Top ▲

OX1 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 321

Nomenclature: OX1 receptor

Family: Orexin receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 425 1p35.2 HCRTR1 hypocretin receptor 1 84
Mouse 7 416 4 D2.2 Hcrtr1 hypocretin (orexin) receptor 1 17,84
Rat 7 416 5q36 Hcrtr1 hypocretin receptor 1 84
Previous and Unofficial Names Click here for help
Hctr1 | hypocretin receptor 1 | orexin receptor type 1 | OX1R
Database Links Click here for help
Specialist databases
GPCRdb ox1r_human (Hs), ox1r_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Structures of the human OX1 orexin receptor bound to selective and dual antagonists.
PDB Id:  4ZJ8
Ligand:  suvorexant
Resolution:  2.75Å
Species:  Human
References:  100
Image of receptor 3D structure from RCSB PDB
Description:  Structures of the human OX1 orexin receptor bound to selective and dual antagonists.
PDB Id:  4ZJC
Ligand:  SB-674042
Resolution:  2.83Å
Species:  Human
References:  100
Image of receptor 3D structure from RCSB PDB
Description:  Structure-based development of subtype-selective orexin 1 receptor antagonists
PDB Id:  6V9S
Ligand:  JH112
Resolution:  3.5Å
Species:  Human
References:  30
Natural/Endogenous Ligands Click here for help
orexin-A {Sp: Human, Mouse, Rat}
orexin-B {Sp: Human} , orexin-B {Sp: Mouse, Rat}
Potency order of endogenous ligands
orexin-A (HCRT, O43612) > orexin-B (HCRT, O43612) (for Ca2+ elevation, unclear/variable for other responses)

