2): 483-7. [PMID:9039146]

3. Amblard M, Bedos P, Olivier C, Daffix I, Luccarini JM, Dodey P, Pruneau D, Paquet JL, Martinez J. (2000) Synthesis and biological evaluation of bradykinin B(1)/B(2) and selective B(1) receptor antagonists. J. Med. Chem., 43 (12): 2382-6. [PMID:10882364]

4. Amblard M, Daffix I, Bedos P, Bergé G, Pruneau D, Paquet JL, Luccarini JM, Bélichard P, Dodey P, Martinez J. (1999) Design and synthesis of potent bradykinin agonists containing a benzothiazepine moiety. J. Med. Chem., 42 (20): 4185-92. [PMID:10514288]

5. Aramori I, Zenkoh J, Morikawa N, Asano M, Hatori C, Sawai H, Kayakiri H, Satoh S, Inoue T, Abe Y et al.. (1997) Nonpeptide mimic of bradykinin with long-acting properties at the bradykinin B2 receptor. Mol. Pharmacol., 52 (1): 16-20. [PMID:9224807]

6. Aramori I, Zenkoh J, Morikawa N, O'Donnell N, Asano M, Nakamura K, Iwami M, Kojo H, Notsu Y. (1997) Novel subtype-selective nonpeptide bradykinin receptor antagonists FR167344 and FR173657. Mol. Pharmacol., 51 (2): 171-6. [PMID:9203620]

7. Bhat M, Pouliot M, Couture R, Vaucher E. (2014) The kallikrein-kinin system in diabetic retinopathy. Prog Drug Res, 69: 111-43. [PMID:25130041]

8. Bhoola R, Ramsaroop R, Naidoo S, Müller-Esterl W, Bhoola KD. (1997) Kinin receptor status in normal and inflammed gastric mucosa. Immunopharmacology, 36 (2-3): 161-5. [PMID:9228541]

9. Borkowski JA, Ransom RW, Seabrook GR, Trumbauer M, Chen H, Hill RG, Strader CD, Hess JF. (1995) Targeted disruption of a B2 bradykinin receptor gene in mice eliminates bradykinin action in smooth muscle and neurons. J. Biol. Chem., 270 (23): 13706-10. [PMID:7775424]

10. Brull D, Dhamrait S, Myerson S, Erdmann J, Woods D, World M, Pennell D, Humphries S, Regitz-Zagrosek V, Montgomery H. (2001) Bradykinin B2BKR receptor polymorphism and left-ventricular growth response. Lancet, 358 (9288): 1155-6. [PMID:11597672]

11. Burch RM, Axelrod J. (1987) Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2. Proc. Natl. Acad. Sci. U.S.A., 84 (18): 6374-8. [PMID:2888113]

12. Burgess GM, Perkins MN, Rang HP, Campbell EA, Brown MC, McIntyre P, Urban L, Dziadulewicz EK, Ritchie TJ, Hallett A et al.. (2000) Bradyzide, a potent non-peptide B(2) bradykinin receptor antagonist with long-lasting oral activity in animal models of inflammatory hyperalgesia. Br. J. Pharmacol., 129 (1): 77-86. [PMID:10694205]

13. Busse R, Fleming I. (1995) Regulation and functional consequences of endothelial nitric oxide formation. Ann Med, 27: 331-340. [PMID:7546623]

14. Byron KL, Babnigg G, Villereal ML. (1992) Bradykinin-induced Ca2+ entry, release, and refilling of intracellular Ca2+ stores. Relationships revealed by image analysis of individual human fibroblasts. J. Biol. Chem., 267 (1): 108-18. [PMID:1730576]

15. Bélanger S, Bovenzi V, Côté J, Neugebauer W, Amblard M, Martinez J, Lammek B, Savard M, Gobeil Jr F. (2009) Structure-activity relationships of novel peptide agonists of the human bradykinin B2 receptor. Peptides, 30 (4): 777-87. [PMID:19111586]

16. Campos MM, Ongali B, Thibault G, Neugebauer W, Couture R. (2005) Autoradiographic distribution and alterations of kinin B(2) receptors in the brain and spinal cord of streptozotocin-diabetic rats. Synapse, 58 (3): 184-92. [PMID:16138314]

