Top ▲

nicotinic acetylcholine receptor γ subunit

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 475

Nomenclature: nicotinic acetylcholine receptor γ subunit

Family: Nicotinic acetylcholine receptors (nACh)

Gene and Protein Information Click here for help
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 4 517 2q37.1 CHRNG cholinergic receptor nicotinic gamma subunit 6
Mouse 4 519 1 44.07 cM Chrng cholinergic receptor, nicotinic, gamma polypeptide 2
Rat 4 519 9q35 Chrng cholinergic receptor nicotinic gamma subunit 8
Previous and Unofficial Names Click here for help
ACHRG | AChR gamma subunit | Achr-3 | Acrg | cholinergic receptor, nicotinic, gamma (muscle) | cholinergic receptor, nicotinic gamma | cholinergic receptor
Database Links Click here for help
Alphafold
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
acetylcholine
Tissue Distribution Comments
The γ-subunit mRNA is expressed in embryonic skeletal muscle of vertebrates. In postnatal animals, expression of the γ-subunit is replaced by the ε-subunit.
Physiological Consequences of Altering Gene Expression Click here for help
Homozygous mice, if born alive, survive for two days. Mice have abnormal neuromuscular synapses and lack spontaneous neuromuscular action potentials generated from minature end-plate potentials.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockout
References:  7
Mice with an ε-subunit null mutation associated with the human AChR deficiency syndrome die between 10 and 14 weeks after birth. However, mice with the ε null mutation but which also consitutively express the human γ-subunit survive into adult life.
Species:  Mouse
Tissue:  in vivo
Technique:  Knock-in
References:  1
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Multiple pterygium syndrome, escobar variant; EVMPS
Description: A fetal akinesia deformation sequence (FADS) disorder
Synonyms: Autosomal recessive multiple pterygium syndrome [Orphanet: ORPHA2990]
Autosomal recessive non-lethal multiple pterygium
Escobar syndrome
OMIM: 265000
Orphanet: ORPHA2990
References:  3-4
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Frameshift: Deletion Human P134Rfsx34 c.401_402delCT Exon 5 5
Frameshift: Insertion Human Δ248–274, 275X c.807insT Exon 8. An insertion of thymine at nucleotide position 807 results in a frameshift and missense of amino acids 248-274 before a stop codon and prematurely truncated protein. 3
In-frame duplication Human W78_L80dup 300dup(9) Duplication of 9 nucleotides in exon 4 leads to 3 duplicated amino acid residues 3
Missense Human R64C c.256C>T Exon 4 3
Missense Human V107G c.320T>G Exon 4 5
Missense Human R217C c.715C>T Exon 7 3
Nonsense Human Q18X c.13C>T Exon 1 3
Nonsense Human R46X c.136C>T Exon 2 5
Nonsense Human W139X c.481G>A Exon 5 3
Nonsense Human R448X c.1408C>T Exon 12 3
Splice site Human Δ395-418,419 c.1249G>C Exon 10 3
Splice site Human IVS4-9T>C 5
Disease:  Multiple pterygium syndrome, lethal type; LMPS
Description: A fetal akinesia deformation sequence (FADS) disorder
Synonyms: Lethal multiple pterygium syndrome [Orphanet: ORPHA33108]
OMIM: 253290
Orphanet: ORPHA33108
References:  4-5
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Frameshift: Deletion Human P251PfsX46 c.753_754delCT Exon 7 5
Frameshift: Duplication Human V154SfsX24 c.469dupA Exon 5 5
Missense Human V107G c.320T>G Exon 4 5

References

Show »

1. Cossins J, Webster R, Maxwell S, Burke G, Vincent A, Beeson D. (2004) A mouse model of AChR deficiency syndrome with a phenotype reflecting the human condition. Hum Mol Genet, 13 (23): 2947-57. [PMID:15471888]

2. Eng CM, Kozak CA, Beaudet AL, Zoghbi HY. (1991) Mapping of multiple subunits of the neuronal nicotinic acetylcholine receptor to chromosome 15 in man and chromosome 9 in mouse. Genomics, 9 (2): 278-82. [PMID:2004777]

3. Hoffmann K, Muller JS, Stricker S, Megarbane A, Rajab A, Lindner TH, Cohen M, Chouery E, Adaimy L, Ghanem I et al.. (2006) Escobar syndrome is a prenatal myasthenia caused by disruption of the acetylcholine receptor fetal gamma subunit. Am J Hum Genet, 79 (2): 303-12. [PMID:16826520]

4. Michalk A, Stricker S, Becker J, Rupps R, Pantzar T, Miertus J, Botta G, Naretto VG, Janetzki C, Yaqoob N et al.. (2008) Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders. Am J Hum Genet, 82 (2): 464-76. [PMID:18252226]

5. Morgan NV, Brueton LA, Cox P, Greally MT, Tolmie J, Pasha S, Aligianis IA, van Bokhoven H, Marton T, Al-Gazali L et al.. (2006) Mutations in the embryonal subunit of the acetylcholine receptor (CHRNG) cause lethal and Escobar variants of multiple pterygium syndrome. Am J Hum Genet, 79 (2): 390-5. [PMID:16826531]

6. Shibahara S, Kubo T, Perski HJ, Takahashi H, Noda M, Numa S. (1985) Cloning and sequence analysis of human genomic DNA encoding gamma subunit precursor of muscle acetylcholine receptor. Eur J Biochem, 146 (1): 15-22. [PMID:3967651]

7. Takahashi M, Kubo T, Mizoguchi A, Carlson CG, Endo K, Ohnishi K. (2002) Spontaneous muscle action potentials fail to develop without fetal-type acetylcholine receptors. EMBO Rep, 3 (7): 674-81. [PMID:12101101]

8. Witzemann V, Stein E, Barg B, Konno T, Koenen M, Kues W, Criado M, Hofmann M, Sakmann B. (1990) Primary structure and functional expression of the alpha-, beta-, gamma-, delta- and epsilon-subunits of the acetylcholine receptor from rat muscle. Eur J Biochem, 194 (2): 437-48. [PMID:1702709]

Contributors

Show »

How to cite this page