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
orexin-A {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 6.5 – 10.2 pEC50 2,20,33,35,41-42,45,50,55,72,84,88,93-94
pEC50 6.5 – 10.2 [2,20,33,35,41-42,45,50,55,72,84,88,93-94]
(R)-YNT-3708 Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.1 pEC50 38
pEC50 8.1 (EC50 7.74x10-9 M) [38]
Description: Determined in a calcium mobilization assay
RTOXA-43 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.6 pEC50 104
pEC50 7.6 (EC50 2.4x10-8 M) [104]
Description: Determined in a Ca2+ response assay.
orexin-B {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 5.8 – 9.2 pEC50 2,35,42,55,72,76,84,88,93
pEC50 5.8 – 9.2 [2,35,42,55,72,76,84,88,93]
danavorexton Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 6.6 – 8.4 pEC50 103
pEC50 6.6 – 8.4 The value determined depends on the response measured. [103]
[Ala11, D-Leu15]orexin-B Peptide Click here for species-specific activity table Hs Full agonist 6.1 – 7.3 pEC50 5,76
pEC50 6.1 – 7.3 [5,76]
Nag 26 Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.3 – 6.7 pEC50 68,78
pEC50 5.3 – 6.7 (EC50 5.011x10-6 – 1.99x10-7 M) [68,78]
YNT-185 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.6 pEC50 39,68
pEC50 5.6 (EC50 2.75x10-6 M) [39,68]
firazorexton Small molecule or natural product Click here for species-specific activity table Hs Agonist 4.8 pEC50 40
pEC50 4.8 (EC50 1.4x10-5 M) [40]
Description: In a calcium mobilization assay
compound 1 [PMID: 33547286] Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 4.4 pEC50 37
pEC50 4.4 [37]
Agonist Comments
Efficacy values for agonists are highly dependent on cell type, assay conditions and the readout.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
SB-649868 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 10.0 pKB 16
pKB 10.0 [16]
daridorexant Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Clf Antagonist 9.5 pKB 79
pKB 9.5 [79]
SB-649868 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.3 pKB 16
pKB 9.3 [16]
suvorexant Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 9.1 – 9.3 pKB 16,91
pKB 9.3 [16]
pKB 9.1 [91]
filorexant Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 9.2 pKB 16
pKB 9.2 [16]
daridorexant Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.8 – 9.3 pKB 91
pKB 8.8 – 9.3 [91]
suvorexant Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 9.0 pKB 16
pKB 9.0 [16]
daridorexant Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 9.0 pKB 79
pKB 9.0 [79]
suvorexant Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.7 pKB 16
pKB 8.7 [16]
filorexant Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.7 pKB 16
pKB 8.7 [16]
SB-649868 Small molecule or natural product Click here for species-specific activity table Mm Antagonist 8.3 pKB 16
pKB 8.3 [16]
TCS 1102 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.0 – 8.5 pKB 7,78
pKB 8.0 – 8.5 [7,78]
SB-334867 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.1 pKB 61
pKB 8.1 [61]
almorexant Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.9 – 8.2 pKB 16,91
pKB 8.2 [91]
pKB 7.9 [16]
SB-408124 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.9 pKB 62
pKB 7.9 (KB 1.26x10-8 M) [62]
CVN45502 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.9 pKB 87
pKB 7.9 (KB 1.26x10-8 M) [87]
almorexant Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.8 pKB 16
pKB 7.8 [16]
ACT-462206 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.8 pKB 12
pKB 7.8 [12]
almorexant Small molecule or natural product Click here for species-specific activity table Mm Antagonist 7.6 pKB 16
pKB 7.6 [16]
filorexant Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 7.6 pKB 16
pKB 7.6 [16]
ACT-335827 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.4 pKB 89
pKB 7.4 [89]
seltorexant Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.3 pKB 10
pKB 6.3 [10]
seltorexant Small molecule or natural product Click here for species-specific activity table Rn Antagonist <6.0 pKB 10
pKB <6.0 (KB >1x10-6 M) [10]
JNJ-10397049 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.0 – 5.5 pKB 64,90
pKB 5.5 [64]
pKB 5.0 [90]
[3H]-almorexant Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.6 – 8.9 pKd 62-63
pKd 8.6 – 8.9 [62-63]
[3H]SB-674042 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.3 – 9.1 pKd 55,62-63
pKd 8.3 – 9.1 (Kd 5.03x10-9 – 7.4x10-10 M) [55,62-63]
[3H]-TCS 1102 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.2 pKd 16
pKd 8.2 [16]
SB-649868 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.1 – 9.6 pKi 16,19,21