17. Cayla C, Todiras M, Iliescu R, Saul VV, Gross V, Pilz B, Chai G, Merino VF, Pesquero JB, Baltatu OC et al.. (2007) Mice deficient for both kinin receptors are normotensive and protected from endotoxin-induced hypotension. FASEB J., 21 (8): 1689-98. [PMID:17289925]

18. Cernit V, Sénécal J, Othman R, Couture R. (2020) Reciprocal Regulatory Interaction between TRPV1 and Kinin B1 Receptor in a Rat Neuropathic Pain Model. Int J Mol Sci, 21 (3). DOI: 10.3390/ijms21030821 [PMID:32012798]

19. Cervenka L, Harrison-Bernard LM, Dipp S, Primrose G, Imig JD, El-Dahr SS. (1999) Early onset salt-sensitive hypertension in bradykinin B(2) receptor null mice. Hypertension, 34 (2): 176-80. [PMID:10454437]

20. Cheuk BL, Ko WH, Wong PY. (2002) COX-dependent and -independent pathways in bradykinin-induced anion secretion in rat epididymis. J Cell Physiol, 191: 217-226. [PMID:12064465]

21. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D. (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature, 411 (6840): 957-62. [PMID:11418861]

22. Cloutier F, de Sousa Buck H, Ongali B, Couture R. (2002) Pharmacologic and autoradiographic evidence for an up-regulation of kinin B(2) receptors in the spinal cord of spontaneously hypertensive rats. Br. J. Pharmacol., 135 (7): 1641-54. [PMID:11934804]

23. Cockcroft JR, Chowienczyk PJ, Brett SE, Bender N, Ritter JM. (1994) Inhibition of bradykinin-induced vasodilation in human forearm vasculature by icatibant, a potent B2-receptor antagonist. Br J Clin Pharmacol, 38 (4): 317-21. [PMID:7833220]

24. De Falco L, Fioravanti A, Galeazzi M, Tenti S. (2013) Bradykinin and its role in osteoarthritis. Reumatismo, 65 (3): 97-104. [PMID:23884024]

25. de Sousa Buck H, Ongali B, Thibault G, Lindsey CJ, Couture R. (2002) Autoradiographic detection of kinin receptors in the human medulla of control, hypertensive, and diabetic donors. Can. J. Physiol. Pharmacol., 80 (4): 249-57. [PMID:12025957]

26. Delemasure S, Blaes N, Richard C, Couture R, Bader M, Dutartre P, Girolami JP, Connat JL, Rochette L. (2013) Antioxidant/oxidant status and cardiac function in bradykinin B(1)- and B(2)-receptor null mice. Physiol Res, 62 (5): 511-7. [PMID:24020815]

27. Dias JP, Couture R. (2012) Blockade of kinin B(1) receptor reverses plasma fatty acids composition changes and body and tissue fat gain in a rat model of insulin resistance. Diabetes Obes Metab, 14 (3): 244-53. [PMID:22023455]

28. Dias JP, Gariépy Hde B, Ongali B, Couture R. (2015) Brain kinin B1 receptor is upregulated by the oxidative stress and its activation leads to stereotypic nociceptive behavior in insulin-resistant rats. Peptides, 69: 118-26. [PMID:25959537]

29. Dias JP, Talbot S, Sénécal J, Carayon P, Couture R. (2010) Kinin B1 receptor enhances the oxidative stress in a rat model of insulin resistance: outcome in hypertension, allodynia and metabolic complications. PLoS ONE, 5 (9): e12622. [PMID:20830306]

30. Doctrow SR, Abelleira SM, Curry LA, Heller-Harrison R, Kozarich JW, Malfroy B, McCarroll LA, Morgan KG, Morrow AR, Musso GF et al.. (1994) The bradykinin analog RMP-7 increases intracellular free calcium levels in rat brain microvascular endothelial cells. J. Pharmacol. Exp. Ther., 271 (1): 229-37. [PMID:7965719]

31. Dray A, Bettaney J, Forster P, Perkins MN. (1988) Activation of a bradykinin receptor in peripheral nerve and spinal cord in the neonatal rat in vitro. Br. J. Pharmacol., 95 (4): 1008-10. [PMID:2905907]

