Top ▲
Target not currently curated in GtoImmuPdb
Target id: 608
Nomenclature: Hepatocyte nuclear factor-4-α
Systematic Nomenclature: NR2A1
Gene and Protein Information | |||||
Species | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 474 | 20q13.12 | HNF4A | hepatocyte nuclear factor 4 alpha | 4,7 |
Mouse | 474 | 2 84.32 cM | Hnf4a | hepatic nuclear factor 4, alpha | 5,19 |
Rat | 474 | 3q42 | Hnf4a | hepatocyte nuclear factor 4, alpha | 20,54 |
Database Links | |
Alphafold | P41235 (Hs), P49698 (Mm), P22449 (Rn) |
CATH/Gene3D | 3.30.50.10 |
ChEMBL Target | CHEMBL5398 (Hs), CHEMBL3714705 (Rn) |
Ensembl Gene | ENSG00000101076 (Hs), ENSMUSG00000017950 (Mm), ENSRNOG00000008895 (Rn) |
Entrez Gene | 3172 (Hs), 15378 (Mm), 25735 (Rn) |
Human Protein Atlas | ENSG00000101076 (Hs) |
KEGG Gene | hsa:3172 (Hs), mmu:15378 (Mm), rno:25735 (Rn) |
OMIM | 600281 (Hs) |
Orphanet | ORPHA122455 (Hs) |
Pharos | P41235 (Hs) |
RefSeq Nucleotide | NM_000457 (Hs), NM_008261 (Mm), NM_022180 (Rn) |
RefSeq Protein | NP_849180 (Hs), NP_032287 (Mm), NP_071516 (Rn) |
UniProtKB | P41235 (Hs), P49698 (Mm), P22449 (Rn) |
Wikipedia | HNF4A (Hs) |
Selected 3D Structures | |||||||||||
|
Natural/Endogenous Ligands |
linoleic acid |
Comments: Orphan |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Agonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||
Crystallographic studies showed that bacterially expressed HNF4α LBD binds a mixture of long chain fatty acids it a constitutive fashion. Another group reported similar results for the HNF4γ LBD. More recently, a collaboration between the Sladek and Forman groups showed that, in mammalian cells, HNF4α can exist in an unliganded form, as well as bind a natural fatty acid not found in bacteria [64]. |
Antagonists | |||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||
|
DNA Binding | |||||||
|
|||||||
DNA Binding Comments | |||||||
The rat HNF4α protein was purified and cDNA cloned based on its ability to bind regulatory elements in the mouse transthyretin (Ttr) and the human apolipoprotein CIII (APOC3) genes. These elements encompass what we now define as a divergent DR1 element. HNF4α can also bind DR2s but with lower affinity [23,55]. |
Co-binding Partners | |||
Name | Interaction | Effect | Reference |
HIF | Physical, Functional | transactivation | 14,28,65 |
Hepatocyte nuclear factor-4-α | Physical, Functional | transactivation | 22,28,49 |
COUP-TFs | Functional | transactivation, competition for DNA binding | 27,37,56 |
SHP | Physical, Functional | DNA binding, Transactivation | 31,52 |
Smads | Physical, Functional | transactivation | 9,24 |
Main Co-regulators | ||||||
Name | Activity | Specific | Ligand dependent | AF-2 dependent | Comments | References |
PPARGC1B | Co-activator | No | No | Yes | 33,62 | |
GRIP1 | Co-activator | No | No | Yes | 53,60 | |
CREBBP | Co-activator | No | No | Yes | CBP differentially activates HNF4 alpha splice variants in the F domain | 53,63 |
CREBBP | Co-activator | No | No | Yes | SRC1 synergizes with p300 to further augment HNF4 alpha activity | 53,60 |
PPARGC1A | Co-activator | No | No | Yes | PGC1 alpha is the most potent co-activator of HNF4 alpha found to date. PGC1 alpha and beta levels are normally low in the liver but increase upon fasting. | 33,62 |
MED1 | Co-activator | No | No | Yes | Both the DBD and LBD of HNF4 alpha bind DRIP205. Polyamines decrease the binding of the DBD but increase the binding of the LBD to DRIP205. | 34-35 |
NCOR2 | Co-repressor | No | No | Yes | Full repression by NCOR2/SMRT requires the F domain | 50 |
Main Target Genes | |||||
Name | Species | Effect | Technique | Comments | References |
