Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [12] and subsequently updated [22]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [23]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [3,34], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [9,12,17,32-33]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [14,42]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [4] or decreased extracellular ionic strength [33] while sensitivity is decreased by pathophysiological phosphate concentrations [5]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS.
CaS receptor C Show summary »« Hide summary More detailed page
|
* Key recommended reading is highlighted with an asterisk
Breitwieser GE. (2012) Minireview: the intimate link between calcium sensing receptor trafficking and signaling: implications for disorders of calcium homeostasis. Mol Endocrinol, 26 (9): 1482-95. [PMID:22745192]
Brown EM. (2010) Clinical utility of calcimimetics targeting the extracellular calcium-sensing receptor (CaSR). Biochem Pharmacol, 80 (3): 297-307. [PMID:20382129]
* Brown EM. (2013) Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab, 27 (3): 333-43. [PMID:23856263]
Cavanaugh A, Huang Y, Breitwieser GE. (2012) Behind the curtain: cellular mechanisms for allosteric modulation of calcium-sensing receptors. Br J Pharmacol, 165 (6): 1670-1677. [PMID:21470201]
* Conigrave AD, Ward DT. (2013) Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab, 27 (3): 315-31. [PMID:23856262]
* Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. (2018) The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol, 15 (1): 33-51. [PMID:30443043]
Khan MA, Conigrave AD. (2010) Mechanisms of multimodal sensing by extracellular Ca(2+)-sensing receptors: a domain-based survey of requirements for binding and signalling. Br J Pharmacol, 159 (5): 1039-50. [PMID:20136834]
* Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D et al.. (2020) International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev, 72 (3): 558-604. [PMID:32467152]
Magno AL, Ward BK, Ratajczak T. (2011) The calcium-sensing receptor: a molecular perspective. Endocr Rev, 32 (1): 3-30. [PMID:20729338]
Nemeth EF, Shoback D. (2013) Calcimimetic and calcilytic drugs for treating bone and mineral-related disorders. Best Pract Res Clin Endocrinol Metab, 27 (3): 373-84. [PMID:23856266]
* Nemeth EF, Van Wagenen BC, Balandrin MF. (2018) Discovery and Development of Calcimimetic and Calcilytic Compounds. Prog Med Chem, 57 (1): 1-86. [PMID:29680147]
Ward DT, Riccardi D. (2012) New concepts in calcium-sensing receptor pharmacology and signalling. Br J Pharmacol, 165 (1): 35-48. [PMID:21627634]
Wellendorph P, Bräuner-Osborne H. (2004) Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene, 335: 37-46. [PMID:15194188]
Yarova PL, Stewart AL, Sathish V, Britt Jr RD, Thompson MA, P Lowe AP, Freeman M, Aravamudan B, Kita H, Brennan SC et al.. (2015) Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma. Sci Transl Med, 7 (284): 284ra60. [PMID:25904744]
1. Balan G, Bauman J, Bhattacharya S, Castrodad M, Healy DR, Herr M, Humphries P, Jennings S, Kalgutkar AS, Kapinos B et al.. (2009) The discovery of novel calcium sensing receptor negative allosteric modulators. Bioorg Med Chem Lett, 19 (12): 3328-32. [PMID:19442519]
2. Broadhead GK, Mun HC, Avlani VA, Jourdon O, Church WB, Christopoulos A, Delbridge L, Conigrave AD. (2011) Allosteric modulation of the calcium-sensing receptor by gamma-glutamyl peptides: inhibition of PTH secretion, suppression of intracellular cAMP levels, and a common mechanism of action with L-amino acids. J Biol Chem, 286 (11): 8786-97. [PMID:21187282]
3. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC. (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature, 366 (6455): 575-80. [PMID:8255296]
4. Campion KL, McCormick WD, Warwicker J, Khayat ME, Atkinson-Dell R, Steward MC, Delbridge LW, Mun HC, Conigrave AD, Ward DT. (2015) Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism. J Am Soc Nephrol, 26 (9): 2163-71. [PMID:25556167]
5. Centeno PP, Herberger A, Mun HC, Tu C, Nemeth EF, Chang W, Conigrave AD, Ward DT. (2019) Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun, 10 (1): 4693. [PMID:31619668]
6. Chang W, Tu C, Chen TH, Bikle D, Shoback D. (2008) The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci Signal, 1 (35): ra1. [PMID:18765830]
7. Chang W, Tu C, Cheng Z, Rodriguez L, Chen TH, Gassmann M, Bettler B, Margeta M, Jan LY, Shoback D. (2007) Complex formation with the Type B gamma-aminobutyric acid receptor affects the expression and signal transduction of the extracellular calcium-sensing receptor. Studies with HEK-293 cells and neurons. J Biol Chem, 282 (34): 25030-40. [PMID:17591780]
8. Cheng Z, Tu C, Rodriguez L, Chen TH, Dvorak MM, Margeta M, Gassmann M, Bettler B, Shoback D, Chang W. (2007) Type B gamma-aminobutyric acid receptors modulate the function of the extracellular Ca2+-sensing receptor and cell differentiation in murine growth plate chondrocytes. Endocrinology, 148 (10): 4984-92. [PMID:17615148]
9. Conigrave AD, Quinn SJ, Brown EM. (2000) L-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci USA, 97 (9): 4814-9. [PMID:10781086]
10. Cook AE, Mistry SN, Gregory KJ, Furness SG, Sexton PM, Scammells PJ, Conigrave AD, Christopoulos A, Leach K. (2015) Biased allosteric modulation at the CaS receptor engendered by structurally diverse calcimimetics. Br J Pharmacol, 172 (1): 185-200. [PMID:25220431]
11. Davey AE, Leach K, Valant C, Conigrave AD, Sexton PM, Christopoulos A. (2012) Positive and negative allosteric modulators promote biased signaling at the calcium-sensing receptor. Endocrinology, 153 (3): 1232-41. [PMID:22210744]
12. Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ. (2005) International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev, 57 (2): 279-88. [PMID:15914470]
13. Gama L, Wilt SG, Breitwieser GE. (2001) Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neurons. J Biol Chem, 276 (42): 39053-9. [PMID:11489900]
14. Geng Y, Mosyak L, Kurinov I, Zuo H, Sturchler E, Cheng TC, Subramanyam P, Brown AP, Brennan SC, Mun HC et al.. (2016) Structural mechanism of ligand activation in human calcium-sensing receptor. Elife, 5. [PMID:27434672]
15. Gerbino A, Ruder WC, Curci S, Pozzan T, Zaccolo M, Hofer AM. (2005) Termination of cAMP signals by Ca2+ and G(alpha)i via extracellular Ca2+ sensors: a link to intracellular Ca2+ oscillations. J Cell Biol, 171 (2): 303-12. [PMID:16247029]
16. Hannan FM, Babinsky VN, Thakker RV. (2016) Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis. J Mol Endocrinol, 57 (3): R127-42. [PMID:27647839]
17. Ho C, Conner DA, Pollak MR, Ladd DJ, Kifor O, Warren HB, Brown EM, Seidman JG, Seidman CE. (1995) A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet, 11 (4): 389-94. [PMID:7493018]
18. Huang C, Hujer KM, Wu Z, Miller RT. (2004) The Ca2+-sensing receptor couples to Galpha12/13 to activate phospholipase D in Madin-Darby canine kidney cells. Am J Physiol, Cell Physiol, 286 (1): C22-30. [PMID:12954603]
19. Kiefer L, Leiris S, Dodd RH. (2011) Novel calcium sensing receptor ligands: a patent survey. Expert Opin Ther Pat, 21 (5): 681-98. [PMID:21406038]
