Top ▲
Target not currently curated in GtoImmuPdb
Target id: 473
Nomenclature: nicotinic acetylcholine receptor β3 subunit
Gene and Protein Information | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 4 | 458 | 8p11.21 | CHRNB3 | cholinergic receptor nicotinic beta 3 subunit | 11 |
Mouse | 4 | 464 | 8 A2 | Chrnb3 | cholinergic receptor, nicotinic, beta polypeptide 3 | 4 |
Rat | 4 | 464 | 16q12.3 | Chrnb3 | cholinergic receptor nicotinic beta 3 subunit | 3 |
Previous and Unofficial Names |
Acrb3 | cholinergic receptor, nicotinic, beta 3 (neuronal) | cholinergic receptor, nicotinic beta 3 | cholinergic receptor |
Database Links | |
Alphafold | Q05901 (Hs), Q8BMN3 (Mm), P12391 (Rn) |
CATH/Gene3D | 2.70.170.10 |
ChEMBL Target | CHEMBL2109233 (Hs), CHEMBL3885610 (Mm), CHEMBL3137275 (Rn), CHEMBL3883329 (Rn) |
Ensembl Gene | ENSG00000147432 (Hs), ENSMUSG00000031492 (Mm), ENSRNOG00000012448 (Rn) |
Entrez Gene | 1142 (Hs), 108043 (Mm), 171131 (Rn) |
Human Protein Atlas | ENSG00000147432 (Hs) |
KEGG Gene | hsa:1142 (Hs), mmu:108043 (Mm), rno:171131 (Rn) |
OMIM | 118508 (Hs) |
Pharos | Q05901 (Hs) |
RefSeq Nucleotide | NM_000749 (Hs), NM_173212 (Mm), NM_133597 (Rn) |
RefSeq Protein | NP_000740 (Hs), NP_775304 (Mm), NP_598281 (Rn) |
UniProtKB | Q05901 (Hs), Q8BMN3 (Mm), P12391 (Rn) |
Wikipedia | CHRNB3 (Hs) |
Natural/Endogenous Ligands |
acetylcholine |
Tissue Distribution | ||||||||||
|
||||||||||
|
||||||||||
Tissue Distribution Comments | ||||||||||
The pattern of expression of β3 mRNA in rat brain resemples that of α6 however, in contrast to α6, high levels of expression occur in the medial habenula [3]. In rhesus monkey (Macaca mulatta) brain the expression pattern is similar to that in rodents, with high levels of in substantia nigra pars compacta, vertral tegmental area and medial habenula [8]. As with patterns in squirrel monkey (Saimiri sciureus) brain (showing high levels of expression in substantia nigra pars compacta, vertral tegmental area and medial habenula) [9]. Comparison of radioligand binding in wild-type and β3 knockout mice reveals no significant difference in high affinity [3H]-nicotine binding but a decrease in cytisine-resistant [3H]-epibatidine binding and a substantial decrease in the density of [125I]α-conotoxinMII binding in the visual and mesostriatal pathways. However, the reduction in [125I] α-conotoxinMII binding in β3 knockout mice is less dramatic than in α6 knockout mice [1-2]. Radioligand binding and immunoprecipitation studies with β3 knockout mice also reveal a reduction in α6-containing receptors in the striatum, midbrain and superior colliculus, indicating that a substantial fraction of α6 receptors also contain theβ3 subunit. β3-containing receptors not associated with the α6 subunit are selectively expressed in the medial habenula [5-7]. |
Physiological Consequences of Altering Gene Expression | ||||||||||
|
Clinically-Relevant Mutations and Pathophysiology | ||||||||||
|
General Comments |
The mouse β3 subunit exists as two variants, the largest of which is tabulated above. |
1. Baddick CG, Marks MJ. (2011) An auroradiographic survey of mouse brain nicotinic acetylcholine receptors defined by null mutants. Biochem Pharmacol,,. [PMID:21575611]
2. Cui C, Booker TK, Allen RS, Grady SR, Whiteaker P, Marks MJ, Salminen O, Tritto T, Butt CM, Allen WR et al.. (2003) The beta3 nicotinic receptor subunit: a component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. J Neurosci, 23 (35): 11045-53. [PMID:14657161]
3. Deneris ES, Boulter J, Swanson LW, Patrick J, Heinemann S. (1989) Beta 3: a new member of nicotinic acetylcholine receptor gene family is expressed in brain. J Biol Chem, 264 (11): 6268-72. [PMID:2703489]
4. Drescher DG, Khan KM, Green GE, Morley BJ, Beisel KW, Kaul H, Gordon D, Gupta AK, Drescher MJ, Barretto RL. (1995) Analysis of nicotinic acetylcholine receptor subunits in the cochlea of the mouse. Comp Biochem Physiol C, Pharmacol Toxicol Endocrinol, 112 (3): 267-73. [PMID:8838678]
5. Gotti C, Moretti M, Clementi F, Riganti L, McIntosh JM, Collins AC, Marks MJ, Whiteaker P. (2005) Expression of nigrostriatal alpha 6-containing nicotinic acetylcholine receptors is selectively reduced, but not eliminated, by beta 3 subunit gene deletion. Mol Pharmacol, 67 (6): 2007-15. [PMID:15749993]
6. Gotti C, Moretti M, Zanardi A, Gaimarri A, Champtiaux N, Changeux JP, Whiteaker P, Marks MJ, Clementi F, Zoli M. (2005) Heterogeneity and selective targeting of neuronal nicotinic acetylcholine receptor (nAChR) subtypes expressed on retinal afferents of the superior colliculus and lateral geniculate nucleus: identification of a new native nAChR subtype alpha3beta2(alpha5 or beta3) enriched in retinocollicular afferents. Mol Pharmacol, 68 (4): 1162-71. [PMID:16049166]
7. Grady SR, Moretti M, Zoli M, Marks MJ, Zanardi A, Pucci L, Clementi F, Gotti C. (2009) Rodent habenulo-interpeduncular pathway expresses a large variety of uncommon nAChR subtypes, but only the alpha3beta4* and alpha3beta3beta4* subtypes mediate acetylcholine release. J Neurosci, 29 (7): 2272-82. [PMID:19228980]
8. Han ZY, Le Novère N, Zoli M, Hill JA, Champtiaux N, Changeux JP. (2000) Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur J Neurosci, 12 (10): 3664-74. [PMID:11029636]
9. Quik M, Polonskaya Y, Gillespie A, Jakowec M, Lloyd GK, Langston JW. (2000) Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization. J Comp Neurol, 425 (1): 58-69. [PMID:10940942]
10. Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau O et al.. (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet, 16 (1): 36-49. [PMID:17135278]
11. Willoughby JJ, Ninkina NN, Beech MM, Latchman DS, Wood JN. (1993) Molecular cloning of a human neuronal nicotinic acetylcholine receptor beta 3-like subunit. Neurosci Lett, 155 (2): 136-9. [PMID:7690916]