APOC3 | Human | Activated | ChIP, Transient transfection, EMSA, Footprint | Three HNF4 alpha binding sites have been identified in the APOC3 promoter/enhancer region. The site closest to the promoter (-70/-82) was one of two sites used to purify HNF4 alpha protein initially. (This was also demonstrated in rodents and other species) | 25,41,55 |
APOB | Human | Activated | ChIP, Transient transfection, EMSA, Footprint | HNF4 alpha synergizes with C/EBP alpha on the human ApoB promoter. | 36,41 |
HNF1A | Human | Activated | ChIP, Transient transfection, EMSA | Mutations in the HNF4 alpha binding site in the HNF1A promoter result in MODY3. | 15,29,41 |
PCK1 | Human | Activated | ChIP, Transient transfection, EMSA | HNF4 alpha is required for the glucocorticoid response of the PEPCK promoter. (shown in all species) | 17,41 |
CYP3A4 | Human | Activated | Transient transfection, EMSA | HNF4 alpha regulates the expression of many CYP genes | 2,54,59 |
Tissue Distribution Comments | |
The two main isoforms from the P1 promoter (HNF4α 1 and 2) are expressed in the adult liver (hepatocytes), kidney and small intestine and colon but not the pancreas. HNF4α 3 and 4 were cloned from a human liver library. HNF4α 7 (and presumably 8) are expressed in the fetal liver and adult pancreas (beta cells) and to a lesser extent the adult liver (bile ducts), small intestine, colon and stomach. They are not found in the kidney. By in situ hybridization HNF4α has also been observed in the primary endoderm starting at E4.5 and in the liver, kidney, pancreas, stomach and intestine from E8.5 until birth. There is also a recent report of HNF4α from both the P1 and P2 promoter in the epididymis [10,55,57]. There is some controversy as to whether in human HNF4α 1 and 2 are also expressed in the adult pancreas (islet cells), in mouse they are not [12]. Methods used for these studies include: Northern, In situ, Westerns, Immunohistology and others. |
Functional Assays | ||||||||||
|
Physiological Consequences of Altering Gene Expression | ||||||||||
|
||||||||||
|
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Clinically-Relevant Mutations and Pathophysiology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
1. Aguilar-Salinas CA, Reyes-Rodríguez E, Ordóñez-Sánchez ML, Torres MA, Ramírez-Jiménez S, Domínguez-López A, Martínez-Francois JR, Velasco-Pérez ML, Alpizar M, García-García E, Gómez-Pérez F, Rull J, Tusié-Luna MT. (2001) Early-onset type 2 diabetes: metabolic and genetic characterization in the mexican population. J Clin Endocrinol Metab, 86 (1): 220-6. [PMID:11232004]
2. Akiyama TE, Gonzalez FJ. (2003) Regulation of P450 genes by liver-enriched transcription factors and nuclear receptors. Biochim Biophys Acta, 1619 (3): 223-34. [PMID:12573481]
3. Arbini AA, Pollak ES, Bayleran JK, High KA, Bauer KA. (1997) Severe factor VII deficiency due to a mutation disrupting a hepatocyte nuclear factor 4 binding site in the factor VII promoter. Blood, 89 (1): 176-82. [PMID:8978290]
4. Argyrokastritis A, Kamakari S, Kapsetaki M, Kritis A, Talianidis I, Moschonas NK. (1997) Human hepatocyte nuclear factor-4 (hHNF-4) gene maps to 20q12-q13.1 between PLCG1 and D20S17. Hum Genet, 99 (2): 233-6. [PMID:9048927]
5. Avraham KB, Prezioso VR, Chen WS, Lai E, Sladek FM, Zhong W, Darnell JE, Jenkins NA, Copeland NG. (1992) Murine chromosomal location of four hepatocyte-enriched transcription factors: HNF-3 alpha, HNF-3 beta, HNF-3 gamma, and HNF-4. Genomics, 13 (2): 264-8. [PMID:1612587]
6. Barrio R, Bellanné-Chantelot C, Moreno JC, Morel V, Calle H, Alonso M, Mustieles C. (2002) Nine novel mutations in maturity-onset diabetes of the young (MODY) candidate genes in 22 Spanish families. J Clin Endocrinol Metab, 87 (6): 2532-9. [PMID:12050210]
7. Chartier FL, Bossu JP, Laudet V, Fruchart JC, Laine B. (1994) Cloning and sequencing of cDNAs encoding the human hepatocyte nuclear factor 4 indicate the presence of two isoforms in human liver. Gene, 147 (2): 269-72. [PMID:7926813]