20. Kumar S, Matheny CJ, Hoffman SJ, Marquis RW, Schultz M, Liang X, Vasko JA, Stroup GB, Vaden VR, Haley H et al.. (2010) An orally active calcium-sensing receptor antagonist that transiently increases plasma concentrations of PTH and stimulates bone formation. Bone, 46 (2): 534-42. [PMID:19786130]
21. Leach K, Gregory KJ, Kufareva I, Khajehali E, Cook AE, Abagyan R, Conigrave AD, Sexton PM, Christopoulos A. (2016) Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor. Cell Res, 26 (5): 574-92. [PMID:27002221]
22. Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D et al.. (2020) International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev, 72 (3): 558-604. [PMID:32467152]
23. Leach K, Sexton PM, Christopoulos A, Conigrave AD. (2014) Engendering biased signalling from the calcium-sensing receptor for the pharmacotherapy of diverse disorders. Br J Pharmacol, 171 (5): 1142-55. [PMID:24111791]
24. Leach K, Wen A, Cook AE, Sexton PM, Conigrave AD, Christopoulos A. (2013) Impact of clinically relevant mutations on the pharmacoregulation and signaling bias of the calcium-sensing receptor by positive and negative allosteric modulators. Endocrinology, 154 (3): 1105-16. [PMID:23372019]
25. Mamillapalli R, Wysolmerski J. (2010) The calcium-sensing receptor couples to Galpha(s) and regulates PTHrP and ACTH secretion in pituitary cells. J Endocrinol, 204 (3): 287-97. [PMID:20032198]
26. Miyazaki H, Ikeda Y, Sakurai O, Miyake T, Tsubota R, Okabe J, Kuroda M, Hisada Y, Yanagida T, Yoneda H et al.. (2018) Discovery of evocalcet, a next-generation calcium-sensing receptor agonist for the treatment of hyperparathyroidism. Bioorg Med Chem Lett, 28 (11): 2055-2060. [PMID:29724589]
27. Nemeth EF. (2013) Allosteric modulators of the extracellular calcium receptor. Drug Discov Today Technol, 10 (2): e277-84. [PMID:24050279]
28. Nemeth EF, Delmar EG, Heaton WL, Miller MA, Lambert LD, Conklin RL, Gowen M, Gleason JG, Bhatnagar PK, Fox J. (2001) Calcilytic compounds: potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone. J Pharmacol Exp Ther, 299 (1): 323-31. [PMID:11561095]
29. Nemeth EF, Steffey ME, Hammerland LG, Hung BC, Van Wagenen BC, DelMar EG, Balandrin MF. (1998) Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA, 95 (7): 4040-5. [PMID:9520489]
30. Ohsu T, Amino Y, Nagasaki H, Yamanaka T, Takeshita S, Hatanaka T, Maruyama Y, Miyamura N, Eto Y. (2010) Involvement of the calcium-sensing receptor in human taste perception. J Biol Chem, 285 (2): 1016-22. [PMID:19892707]
31. Petrel C, Kessler A, Maslah F, Dauban P, Dodd RH, Rognan D, Ruat M. (2003) Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca(2+)-sensing receptor. J Biol Chem, 278 (49): 49487-94. [PMID:14506236]
32. Quinn SJ, Bai M, Brown EM. (2004) pH Sensing by the calcium-sensing receptor. J Biol Chem, 279 (36): 37241-9. [PMID:15201280]
33. Quinn SJ, Kifor O, Trivedi S, Diaz R, Vassilev P, Brown E. (1998) Sodium and ionic strength sensing by the calcium receptor. J Biol Chem, 273 (31): 19579-86. [PMID:9677383]
34. Quinn SJ, Ye CP, Diaz R, Kifor O, Bai M, Vassilev P, Brown E. (1997) The Ca2+-sensing receptor: a target for polyamines. Am J Physiol, 273 (4): C1315-23. [PMID:9357776]
35. Sato H, Murakami S, Horii Y, Nishimura G, Iwai R, Goto M, Takahashi N. (2022) Upacicalcet Is a Novel Secondary Hyperparathyroidism Drug that Targets the Amino Acid Binding Site of Calcium-Sensing Receptor . Mol Pharmacol, 102 (4): 183-195. [PMID:36122913]
36. Shinagawa Y, Inoue T, Katsushima T, Kiguchi T, Ikenogami T, Ogawa N, Fukuda K, Hirata K, Harada K, Takagi M et al.. (2011) Discovery of a potent and short-acting oral calcilytic with a pulsatile secretion of parathyroid hormone. ACS Med Chem Lett, 2 (3): 238-42. [PMID:24900301]