pKi 9.1 – 9.6 [16,19,21]
pKi 9.1 (Ki 7.94x10-10 M) [21]
JH112 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 9.1 pKi 30
pKi 9.1 (Ki 7.2x10-10 M) [30]
suvorexant Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.7 – 9.3 pKi 16,19,67,77,91
pKi 9.2 [91]
pKi 8.7 – 9.3 (Ki 5.01x10-10 M) [16,19,67,77]
SB-674042 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.7 – 9.3 pKi 55,62
pKi 8.7 – 9.3 (Ki 1.99x10-9 – 7.9x10-10 M) 70–120-fold selective pro-OX1 [55,62]
daridorexant Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.8 pKi 77
pKi 8.8 (Ki 1.58x10-9 M) [77]
filorexant Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.4 – 9.2 pKi 16,19,77,98
pKi 9.2 [77]
pKi 8.4 – 9.1 [16,19,98]
lemborexant Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.2 – 8.6 pKi 77,101
pKi 8.6 [77]
pKi 8.2 (Ki 6x10-9 M) [101]
Description: In a radioligand binding assay
almorexant Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.3 – 8.5 pKi 62-63,91
pKi 8.3 – 8.5 [62-63,91]
ACT-462206 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.2 pKi 77
pKi 8.2 [77]
SB-410220 Small molecule or natural product Hs Antagonist 7.7 pKi 55
pKi 7.7 [55]
HTL6641 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.5 – 7.7 pKi 18,77
pKi 7.7 (Ki 2x10-8 M) [18]
pKi 7.5 [77]
Cp-1 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.6 pKi 62
pKi 7.6 (Ki 2.57x10-8 M) [62]
SB-334867 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.2 – 7.9 pKi 11,55,61-62,74,77
pKi 7.2 – 7.9 40–150-fold selective pro-OX1 [11,55,62,74,77]
pKi 7.4 [61]
SB-408124 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.0 – 7.5 pKi 11,62
pKi 7.5 (Ki 3.16x10-8 M) 32–65-fold selective pro-OX1 [62]
pKi 7.0 (Ki 1x10-7 M) [11]
SB-334867 Small molecule or natural product Ligand has a PDB structure Rn Antagonist 6.8 pKi 11
pKi 6.8 (Ki 1.44x10-7 M) [11]
LSN2424100 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.4 pKi 26
pKi 6.4 (Ki 3.93x10-7 M) [26]
SB-408124 Small molecule or natural product Ligand has a PDB structure Rn Antagonist 6.4 pKi 11
pKi 6.4 (Ki 4x10-7 M) [11]
seltorexant Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.2 pKi 10
pKi 6.2 (Ki 6.3x10-7 M) [10]
Description: In vitro radioligand binding assay
seltorexant Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 pKi 10
pKi 6.1 (Ki 7.94x10-7 M) [10]
Description: In vitro radioligand binding assay
MK-1064 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.0 pKi 66,81
pKi 6.0 [66,81]
MK-1064 Small molecule or natural product Click here for species-specific activity table Clf Antagonist 5.9 pKi 66,81
pKi 5.9 [66,81]
MK-1064 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.8 pKi 81
pKi 5.8 (Ki 1.584x10-6 M) [81]
EMPA Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.3 – 6.1 pKi 61-62,77
pKi 6.1 (Ki 9x10-7 M) [61]
Description: [3H]SB 674042 displacement by EMPA from HEK293-hOX1 membrane preparations
pKi 6.0 [77]
pKi 5.3 (Ki 4.533x10-6 M) [62]
MK-3697 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 5.6 pKi 66
pKi 5.6 [66]
JNJ-10397049 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.3 – 5.8 pKi 64
pKi 5.3 – 5.8 [64]
MK-3697 Small molecule or natural product Click here for species-specific activity table Clf Antagonist 5.5 pKi 66
pKi 5.5 [66]
MK-3697 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.4 – 5.5 pKi 66,82
pKi 5.5 [66]
pKi 5.4 (Ki 3.6x10-6 M) [82]
MK-1064 Small molecule or natural product Click here for species-specific activity table Mm Antagonist 5.4 pKi 66,81
pKi 5.4 [66,81]
MK-3697 Small molecule or natural product Click here for species-specific activity table Mm Antagonist 5.4 pKi 66
pKi 5.4 [66]
compound 11 [PMID: 15261275] Small molecule or natural product Click here for species-specific activity table Hs Antagonist <5.3 pKi 64
pKi <5.3 (Ki >5.012x10-6 M) [64]
Description: Radioligand displacement assay using [125I]-orexin A as radio ligand.
CVN766 Small molecule or natural product Hs Antagonist 8.1 pIC50 27
pIC50 8.1 (IC50 8x10-9 M) [27]
View species-specific antagonist tables
Other Binding Ligands
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I]orexin A (human, mouse, rat) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs - - - 50,75,84
Useful working concentration sub nM-low nM. [50,75,84]
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Adenylyl cyclase stimulation
Adenylyl cyclase inhibition
Phospholipase C stimulation
Phospholipase A2 stimulation
Phospholipase D stimulation