8. Chen WS, Manova K, Weinstein DC, Duncan SA, Plump AS, Prezioso VR, Bachvarova RF, Darnell JE. (1994) Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev, 8 (20): 2466-77. [PMID:7958910]
9. Chou WC, Prokova V, Shiraishi K, Valcourt U, Moustakas A, Hadzopoulou-Cladaras M, Zannis VI, Kardassis D. (2003) Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4. Mol Biol Cell, 14 (3): 1279-94. [PMID:12631740]
10. Duncan SA, Manova K, Chen WS, Hoodless P, Weinstein DC, Bachvarova RF, Darnell JE. (1994) Expression of transcription factor HNF-4 in the extraembryonic endoderm, gut, and nephrogenic tissue of the developing mouse embryo: HNF-4 is a marker for primary endoderm in the implanting blastocyst. Proc Natl Acad Sci USA, 91 (16): 7598-602. [PMID:8052626]
11. Duncan SA, Nagy A, Chan W. (1997) Murine gastrulation requires HNF-4 regulated gene expression in the visceral endoderm: tetraploid rescue of Hnf-4(-/-) embryos. Development, 124 (2): 279-87. [PMID:9053305]
12. Eeckhoute J, Moerman E, Bouckenooghe T, Lukoviak B, Pattou F, Formstecher P, Kerr-Conte J, Vandewalle B, Laine B. (2003) Hepatocyte nuclear factor 4 alpha isoforms originated from the P1 promoter are expressed in human pancreatic beta-cells and exhibit stronger transcriptional potentials than P2 promoter-driven isoforms. Endocrinology, 144 (5): 1686-94. [PMID:12697672]
13. Furuta H, Iwasaki N, Oda N, Hinokio Y, Horikawa Y, Yamagata K, Yano N, Sugahiro J, Ogata M, Ohgawara H et al.. (1997) Organization and partial sequence of the hepatocyte nuclear factor-4 alpha/MODY1 gene and identification of a missense mutation, R127W, in a Japanese family with MODY. Diabetes, 46 (10): 1652-7. [PMID:9313765]
14. Galson DL, Tsuchiya T, Tendler DS, Huang LE, Ren Y, Ogura T, Bunn HF. (1995) The orphan receptor hepatic nuclear factor 4 functions as a transcriptional activator for tissue-specific and hypoxia-specific erythropoietin gene expression and is antagonized by EAR3/COUP-TF1. Mol Cell Biol, 15 (4): 2135-44. [PMID:7891708]
15. Gragnoli C, Lindner T, Cockburn BN, Kaisaki PJ, Gragnoli F, Marozzi G, Bell GI. (1997) Maturity-onset diabetes of the young due to a mutation in the hepatocyte nuclear factor-4 alpha binding site in the promoter of the hepatocyte nuclear factor-1 alpha gene. Diabetes, 46 (10): 1648-51. [PMID:9313764]
16. Gupta RK, Kaestner KH. (2004) HNF-4alpha: from MODY to late-onset type 2 diabetes. Trends Mol Med, 10 (11): 521-4. [PMID:15519277]
17. Hall RK, Sladek FM, Granner DK. (1995) The orphan receptors COUP-TF and HNF-4 serve as accessory factors required for induction of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Proc Natl Acad Sci USA, 92 (2): 412-6. [PMID:7831301]
18. Hani EH, Suaud L, Boutin P, Chèvre JC, Durand E, Philippi A, Demenais F, Vionnet N, Furuta H, Velho G, Bell GI, Laine B, Froguel P. (1998) A missense mutation in hepatocyte nuclear factor-4 alpha, resulting in a reduced transactivation activity, in human late-onset non-insulin-dependent diabetes mellitus. J Clin Invest, 101 (3): 521-6. [PMID:9449683]
19. Hata S, Inoue T, Kosuga K, Nakashima T, Tsukamoto T, Osumi T. (1995) Identification of two splice isoforms of mRNA for mouse hepatocyte nuclear factor 4 (HNF-4). Biochim Biophys Acta, 1260 (1): 55-61. [PMID:7999795]
20. Hata S, Tsukamoto T, Osumi T. (1992) A novel isoform of rat hepatocyte nuclear factor 4 (HNF-4). Biochim Biophys Acta, 1131 (2): 211-3. [PMID:1610903]
21. Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. (2001) Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol, 21 (4): 1393-403. [PMID:11158324]
22. Hu C, Perlmutter DH. (1999) Regulation of alpha1-antitrypsin gene expression in human intestinal epithelial cell line caco-2 by HNF-1alpha and HNF-4. Am J Physiol, 276 (5 Pt 1): G1181-94. [PMID:10330009]