32. Duka A, Duka I, Gao G, Shenouda S, Gavras I, Gavras H. (2006) Role of bradykinin B1 and B2 receptors in normal blood pressure regulation. Am. J. Physiol. Endocrinol. Metab., 291 (2): E268-74. [PMID:16507603]

33. Duka I, Shenouda S, Johns C, Kintsurashvili E, Gavras I, Gavras H. (2001) Role of the B(2) receptor of bradykinin in insulin sensitivity. Hypertension, 38 (6): 1355-60. [PMID:11751717]

34. El Akoum S, Haddad Y, Couture R. (2017) Impact of pioglitazone and bradykinin type 1 receptor antagonist on type 2 diabetes in high-fat diet-fed C57BL/6J mice. Obes Sci Pract, 3 (3): 352-362. [PMID:29071111]

35. El-Dahr SS, Harrison-Bernard LM, Dipp S, Yosipiv IV, Meleg-Smith S. (2000) Bradykinin B2 null mice are prone to renal dysplasia: gene-environment interactions in kidney development. Physiol. Genomics, 3 (3): 121-31. [PMID:11015607]

36. Eric J, Gabra BH, Sirois P. (2003) Implication of the bradykinin receptors in antigen-induced pulmonary inflammation in mice. Br. J. Pharmacol., 138 (8): 1589-97. [PMID:12721115]

37. Ewald DA, Pang IH, Sternweis PC, Miller RJ. (1989) Differential G protein-mediated coupling of neurotransmitter receptors to Ca2+ channels in rat dorsal root ganglion neurons in vitro. Neuron, 2 (2): 1185-93. [PMID:2560387]

38. Fallo F, Mulatero P, Vettor R, Scarda A, Della Mea P, Morello F, Veglio F, Williams TA. (2004) Bradykinin B2 receptor gene C-58T polymorphism and insulin resistance. A study on obese patients. Horm. Metab. Res., 36 (4): 243-6. [PMID:15114524]

39. Fasolato C, Pandiella A, Meldolesi J, Pozzan T. (1988) Generation of inositol phosphates, cytosolic Ca2+, and ionic fluxes in PC12 cells treated with bradykinin. J. Biol. Chem., 263 (33): 17350-9. [PMID:3141420]

40. Figueroa CD, Marchant A, Novoa U, Förstermann U, Jarnagin K, Schölkens B, Müller-Esterl W. (2001) Differential Distribution of Bradykinin B(2) Receptors in the Rat and Human Cardiovascular System. Hypertension, 37 (1): 110-120. [PMID:11208765]

41. Fleming I, Fisslthaler B, Busse R. (1995) Calcium signaling in endothelial cells involves activation of tyrosine kinases and leads to activation of mitogen-activated protein kinases. Circ Res, 76: 522-529. [PMID:7895328]

42. Fleming I, Fisslthaler B, Busse R. (1996) Interdependence of calcium signaling and protein tyrosine phosphorylation in human endothelial cells. J. Biol. Chem., 271 (18): 11009-15. [PMID:8631922]

43. Gobeil F, Pheng LH, Badini I, Nguyen-Le XK, Pizard A, Rizzi A, Blouin D, Regoli D. (1996) Receptors for kinins in the human isolated umbilical vein. Br. J. Pharmacol., 118 (2): 289-94. [PMID:8735629]

44. Gohla A, Offermanns S, Wilkie TM, Schultz G. (1999) Differential involvement of Galpha12 and Galpha13 in receptor-mediated stress fiber formation. J. Biol. Chem., 274 (25): 17901-7. [PMID:10364236]

45. Groves P, Kurz S, Just H, Drexler H. (1995) Role of endogenous bradykinin in human coronary vasomotor control. Circulation, 92 (12): 3424-30. [PMID:8521563]

46. Gutowski S, Smrcka A, Nowak L, Wu DG, Simon M, Sternweis PC. (1991) Antibodies to the alpha q subfamily of guanine nucleotide-binding regulatory protein alpha subunits attenuate activation of phosphatidylinositol 4,5-bisphosphate hydrolysis by hormones. J Biol Chem, 266: 20519-20524. [PMID:1657928]