Comments:  Association with the Gq family of transducers leads to phospholipase stimulation (e.g. phospholipase families A2, C and D) and Ca2+ elevation, and with the Gi family to inhibition and with the Gs family to stimulation, respectively, of adenylyl cyclase. Ca2+/non-selective cation influx also appears to rely on Gq. However, the signal transduction has not been investigated in detail in native neurons.
References:  2,33,35,42,49-51,53,57-58,60,65,71,84,88,93-94,96
Tissue Distribution Click here for help
Pituitary: somatotroph cells.
Species:  Human
Technique:  Immunohistochemistry.
References:  9
Retina: ganglion cells, photoreceptor cells > amacrine cells, inner and outer plexiform layers.
Species:  Human
Technique:  Immunohistochemistry.
References:  86
Lung, skeletal muscle, kidney, testis > spleen > brain, liver.
Species:  Mouse
Technique:  RT-PCR
References:  17
CNS: highest levels found in the locus coeruleus > olfactory nuclei, piriform cortex, dentate gyrus of the hippocampus, bed nucleus of the stria terminalis, anterodorsal, centrolateral, reticular and ventral posterior thalamic nuclei, zona incerta, arcuate, paraventricular and periventricular hypothalamic nuclei, supraoptic nucleus, suprachiasmatic nucleus, dorsal tegmental nucleus, cochlear nucleus complex, facial nucleus, olivary complex, spinal cord, dorsal root ganglia.
Species:  Rat
Technique:  Immunohistochemistry.
References:  31
Olfactory system: olfactory mucosa (olfactory epithelium and lamina propria) > olfactory bulb, anterior olfactory nuclei and piriform cortex, hypothalamic and amygdala nuclei.
Species:  Rat
Technique:  immunocytochemistry.
References:  15
CNS: highest levels found in the ventromedial hypothalamic nucleus, tenia tecta, indusium griseum, septohippocampal nucleus, locus coeruleus.
Species:  Rat
Technique:  In situ hybridization.
References:  92
CNS: highest levels found in the hypothalamus, substantia nigra, thalamus.
Species:  Rat
Technique:  RT-PCR.
References:  31
Cerebral cortex, hippocampus, hypothalamus, several thalamic nuclei.
Species:  Rat
Technique:  Immunohistochemistry.
References:  6
Pancreatic islets.
Species:  Rat
Technique:  RT-PCR.
References:  70
Adrenal medulla.
Species:  Rat
Technique:  RT-PCR.
References:  59
Tissue Distribution Comments
For IHC studies, it is very important to note that selectivity issues have been raised regarding antibodies for the orexin receptors which may lead to false positive/negative results and as such, mRNA expression patterns provide important confirmatory results.
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Ca2+ elevation in BIM hybridoma cells transfected with the OX1 receptor.
Species:  Rat
Tissue:  BIM cells
Response measured:  PTX-insensitive increase in [Ca2+].
References:  105
Measurement of membrane conductance in locus coeruleus (LC) neurons endogenously expressing OX1 receptors.
Species:  Rat
Tissue:  LC neurons
Response measured:  Suppression of GIRK current.
References:  33
Measurement of cAMP levels in CHO-K1 cells transfected with the OX1 receptor.
Species:  Human
Tissue:  CHO-K1 cells
Response measured:  Stimulation (Gs and protein kinase C) and inhibition (Gi) of cAMP accumulation.
References:  36,49-50
Activation of ERK, p38 and JNK pathways in CHO-K1 cells transfected with the OX1 receptor
Species:  Human
Tissue:  CHO-K1 cells
Response measured:  Stimulation of ERK, p38 and JNK phosphorylation, programmed cell death.
References:  3-4,46
Activation of phospholipase A2 and monoacylglycerol lipase-like enzyme-mediated arachidonic acid release in HEK293, CHO-K1 and neuro-2a cells transfected with the OX1 receptor
Species:  Human
Tissue:  HEK293, CHO-K1 and neuro-2a cells
Response measured:  Arachidonic acid and 2-arachidonoyl glycerol release, Ca2+ elevation
References:  73,93-94
Regulation of cell death and associated pathways in native and immortalised cell lines transfected to express the OX1 receptor
Species:  Human
Tissue:  CHO-S and -K1 and HT29-D4 cell lines, primary human colon carcinoma
Response measured:  Cell death
References:  4,25,83,95
Activation of phospholipase D activity in CHO cells transfected with the OX1 receptor
Species:  Human
Tissue:  CHO
Response measured:  Phospholipase D activity (PtdBut generation assay) etc.
References:  42,45,49-50
Activation of phospholipase C in CHO-K1 cells transfected with the OX1 receptor
Species:  Human
Tissue:  CHO-K1 cells
Response measured:  Inositol phosphate release, PIP2 hydrolysis, IP3 elevation, diacylglycerol release, monoacylglycerol generation
References:  41-42,49-50,58,94