23. Jiang G, Sladek FM. (1997) The DNA binding domain of hepatocyte nuclear factor 4 mediates cooperative, specific binding to DNA and heterodimerization with the retinoid X receptor alpha. J Biol Chem, 272 (2): 1218-25. [PMID:8995424]
24. Kardassis D, Pardali K, Zannis VI. (2000) SMAD proteins transactivate the human ApoCIII promoter by interacting physically and functionally with hepatocyte nuclear factor 4. J Biol Chem, 275 (52): 41405-14. [PMID:10995777]
25. Kardassis D, Tzameli I, Hadzopoulou-Cladaras M, Talianidis I, Zannis V. (1997) Distal apolipoprotein C-III regulatory elements F to J act as a general modular enhancer for proximal promoters that contain hormone response elements. Synergism between hepatic nuclear factor-4 molecules bound to the proximal promoter and distal enhancer sites. Arterioscler Thromb Vasc Biol, 17 (1): 222-32. [PMID:9012660]
26. Kiselyuk A, Lee SH, Farber-Katz S, Zhang M, Athavankar S, Cohen T, Pinkerton AB, Ye M, Bushway P, Richardson AD et al.. (2012) HNF4α antagonists discovered by a high-throughput screen for modulators of the human insulin promoter. Chem Biol, 19 (7): 806-18. [PMID:22840769]
27. Ktistaki E, Talianidis I. (1997) Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression. Mol Cell Biol, 17 (5): 2790-7. [PMID:9111350]
28. Ktistaki E, Talianidis I. (1997) Modulation of hepatic gene expression by hepatocyte nuclear factor 1. Science, 277 (5322): 109-12. [PMID:9204893]
29. Kuo CJ, Conley PB, Chen L, Sladek FM, Darnell JE, Crabtree GR. (1992) A transcriptional hierarchy involved in mammalian cell-type specification. Nature, 355 (6359): 457-61. [PMID:1734282]
30. Lausen J, Thomas H, Lemm I, Bulman M, Borgschulze M, Lingott A, Hattersley AT, Ryffel GU. (2000) Naturally occurring mutations in the human HNF4alpha gene impair the function of the transcription factor to a varying degree. Nucleic Acids Res, 28 (2): 430-7. [PMID:10606640]
31. Lee YK, Dell H, Dowhan DH, Hadzopoulou-Cladaras M, Moore DD. (2000) The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression. Mol Cell Biol, 20 (1): 187-95. [PMID:10594021]
32. Lehto M, Bitzén PO, Isomaa B, Wipemo C, Wessman Y, Forsblom C, Tuomi T, Taskinen MR, Groop L. (1999) Mutation in the HNF-4alpha gene affects insulin secretion and triglyceride metabolism. Diabetes, 48 (2): 423-5. [PMID:10334325]
33. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. (2002) Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem, 277 (3): 1645-8. [PMID:11733490]
34. Maeda Y, Rachez C, Hawel L, Byus CV, Freedman LP, Sladek FM. (2002) Polyamines modulate the interaction between nuclear receptors and vitamin D receptor-interacting protein 205. Mol Endocrinol, 16 (7): 1502-10. [PMID:12089346]
35. Malik S, Wallberg AE, Kang YK, Roeder RG. (2002) TRAP/SMCC/mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4. Mol Cell Biol, 22 (15): 5626-37. [PMID:12101254]
36. Metzger S, Halaas JL, Breslow JL, Sladek FM. (1993) Orphan receptor HNF-4 and bZip protein C/EBP alpha bind to overlapping regions of the apolipoprotein B gene promoter and synergistically activate transcription. J Biol Chem, 268 (22): 16831-8. [PMID:8344962]
37. Mietus-Snyder M, Sladek FM, Ginsburg GS, Kuo CF, Ladias JA, Darnell JE, Karathanasis SK. (1992) Antagonism between apolipoprotein AI regulatory protein 1, Ear3/COUP-TF, and hepatocyte nuclear factor 4 modulates apolipoprotein CIII gene expression in liver and intestinal cells. Mol Cell Biol, 12 (4): 1708-18. [PMID:1312668]
38. Monney CT, Kaltenrieder V, Cousin P, Bonny C, Schorderet DF. (2002) Large Family With Maturity-Onset Diabetes of the Young and a Novel V121I Mutation in HNF4A. Hum Mutat, 20 (3): 230-1. [PMID:12203996]