47. Hachana S, Bhat M, Sénécal J, Huppé-Gourgues F, Couture R, Vaucher E. (2018) Expression, distribution and function of kinin B1 receptor in the rat diabetic retina. Br. J. Pharmacol., 175 (6): 968-983. [PMID:29285756]

48. Hachana S, Fontaine O, Sapieha P, Lesk M, Couture R, Vaucher E. (2020) The effects of anti-VEGF and kinin B1 receptor blockade on retinal inflammation in laser-induced choroidal neovascularization. Br. J. Pharmacol., 177 (9): 1949-1966. [PMID:31883121]

49. Hachana S, Pouliot M, Couture R, Vaucher E. (2020) Diabetes-Induced Inflammation and Vascular Alterations in the Goto-Kakizaki Rat Retina. Curr. Eye Res., 45 (8): 965-974. [PMID:31902231]

50. Haddad Y, Couture R. (2017) Localization and Interaction between Kinin B1 Receptor and NADPH Oxidase in the Vascular System of Diabetic Rats. Front Physiol, 8: 861. [PMID:29163205]

51. Han ED, MacFarlane RC, Mulligan AN, Scafidi J, Davis 3rd AE. (2002) Increased vascular permeability in C1 inhibitor-deficient mice mediated by the bradykinin type 2 receptor. J. Clin. Invest., 109 (8): 1057-63. [PMID:11956243]

52. Hayashi R, Yamashita N, Matsui S, Fujita T, Araya J, Sassa K, Arai N, Yoshida Y, Kashii T, Maruyama M et al.. (2000) Bradykinin stimulates IL-6 and IL-8 production by human lung fibroblasts through ERK- and p38 MAPK-dependent mechanisms. Eur. Respir. J., 16 (3): 452-8. [PMID:11028659]

53. Hess JF, Borkowski JA, MacNeil T, Stonesifer GY, Fraher J, Strader CD, Ransom RW. (1994) Differential pharmacology of cloned human and mouse B2 bradykinin receptors. Mol Pharmacol, 45: 1-8. [PMID:8302267]

54. Higashida H, Streaty RA, Klee W, Nirenberg M. (1986) Bradykinin-activated transmembrane signals are coupled via No or Ni to production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells. Proc. Natl. Acad. Sci. U.S.A., 83 (4): 942-6. [PMID:3081891]

55. Houle S, Landry M, Audet R, Bouthillier J, Bachvarov DR, Marceau F. (2000) Effect of allelic polymorphism of the B(1) and B(2) receptor genes on the contractile responses of the human umbilical vein to kinins. J. Pharmacol. Exp. Ther., 294 (1): 45-51. [PMID:10871294]

56. Imig JD, Zhao X, Orengo SR, Dipp S, El-Dahr SS. (2003) The Bradykinin B2 receptor is required for full expression of renal COX-2 and renin. Peptides, 24 (8): 1141-7. [PMID:14612184]

57. Jones C, Phillips E, Davis C, Arbuckle J, Yaqoob M, Burgess GM, Docherty RJ, Webb M, Bevan SJ, McIntyre P. (1999) Molecular characterisation of cloned bradykinin B1 receptors from rat and human. Eur J Pharmacol, 374: 423-433. [PMID:10422787]

58. Kusser B, Braun A, Praun M, Illi S, von Mutius E, Roscher AA. (2001) Polymorphisms in the bradykinin B2 receptor gene and childhood asthma. Biol. Chem., 382 (5): 885-9. [PMID:11517947]

59. Lacoste B, Tong XK, Lahjouji K, Couture R, Hamel E. (2013) Cognitive and cerebrovascular improvements following kinin B1 receptor blockade in Alzheimer's disease mice. J Neuroinflammation, 10: 57. [PMID:23642031]

60. LaMorte VJ, Harootunian AT, Spiegel AM, Tsien RY, Feramisco JR. (1993) Mediation of growth factor induced DNA synthesis and calcium mobilization by Gq and Gi2. J Cell Biol, 121: 91-99. [PMID:8458876]

61. Leeb T, Mathis SA, Leeb-Lundberg LM. (1997) The sixth transmembrane domains of the human B1 and B2 bradykinin receptors are structurally compatible and involved in discriminating between subtype-selective agonists. J Biol Chem, 272: 311-317. [PMID:8995263]