Measurement of membrane conductance in HEK 293 cells transfected with the OX1 receptor and GIRK channels.
Species:  Human
Tissue:  HEK 293 cells
Response measured:  Biphasic response: Initial phase of GIRK activation (both PTX-sensitive and -insensitive) followed by long-lasting GIRK inhibition (PTX-insensitive only).
References:  33
Activation of phospholipase C and Ca2+ elevation in neuro-2a and PC12 cells transfected with the OX1 receptor
Species:  Human
Tissue:  neuro-2a, PC12 cells
Response measured:  Inositol phosphate release, Ca2+ elevation
References:  34
Ca2+ elevation in CHO-K1 cells transfected with the OX1 receptor.
Species:  Human
Tissue:  CHO-K1 cells
Response measured:  Increase in [Ca2+]i via receptor-operated Ca2+ influx, (phospholipase C-mediated) Ca2+ release and store-operated Ca 2+ influx
References:  49,52,56,58,84,88,93-94
Physiological Functions Click here for help
Modulation of pain; analgesic and anti-hyperalgesic effects against a variety of noxious stimuli.
Species:  Rat
Tissue:  In vivo.
References:  8,99
Modulation of feeding.
Species:  Rat
Tissue:  In vivo.
References:  29,80
Stimulation of water intake.
Species:  Rat
Tissue:  In vivo.
References:  54
Increase in respiratory drive.
Species:  Rat
Tissue:  Pre-Bötzinger-neurons and phrenic nuclei.
References:  102
Stimulation of behavioural arousal.
Species:  Rat
Tissue:  In vivo.
References:  22,44
Control of gastrointestinal function; modulation of gut motility and acid secretion.
Species:  Rat
Tissue:  In vivo.
References:  23-24
Regulation of haemodynamic responses; modulation of heart rate and blood pressure in anaesthetised rats.
Species:  Rat
Tissue:  In vivo.
References:  32
Modulation of rewarding behaviours and addiction.
Species:  Rat
Tissue:  In vivo.
References:  14,28
Facilitation of learning and memory. Targeted delivery of orexin-A to the dentate gyrus of anaesthetised rats produces an enhancement of LTP that is prevented by an OX1 receptor antagonist. Conversely, direct blockade of hippocampal OX1 receptors impairs spatial learning and memory in conscious rats.
Species:  Rat
Tissue:  In vivo.
References:  1,97
Enhancement of arousal and reduction in paradoxical and slow-wave sleep. Both an OX1 receptor-neutralising antibody and an OX1 receptor antagonist reverse the disruption of the sleep-wake cycle induced by centrally administered orexin-A.
Species:  Rat
Tissue:  In vivo.
References:  13
Panic: Activation of orexinergic neurons is necessary for developing a panic-prone state in the rat panic model, and either silencing of the hypothalamic gene encoding preproorexin (Hcrt) with RNAi, or systemic OX1 receptor antagonists, blocks the panic responses; (human and rat)
Species:  Human
Tissue:  In vivo.
References:  43,85
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Hcrtr1tm1Dgen Hcrtr1tm1Dgen/Hcrtr1tm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2385650  MP:0002906 increased susceptibility to pharmacologically induced seizures
General Comments
No consequent differences in the molecular details of the signalling of the orexin receptor subtypes can be pointed out. In the CNS, both receptor subtypes regulate ion channel activity, most centrally leading to depolarization via activation of non-selective cation channels and inhibition of K+ channels [47,53,57]. Also, activation of Na+/Ca2+ exchanger has been reported. Orexin receptor activation has been implicated in modulation of synaptic plasticity. In native cells, cell lines and recombinant cells expressing heterologous orexin receptors, a wide set of molecular responses have been described. The immediate responses include activation of G proteins of Gq, Gi and Gs families and β-arrestin. Gq regulates at least receptor-operated Ca2+/non-selective cation influx and phospholipase C-mediated Ca2+ release, while Gi and Gs regulate adenylyl cyclase [48,50,53,57].
Orexin receptor subtypes form homo- and heteromeric complexes in recombinant systems. In addition, they are known to heteromerize with at least CB1 cannabinoid, κ opioid and CRF1 corticotropin receptors as well as with GPR103 [Reference: Kukkonen JP, Orexin/hypocretin Signaling, in Current Topics in Behavioral Neuroscience: Behavioral Neuroscience of Orexin/Hypocretin; ed. Andrew J Lawrence & Luis De Lecea, Springer; accepted for publication]. Little physiological significance has thus far been shown for this complex formation, except for a recent study showing complexes of OX1, CRF1 and σ-1 receptors, which operate in orexin regulation of dopamine release in vetral tegmental area [69].