37. Thomsen AR, Hvidtfeldt M, Bräuner-Osborne H. (2012) Biased agonism of the calcium-sensing receptor. Cell Calcium, 51 (2): 107-16. [PMID:22192592]
38. Walter S, Baruch A, Dong J, Tomlinson JE, Alexander ST, Janes J, Hunter T, Yin Q, Maclean D, Bell G et al.. (2013) Pharmacology of AMG 416 (Velcalcetide), a novel peptide agonist of the calcium-sensing receptor, for the treatment of secondary hyperparathyroidism in hemodialysis patients. J Pharmacol Exp Ther, 346 (2): 229-40. [PMID:23674604]
39. Wang M, Yao Y, Kuang D, Hampson DR. (2006) Activation of family C G-protein-coupled receptors by the tripeptide glutathione. J Biol Chem, 281 (13): 8864-70. [PMID:16455645]
40. Ward DT, Riccardi D. (2012) New concepts in calcium-sensing receptor pharmacology and signalling. Br J Pharmacol, 165 (1): 35-48. [PMID:21627634]
41. Widler L, Altmann E, Beerli R, Breitenstein W, Bouhelal R, Buhl T, Gamse R, Gerspacher M, Halleux C, John MR et al.. (2010) 1-Alkyl-4-phenyl-6-alkoxy-1H-quinazolin-2-ones: a novel series of potent calcium-sensing receptor antagonists. J Med Chem, 53 (5): 2250-63. [PMID:20158186]
42. Zhang C, Miller CL, Gorkhali R, Zou J, Huang K, Brown EM, Yang JJ. (2016) Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor. Front Physiol, 7: 441. [PMID:27746744]
Subcommittee members:
Hans Bräuner-Osborne (Chairperson)
Katie Leach (Chairperson)
Wenhan Chang
Arthur Conigrave
Fadil Hannan
Daniela Riccardi
Polina Yarova |
Other contributors:
Daniel Bikle
Edward M. Brown (Past chairperson)
Dolores Shoback
Donald T. Ward, PhD, FHEA |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br J Pharmacol. 180 Suppl 2:S23-S144.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The CaS receptor has a number of physiological functions, but it is best known for its central role in parathyroid and renal regulation of extracellular calcium homeostasis [16]. This is seen most clearly in patients with loss-of-function CaS receptor mutations who develop familial hypocalciuric hypercalcaemia (heterozygous mutations) or neonatal severe hyperparathyroidism (heterozygous, compound heterozygous or homozygous mutations) [16] and in Casr null mice [6,17], which exhibit similar increases in PTH secretion and blood calcium levels. Gain-of-function CaS mutations are associated with autosomal dominant hypocalcaemia and Bartter syndrome type V [16].
The CaS receptor primarily couples to Gq/11, G12/13 and Gi/o [11,15,18,37], but in some cell types can couple to Gs [25]. The CaS receptor acts as a homodimer [42]. However, the CaS receptor can also form heteromers with Class C GABAB [7-8] and mGlu1/5 receptors [13], which may introduce further complexity in its signalling capabilities.
Multiple other small molecule chemotypes are positive and negative allosteric modulators of the CaS receptor [19,27]. Further, etelcalcetide is a novel peptide positive allosteric modulator of the receptor, that also displays weak agonist activity [38]. Agonists and positive allosteric modulators of the CaS receptor are termed Type I and II calcimimetics, respectively, and can suppress parathyroid hormone (PTH (PTH, P01270)) secretion [29]. Negative allosteric modulators are called calcilytics and can act to increase PTH (PTH, P01270) secretion [28].
Where functional pKB values are provided for allosteric modulators, this refers to ligand affinity determined in an assay that measures a functional readout of receptor activity (i.e. a receptor signalling assay), as opposed to affinity determined in a radioligand binding assay. The functional pKB may differ depending on the signalling pathway studied. Consult the 'More detailed page' for the assay description, as well as other functional readouts.