62. Leeb-Lundberg LM, Song XH, Mathis SA. (1994) Focal adhesion-associated proteins p125FAK and paxillin are substrates for bradykinin-stimulated tyrosine phosphorylation in Swiss 3T3 cells. J. Biol. Chem., 269 (39): 24328-34. [PMID:7929090]

63. Lesage A, Gibson C, Marceau F, Ambrosi HD, Saupe J, Katzer W, Loenders B, Charest-Morin X, Knolle J. (2020) In Vitro Pharmacological Profile of a New Small Molecule Bradykinin B2 Receptor Antagonist. Front Pharmacol, 11: 916. [PMID:32636746]

64. Liao JK, Homcy CJ. (1993) The G proteins of the G alpha i and G alpha q family couple the bradykinin receptor to the release of endothelium-derived relaxing factor. J Clin Invest, 92: 2168-2172. [PMID:8227332]

65. Linder ME, Ewald DA, Miller RJ, Gilman AG. (1990) Purification and characterization of Go alpha and three types of Gi alpha after expression in Escherichia coli. J. Biol. Chem., 265 (14): 8243-51. [PMID:2159473]

66. Lopes P, Kar S, Chrétien L, Regoli D, Quirion R, Couture R. (1995) Quantitative autoradiographic localization of [125I-Tyr8]bradykinin receptor binding sites in the rat spinal cord: effects of neonatal capsaicin, noradrenergic deafferentation, dorsal rhizotomy and peripheral axotomy. Neuroscience, 68 (3): 867-81. [PMID:8577380]

67. Lopes P, Kar S, Tousignant C, Regoli D, Quirion R, Couture R. (1993) Autoradiographic localization of [125I-Tyr8]-bradykinin receptor binding sites in the guinea pig spinal cord. Synapse, 15 (1): 48-57. [PMID:8310425]

68. MacNeil T, Feighner S, Hreniuk DL, Hess JF, Van der Ploeg LH. (1997) Partial agonists and full antagonists at the human and murine bradykinin B1 receptors. Can J Physiol Pharmacol, 75: 735-740. [PMID:9276157]

69. Maltais I, Bachvarova M, Maheux P, Perron P, Marceau F, Bachvarov D. (2002) Bradykinin B2 receptor gene polymorphism is associated with altered urinary albumin/creatinine values in diabetic patients. Can J Physiol Pharmacol, 80: 323-327. [PMID:12025967]

70. Marceau F, Levesque L, Drapeau G, Rioux F, Salvino JM, Wolfe HR, Seoane PR, Sawutz DG. (1994) Effects of peptide and nonpeptide antagonists of bradykinin B2 receptors on the venoconstrictor action of bradykinin. J. Pharmacol. Exp. Ther., 269 (3): 1136-43. [PMID:8014858]

71. McEachern AE, Shelton ER, Bhakta S, Obernolte R, Bach C, Zuppan P, Fujisaki J, Aldrich RW, Jarnagin K. (1991) Expression cloning of a rat B2 bradykinin receptor. Proc. Natl. Acad. Sci. U.S.A., 88 (17): 7724-8. [PMID:1715575]

72. Minville V, Mouledous L, Jaafar A, Couture R, Brouchet A, Frances B, Tack I, Girolami JP. (2019) Tibial post fracture pain is reduced in kinin receptors deficient mice and blunted by kinin receptor antagonists. J Transl Med, 17 (1): 346. [PMID:31640792]

73. Moniwa N, Agata J, Hagiwara M, Ura N, Shimamoto K. (2006) The role of bradykinin B1 receptor on cardiac remodeling in stroke-prone spontaneously hypertensive rats (SHR-SP). Biol. Chem., 387 (2): 203-9. [PMID:16497153]

74. Mulatero P, Williams TA, Milan A, Paglieri C, Rabbia F, Fallo F, Veglio F. (2002) Blood pressure in patients with primary aldosteronism is influenced by bradykinin B(2) receptor and alpha-adducin gene polymorphisms. J. Clin. Endocrinol. Metab., 87 (7): 3337-43. [PMID:12107246]