References

Show »

1. Akbari E, Naghdi N, Motamedi F. (2006) Functional inactivation of orexin 1 receptors in CA1 region impairs acquisition, consolidation and retrieval in Morris water maze task. Behav Brain Res, 173 (1): 47-52. [PMID:16815564]

2. Ammoun S, Holmqvist T, Shariatmadari R, Oonk HB, Detheux M, Parmentier M, Akerman KE, Kukkonen JP. (2003) Distinct recognition of OX1 and OX2 receptors by orexin peptides. J Pharmacol Exp Ther, 305 (2): 507-14. [PMID:12606634]

3. Ammoun S, Johansson L, Ekholm ME, Holmqvist T, Danis AS, Korhonen L, Sergeeva OA, Haas HL, Akerman KE, Kukkonen JP. (2006) OX1 orexin receptors activate extracellular signal-regulated kinase in Chinese hamster ovary cells via multiple mechanisms: the role of Ca2+ influx in OX1 receptor signaling. Mol Endocrinol, 20 (1): 80-99. [PMID:16141359]

4. Ammoun S, Lindholm D, Wootz H, Akerman KE, Kukkonen JP. (2006) G-protein-coupled OX1 orexin/hcrtr-1 hypocretin receptors induce caspase-dependent and -independent cell death through p38 mitogen-/stress-activated protein kinase. J Biol Chem, 281 (2): 834-42. [PMID:16282319]

5. Asahi S, Egashira S, Matsuda M, Iwaasa H, Kanatani A, Ohkubo M, Ihara M, Morishima H. (2003) Development of an orexin-2 receptor selective agonist, [Ala(11), D-Leu(15)]orexin-B. Bioorg Med Chem Lett, 13 (1): 111-3. [PMID:12467628]

6. Backberg M, Hervieu G, Wilson S, Meister B. (2002) Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake. Eur J Neurosci, 15: 315-328. [PMID:11849298]

7. Bergman JM, Roecker AJ, Mercer SP, Bednar RA, Reiss DR, Ransom RW, Meacham Harrell C, Pettibone DJ, Lemaire W, Murphy KL et al.. (2008) Proline bis-amides as potent dual orexin receptor antagonists. Bioorg Med Chem Lett, 18 (4): 1425-30. [PMID:18207395]

8. Bingham S, Davey PT, Babbs AJ, Irving EA, Sammons MJ, Wyles M, Jeffrey P, Cutler L, Riba I, Johns A et al.. (2001) Orexin-A, an hypothalamic peptide with analgesic properties. Pain, 92 (1-2): 81-90. [PMID:11323129]

9. Blanco M, López M, GarcIa-Caballero T, Gallego R, Vázquez-Boquete A, Morel G, SeñarIs R, Casanueva F, Diéguez C, Beiras A. (2001) Cellular localization of orexin receptors in human pituitary. J Clin Endocrinol Metab, 86 (7): 1616-9. [PMID:11443222]

10. Bonaventure P, Shelton J, Yun S, Nepomuceno D, Sutton S, Aluisio L, Fraser I, Lord B, Shoblock J, Welty N et al.. (2015) Characterization of JNJ-42847922, a Selective Orexin-2 Receptor Antagonist, as a Clinical Candidate for the Treatment of Insomnia. J Pharmacol Exp Ther, 354 (3): 471-82. [PMID:26177655]

11. Bonaventure P, Yun S, Johnson PL, Shekhar A, Fitz SD, Shireman BT, Lebold TP, Nepomuceno D, Lord B, Wennerholm M et al.. (2015) A selective orexin-1 receptor antagonist attenuates stress-induced hyperarousal without hypnotic effects. J Pharmacol Exp Ther, 352 (3): 590-601. [PMID:25583879]

12. Boss C, Roch-Brisbare C, Steiner MA, Treiber A, Dietrich H, Jenck F, von Raumer M, Sifferlen T, Brotschi C, Heidmann B et al.. (2014) Structure-activity relationship, biological, and pharmacological characterization of the proline sulfonamide ACT-462206: a potent, brain-penetrant dual orexin 1/orexin 2 receptor antagonist. ChemMedChem, 9 (11): 2486-96. [PMID:25147058]