39. Muller YL, Infante AM, Hanson RL, Love-Gregory L, Knowler W, Bogardus C, Baier LJ. (2005) Variants in hepatocyte nuclear factor 4alpha are modestly associated with type 2 diabetes in Pima Indians. Diabetes, 54 (10): 3035-9. [PMID:16186411]
40. Møller AM, Dalgaard LT, Ambye L, Hansen L, Schmitz O, Hansen T, Pedersen O. (1999) A novel Phe75fsdelT mutation in the hepatocyte nuclear factor-4alpha gene in a Danish pedigree with maturity-onset diabetes of the young. J Clin Endocrinol Metab, 84 (1): 367-9. [PMID:9920109]
41. Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel E, Bell GI, Young RA. (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science, 303 (5662): 1378-81. [PMID:14988562]
42. Oxombre B, Kouach M, Moerman E, Formstecher P, Laine B. (2004) The G115S mutation associated with maturity-onset diabetes of the young impairs hepatocyte nuclear factor 4alpha activities and introduces a PKA phosphorylation site in its DNA-binding domain. Biochem J, 383 (Pt. 3): 573-80. [PMID:15233628]
43. Oxombre B, Moerman E, Eeckhoute J, Formstecher P, Laine B. (2002) Mutations in hepatocyte nuclear factor 4alpha (HNF4alpha) gene associated with diabetes result in greater loss of HNF4alpha function in pancreatic beta-cells than in nonpancreatic beta-cells and in reduced activation of the apolipoprotein CIII promoter in hepatic cells. J Mol Med, 80 (7): 423-30. [PMID:12110948]
44. Parviz F, Li J, Kaestner KH, Duncan SA. (2002) Generation of a conditionally null allele of hnf4alpha. Genesis, 32 (2): 130-3. [PMID:11857799]
45. Parviz F, Matullo C, Garrison WD, Savatski L, Adamson JW, Ning G, Kaestner KH, Rossi JM, Zaret KS, Duncan SA. (2003) Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet, 34 (3): 292-6. [PMID:12808453]
46. Price JA, Fossey SC, Sale MM, Brewer CS, Freedman BI, Wuerth JP, Bowden DW. (2000) Analysis of the HNF4 alpha gene in Caucasian type II diabetic nephropathic patients. Diabetologia, 43 (3): 364-72. [PMID:10768098]
47. Pruhova S, Ek J, Lebl J, Sumnik Z, Saudek F, Andel M, Pedersen O, Hansen T. (2003) Genetic epidemiology of MODY in the Czech republic: new mutations in the MODY genes HNF-4alpha, GCK and HNF-1alpha. Diabetologia, 46 (2): 291-5. [PMID:12627330]
48. Rha GB, Wu G, Shoelson SE, Chi YI. (2009) Multiple binding modes between HNF4alpha and the LXXLL motifs of PGC-1alpha lead to full activation. J Biol Chem, 284 (50): 35165-76. [PMID:19846556]
49. Rowley CW, Staloch LJ, Divine JK, McCaul SP, Simon TC. (2006) Mechanisms of mutual functional interactions between HNF-4alpha and HNF-1alpha revealed by mutations that cause maturity onset diabetes of the young. Am J Physiol Gastrointest Liver Physiol, 290 (3): G466-75. [PMID:16223942]
50. Ruse MD, Privalsky ML, Sladek FM. (2002) Competitive cofactor recruitment by orphan receptor hepatocyte nuclear factor 4alpha1: modulation by the F domain. Mol Cell Biol, 22 (6): 1626-38. [PMID:11865043]
51. Ryffel GU. (2001) Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences. J Mol Endocrinol, 27 (1): 11-29. [PMID:11463573]
52. Shimamoto Y, Ishida J, Yamagata K, Saito T, Kato H, Matsuoka T, Hirota K, Daitoku H, Nangaku M, Yamagata K, Fujii H, Takeda J, Fukamizu A. (2004) Inhibitory effect of the small heterodimer partner on hepatocyte nuclear factor-4 mediates bile acid-induced repression of the human angiotensinogen gene. J Biol Chem, 279 (9): 7770-6. [PMID:14672953]
53. Sladek FM, Ruse MD, Nepomuceno L, Huang SM, Stallcup MR. (1999) Modulation of transcriptional activation and coactivator interaction by a splicing variation in the F domain of nuclear receptor hepatocyte nuclear factor 4alpha1. Mol Cell Biol, 19 (10): 6509-22. [PMID:10490591]
54. Sladek FM, Seidel SD. (2001) Hepatocyte Nuclear Factor 4a. In Nuclear Receptors and Genetic Diseases. Edited by Burris TP, McCabe ERB (Academic Press) 309-361.