75. Nicoletti NF, Sénécal J, da Silva VD, Roxo MR, Ferreira NP, de Morais RLT, Pesquero JB, Campos MM, Couture R, Morrone FB. (2017) Primary Role for Kinin B1 and B2 Receptors in Glioma Proliferation. Mol. Neurobiol., 54 (10): 7869-7882. [PMID:27848207]

76. Ongali B, Buck Hde S, Cloutier F, Legault F, Regoli D, Lambert C, Thibault G, Couture R. (2003) Chronic effects of angiotensin-converting enzyme inhibition on kinin receptor binding sites in the rat spinal cord. Am. J. Physiol. Heart Circ. Physiol., 284 (6): H1949-58. [PMID:12586640]

77. Ongali B, Campos MM, Bregola G, Rodi D, Regoli D, Thibault G, Simonato M, Couture R. (2003) Autoradiographic analysis of rat brain kinin B1 and B2 receptors: normal distribution and alterations induced by epilepsy. J Comp Neurol, 461: 506-519. [PMID:12746865]

78. Othman R, Berbari S, Vaucher E, Couture R. (2020) Differential Expression of Kinin Receptors in Human Wet and Dry Age-Related Macular Degeneration Retinae. Pharmaceuticals (Basel), 13 (6). DOI: 0.3390/ph13060130 [PMID:32599742]

79. Othman R, Vaucher E, Couture R. (2019) Bradykinin Type 1 Receptor - Inducible Nitric Oxide Synthase: A New Axis Implicated in Diabetic Retinopathy. Front Pharmacol, 10: 300. [PMID:30983997]

80. Pan ZK, Zuraw BL, Lung CC, Prossnitz ER, Browning DD, Ye RD. (1996) Bradykinin stimulates NF-kappaB activation and interleukin 1beta gene expression in cultured human fibroblasts. J. Clin. Invest., 98 (9): 2042-9. [PMID:8903323]

81. Perosa SR, Argañaraz GA, Goto EM, Costa LG, Konno AC, Varella PP, Santiago JF, Pesquero JB, Canzian M, Amado D et al.. (2007) Kinin B1 and B2 receptors are overexpressed in the hippocampus of humans with temporal lobe epilepsy. Hippocampus, 17 (1): 26-33. [PMID:17094085]

82. Powell SJ, Slynn G, Thomas C, Hopkins B, Briggs I, Graham A. (1993) Human bradykinin B2 receptor: nucleotide sequence analysis and assignment to chromosome 14. Genomics, 15 (2): 435-8. [PMID:7916737]

83. Pruneau D, Paquet JL, Luccarini JM, Defrêne E, Fouchet C, Franck RM, Loillier B, Robert C, Bélichard P, Duclos H et al.. (1999) Pharmacological profile of LF 16-0687, a new potent non-peptide bradykinin B2 receptor antagonist. Immunopharmacology, 43 (2-3): 187-94. [PMID:10596852]

84. Pyne NJ, Tolan D, Pyne S. (1997) Bradykinin stimulates cAMP synthesis via mitogen-activated protein kinase-dependent regulation of cytosolic phospholipase A2 and prostaglandin E2 release in airway smooth muscle. Biochem. J., 328 ( Pt 2): 689-94. [PMID:9371732]

85. Regoli D, Nsa Allogho S, Rizzi A, Gobeil FJ. (1998) Bradykinin receptors and their antagonists. Eur. J. Pharmacol., 348 (1): 1-10. [PMID:9650825]

86. Ricupero DA, Romero JR, Rishikof DC, Goldstein RH. (2000) Des-Arg(10)-kallidin engagement of the B1 receptor stimulates type I collagen synthesis via stabilization of connective tissue growth factor mRNA. J. Biol. Chem., 275 (17): 12475-80. [PMID:10777533]

87. Rizzi A, Gobeil F, Calò G, Inamura N, Regoli D. (1997) FR 173657: a new, potent, nonpeptide kinin B2 receptor antagonist. An in vitro study. Hypertension, 29 (4): 951-6. [PMID:9095082]

88. Rodriguez JA, De la Cerda P, Collyer E, Decap V, Vio CP, Velarde V. (2006) Cyclooxygenase-2 induction by bradykinin in aortic vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol., 290 (1): H30-6. [PMID:16143655]