13. Bourgin P, Huitrón-Résendiz S, Spier AD, Fabre V, Morte B, Criado JR, Sutcliffe JG, Henriksen SJ, de Lecea L. (2000) Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci, 20 (20): 7760-5. [PMID:11027239]

14. Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, de Lecea L. (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci USA, 102 (52): 19168-73. [PMID:16357203]

15. Caillol M, Aioun J, Baly C, Persuy MA, Salesse R. (2003) Localization of orexins and their receptors in the rat olfactory system: possible modulation of olfactory perception by a neuropeptide synthetized centrally or locally. Brain Res, 960: 48-61. [PMID:12505657]

16. Callander GE, Olorunda M, Monna D, Schuepbach E, Langenegger D, Betschart C, Hintermann S, Behnke D, Cotesta S, Fendt M et al.. (2013) Kinetic properties of "dual" orexin receptor antagonists at OX1R and OX2R orexin receptors. Front Neurosci, 7: 230. [PMID:24376396]

17. Chen J, Randeva HS. (2004) Genomic organization of mouse orexin receptors: characterization of two novel tissue-specific splice variants. Mol Endocrinol, 18 (11): 2790-804. [PMID:15256537]

18. Christopher JA, Aves SJ, Brown J, Errey JC, Klair SS, Langmead CJ, Mace OJ, Mould R, Patel JC, Tehan BG. (2015) Discovery of HTL6641, a dual orexin receptor antagonist with differentiated pharmacodynamic properties. Medicinal Chemistry Communications, 6: 947-955. DOI: 10.1039/C5MD00027K

19. Cox CD, Breslin MJ, Whitman DB, Schreier JD, McGaughey GB, Bogusky MJ, Roecker AJ, Mercer SP, Bednar RA, Lemaire W, Bruno JG, Reiss DR, Harrell CM, Murphy KL, Garson SL, Doran SM, Prueksaritanont T, Anderson WB, Tang C, Roller S, Cabalu TD, Cui D, Hartman GD, Young SD, Koblan KS, Winrow CJ, Renger JJ, Coleman PJ. (2010) Discovery of the dual orexin receptor antagonist [(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methyl-2-(2H-1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia. J Med Chem, 53 (14): 5320-32. [PMID:20565075]

20. Darker JG, Porter RA, Eggleston DS, Smart D, Brough SJ, Sabido-David C, Jerman JC. (2001) Structure-activity analysis of truncated orexin-A analogues at the orexin-1 receptor. Bioorg Med Chem Lett, 11 (5): 737-40. [PMID:11266181]

21. Di Fabio R, Pellacani A, Faedo S, Roth A, Piccoli L, Gerrard P, Porter RA, Johnson CN, Thewlis K, Donati D et al.. (2011) Discovery process and pharmacological characterization of a novel dual orexin 1 and orexin 2 receptor antagonist useful for treatment of sleep disorders. Bioorg Med Chem Lett, 21 (18): 5562-7. [PMID:21831639]

22. Duxon MS, Stretton J, Starr K, Jones DN, Holland V, Riley G, Jerman J, Brough S, Smart D, Johns A et al.. (2001) Evidence that orexin-A-evoked grooming in the rat is mediated by orexin-1 (OX1) receptors, with downstream 5-HT2C receptor involvement. Psychopharmacology (Berl.), 153 (2): 203-9. [PMID:11205420]

23. Ehrström M, Levin F, Kirchgessner AL, Schmidt PT, Hilsted LM, Grybäck P, Jacobsson H, Hellström PM, Näslund E. (2005) Stimulatory effect of endogenous orexin A on gastric emptying and acid secretion independent of gastrin. Regul Pept, 132 (1-3): 9-16. [PMID:16125803]

24. Ehrström M, Näslund E, Ma J, Kirchgessner AL, Hellström PM. (2003) Physiological regulation and NO-dependent inhibition of migrating myoelectric complex in the rat small bowel by OXA. Am J Physiol Gastrointest Liver Physiol, 285: G688-G695. [PMID:12816759]