55. Sladek FM, Zhong WM, Lai E, Darnell JE. (1990) Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev, 4 (12B): 2353-65. [PMID:2279702]
56. Sugiyama T, Wang JC, Scott DK, Granner DK. (2000) Transcription activation by the orphan nuclear receptor, chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI). Definition of the domain involved in the glucocorticoid response of the phosphoenolpyruvate carboxykinase gene. J Biol Chem, 275 (5): 3446-54. [PMID:10652338]
57. Tanaka T, Jiang S, Hotta H, Takano K, Iwanari H, Sumi K, Daigo K, Ohashi R, Sugai M, Ikegame C, Umezu H, Hirayama Y, Midorikawa Y, Hippo Y, Watanabe A, Uchiyama Y, Hasegawa G, Reid P, Aburatani H, Hamakubo T, Sakai J, Naito M, Kodama T. (2006) Dysregulated expression of P1 and P2 promoter-driven hepatocyte nuclear factor-4alpha in the pathogenesis of human cancer. J Pathol, 208 (5): 662-72. [PMID:16400631]
58. Thomas H, Jaschkowitz K, Bulman M, Frayling TM, Mitchell SM, Roosen S, Lingott-Frieg A, Tack CJ, Ellard S, Ryffel GU, Hattersley AT. (2001) A distant upstream promoter of the HNF-4alpha gene connects the transcription factors involved in maturity-onset diabetes of the young. Hum Mol Genet, 10 (19): 2089-97. [PMID:11590126]
59. Tirona RG, Lee W, Leake BF, Lan LB, Cline CB, Lamba V, Parviz F, Duncan SA, Inoue Y, Gonzalez FJ, Schuetz EG, Kim RB. (2003) The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat Med, 9 (2): 220-4. [PMID:12514743]
60. Wang JC, Stafford JM, Granner DK. (1998) SRC-1 and GRIP1 coactivate transcription with hepatocyte nuclear factor 4. J Biol Chem, 273 (47): 30847-50. [PMID:9812974]
61. Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M, Bell GI. (1996) Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature, 384 (6608): 458-60. [PMID:8945471]
62. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM. (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature, 413 (6852): 131-8. [PMID:11557972]
63. Yoshida E, Aratani S, Itou H, Miyagishi M, Takiguchi M, Osumu T, Murakami K, Fukamizu A. (1997) Functional association between CBP and HNF4 in trans-activation. Biochem Biophys Res Commun, 241 (3): 664-9. [PMID:9434765]
64. Yuan X, Ta TC, Lin M, Evans JR, Dong Y, Bolotin E, Sherman MA, Forman BM, Sladek FM. (2009) Identification of an endogenous ligand bound to a native orphan nuclear receptor. PLoS ONE, 4 (5): e5609. [PMID:19440305]
65. Zhang W, Tsuchiya T, Yasukochi Y. (1999) Transitional change in interaction between HIF-1 and HNF-4 in response to hypoxia. J Hum Genet, 44 (5): 293-9. [PMID:10496070]