89. Ross D, Joyner WL. (1997) Resting distribution and stimulated translocation of protein kinase C isoforms alpha, epsilon and zeta in response to bradykinin and TNF in human endothelial cells. Endothelium, 5 (4): 321-32. [PMID:9588823]

90. Salvino JM, Seoane PR, Douty BD, Awad MM, Dolle RE, Houck WT, Faunce DM, Sawutz DG. (1993) Design of potent non-peptide competitive antagonists of the human bradykinin B2 receptor. J. Med. Chem., 36 (17): 2583-4. [PMID:8394936]

91. Samadfam R, Teixeira C, Bkaily G, Sirois P, de Brum-Fernandes A, D'Orleans-Juste P. (2000) Contribution of B(2) receptors for bradykinin in arthus reaction-induced plasma extravasation in wild-type or B(2) transgenic knockout mice. Br. J. Pharmacol., 129 (8): 1732-8. [PMID:10780980]

92. Savard M, Labonté J, Dubuc C, Neugebauer W, D'Orléans-Juste P, Gobeil Jr F. (2013) Further pharmacological evaluation of a novel synthetic peptide bradykinin B2 receptor agonist. Biol. Chem., 394 (3): 353-60. [PMID:23362191]

93. Sawada Y, Kayakiri H, Abe Y, Mizutani T, Inamura N, Asano M, Hatori C, Aramori I, Oku T, Tanaka H. (2004) Discovery of the first non-peptide full agonists for the human bradykinin B(2) receptor incorporating 4-(2-picolyloxy)quinoline and 1-(2-picolyl)benzimidazole frameworks. J. Med. Chem., 47 (11): 2853-63. [PMID:15139763]

94. Sawutz DG, Salvino JM, Dolle RE, Casiano F, Ward SJ, Houck WT, Faunce DM, Douty BD, Baizman E, Awad MM et al.. (1994) The nonpeptide WIN 64338 is a bradykinin B2 receptor antagonist. Proc. Natl. Acad. Sci. U.S.A., 91 (11): 4693-7. [PMID:8197121]

95. Schanstra JP, Duchene J, Praddaude F, Bruneval P, Tack I, Chevalier J, Girolami JP, Bascands JL. (2003) Decreased renal NO excretion and reduced glomerular tuft area in mice lacking the bradykinin B2 receptor. Am. J. Physiol. Heart Circ. Physiol., 284 (6): H1904-8. [PMID:12560214]

96. Schanstra JP, Neau E, Drogoz P, Arevalo Gomez MA, Lopez Novoa JM, Calise D, Pecher C, Bader M, Girolami JP, Bascands JL. (2002) In vivo bradykinin B2 receptor activation reduces renal fibrosis. J. Clin. Invest., 110 (3): 371-9. [PMID:12163456]

97. Steranka LR, Manning DC, DeHaas CJ, Ferkany JW, Borosky SA, Connor JR, Vavrek RJ, Stewart JM, Snyder SH. (1988) Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions. Proc. Natl. Acad. Sci. U.S.A., 85 (9): 3245-9. [PMID:2896357]

98. Stewart JM, Gera L, Hanson W, Zuzak JS, Burkard M, McCullough R, Whalley ET. (1996) A new generation of bradykinin antagonists. Immunopharmacology, 33: 51-60. [PMID:8856115]

99. Sugiura T, Tominaga M, Katsuya H, Mizumura K. (2002) Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J. Neurophysiol., 88 (1): 544-8. [PMID:12091579]

100. Talbot S, Dias JP, El Midaoui A, Couture R. (2016) Beneficial effects of kinin B1 receptor antagonism on plasma fatty acid alterations and obesity in Zucker diabetic fatty rats. Can. J. Physiol. Pharmacol., 94 (7): 752-7. [PMID:27172260]

101. Tidjane N, Hachem A, Zaid Y, Merhi Y, Gaboury L, Girolami JP, Couture R. (2015) A primary role for kinin B1 receptor in inflammation, organ damage, and lethal thrombosis in a rat model of septic shock in diabetes. Eur J Inflamm, 13 (1): 40-52. [PMID:26413099]

102. Tilly BC, van Paridon PA, Verlaan I, Wirtz KW, de Laat SW, Moolenaar WH. (1987) Inositol phosphate metabolism in bradykinin-stimulated human A431 carcinoma cells. Relationship to calcium signalling. Biochem. J., 244 (1): 129-35. [PMID:3663107]

103. Tippmer S, Quitterer U, Kolm V, Faussner A, Roscher A, Mosthaf L, Müller-Esterl W, Häring H. (1994) Bradykinin induces translocation of the protein kinase C isoforms alpha, epsilon, and zeta. Eur. J. Biochem., 225 (1): 297-304. [PMID:7925449]

104. Trabold F, Pons S, Hagege AA, Bloch-Faure M, Alhenc-Gelas F, Giudicelli JF, Richer-Giudicelli C, Meneton P. (2002) Cardiovascular phenotypes of kinin B2 receptor- and tissue kallikrein-deficient mice. Hypertension, 40 (1): 90-5. [PMID:12105144]

105. Uknis AB, DeLa Cadena RA, Janardham R, Sartor RB, Whalley ET, Colman RW. (2001) Bradykinin receptor antagonists type 2 attenuate the inflammatory changes in peptidoglycan-induced acute arthritis in the Lewis rat. Inflamm. Res., 50 (3): 149-55. [PMID:11339503]

106. Wang DZ, Chao L, Chao J. (1997) Hypotension in transgenic mice overexpressing human bradykinin B2 receptor. Hypertension, 29 (1 Pt 2): 488-93. [PMID:9039147]

107. Wilk-Blaszczak MA, Singer WD, Gutowski S, Sternweis PC, Belardetti F. (1994) The G protein G13 mediates inhibition of voltage-dependent calcium current by bradykinin. Neuron, 13 (5): 1215-24. [PMID:7946358]

108. Windischhofer W, Leis HJ. (1997) [3H]bradykinin receptor-binding, receptor-recycling, and receptor-internalization of the B2 bradykinin receptor in the murine osteoblast-like cell line MC3T3-E1. J. Bone Miner. Res., 12 (10): 1615-25. [PMID:9333122]

109. Wu J, Akaike T, Hayashida K, Miyamoto Y, Nakagawa T, Miyakawa K, Müller-Esterl W, Maeda H. (2002) Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer, 98: 29-35. [PMID:11857381]

110. Yanaga F, Hirata M, Koga T. (1991) Evidence for coupling of bradykinin receptors to a guanine-nucleotide binding protein to stimulate arachidonate liberation in the osteoblast-like cell line, MC3T3-E1. Biochim. Biophys. Acta, 1094 (2): 139-46. [PMID:1654114]

111. Yang XP, Liu YH, Scicli GM, Webb CR, Carretero OA. (1997) Role of kinins in the cardioprotective effect of preconditioning: study of myocardial ischemia/reperfusion injury in B2 kinin receptor knockout mice and kininogen-deficient rats. Hypertension, 30 (3 Pt 2): 735-40. [PMID:9323015]

112. Yano K, Higashida H, Hattori H, Nozawa Y. (1985) Bradykinin-induced transient accumulation of inositol trisphosphate in neuron-like cell line NG108-15 cells. FEBS Lett., 181 (2): 403-6. [PMID:2857660]

113. Zhang SP, Codd EE. (1998) Characterization of bradykinin receptors in human lung fibroblasts using the binding of 3[H][Des-Arg10,Leu9]kallidin and [3H]NPC17731. Life Sci., 62 (25): 2303-14. [PMID:9651119]

114. Zhang SP, Wang HY, Lovenberg TW, Codd EE. (2001) Functional studies of bradykinin receptors in Chinese hamster ovary cells stably expressing the human B2 bradykinin receptor. Int. Immunopharmacol., 1 (5): 955-65. [PMID:11379050]

115. Zwick E, Daub H, Aoki N, Yamaguchi-Aoki Y, Tinhofer I, Maly K, Ullrich A. (1997) Critical role of calcium- dependent epidermal growth factor receptor transactivation in PC12 cell membrane depolarization and bradykinin signaling. J. Biol. Chem., 272 (40): 24767-70. [PMID:9312072]

Contributors

Show »

How to cite this page