25. El Firar A, Voisin T, Rouyer-Fessard C, Ostuni MA, Couvineau A, Laburthe M. (2009) Discovery of a functional immunoreceptor tyrosine-based switch motif in a 7-transmembrane-spanning receptor: role in the orexin receptor OX1R-driven apoptosis. FASEB J, 23 (12): 4069-80. [PMID:19661287]

26. Fitch TE, Benvenga MJ, Jesudason CD, Zink C, Vandergriff AB, Menezes MM, Schober DA, Rorick-Kehn LM. (2014) LSN2424100: a novel, potent orexin-2 receptor antagonist with selectivity over orexin-1 receptors and activity in an animal model predictive of antidepressant-like efficacy. Front Neurosci, 8: 5. [PMID:24478625]

27. Glen A, Bürli RW, Livermore D, Buffham W, Merison S, Rowland AE, Newman R, Fieldhouse C, Miller DJ, Dawson LA et al.. (2024) Discovery and first-time disclosure of CVN766, an exquisitely selective orexin 1 receptor antagonist. Bioorg Med Chem Lett, 100: 129629. [PMID:38295907]

28. Harris GC, Wimmer M, Aston-Jones G. (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature, 437 (7058): 556-9. [PMID:16100511]

29. Haynes AC, Jackson B, Chapman H, Tadayyon M, Johns A, Porter RA, Arch JR. (2000) A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul Pept, 96 (1-2): 45-51. [PMID:11102651]

30. Hellmann J, Drabek M, Yin J, Gunera J, Pröll T, Kraus F, Langmead CJ, Hübner H, Weikert D, Kolb P et al.. (2020) Structure-based development of a subtype-selective orexin 1 receptor antagonist. Proc Natl Acad Sci U S A, 117 (30): 18059-18067. [PMID:32669442]

31. Hervieu GJ, Cluderay JE, Harrison DC, Roberts JC, Leslie RA. (2001) Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord. Neuroscience, 103 (3): 777-97. [PMID:11274794]

32. Hirota K, Kushikata T, Kudo M, Kudo T, Smart D, Matsuki A. (2003) Effects of central hypocretin-1 administration on hemodynamic responses in young-adult and middle-aged rats. Brain Res, 981: 143-150. [PMID:12885435]

33. Hoang QV, Bajic D, Yanagisawa M, Nakajima S, Nakajima Y. (2003) Effects of orexin (hypocretin) on GIRK channels. J Neurophysiol, 90 (2): 693-702. [PMID:12702704]

34. Holmqvist T, Akerman KE, Kukkonen JP. (2001) High specificity of human orexin receptors for orexins over neuropeptide Y and other neuropeptides. Neurosci Lett, 305 (3): 177-80. [PMID:11403934]

35. Holmqvist T, Akerman KE, Kukkonen JP. (2002) Orexin signaling in recombinant neuron-like cells. FEBS Lett, 526 (1-3): 11-4. [PMID:12208495]

36. Holmqvist T, Johansson L, Ostman M, Ammoun S, Akerman KE, Kukkonen JP. (2005) OX1 orexin receptors couple to adenylyl cyclase regulation via multiple mechanisms. J Biol Chem, 280 (8): 6570-9. [PMID:15611118]

37. Hong C, Byrne NJ, Zamlynny B, Tummala S, Xiao L, Shipman JM, Partridge AT, Minnick C, Breslin MJ, Rudd MT et al.. (2021) Structures of active-state orexin receptor 2 rationalize peptide and small-molecule agonist recognition and receptor activation. Nat Commun, 12 (1): 815. [PMID:33547286]

38. Iio K, Hashimoto K, Nagumo Y, Amezawa M, Hasegawa T, Yamamoto N, Kutsumura N, Takeuchi K, Ishikawa Y, Yamamoto H et al.. (2023) Design and Synthesis of Orexin 1 Receptor-Selective Agonists. J Med Chem, 66 (8): 5453-5464. [PMID:37043436]

39. Irukayama-Tomobe Y, Ogawa Y, Tominaga H, Ishikawa Y, Hosokawa N, Ambai S, Kawabe Y, Uchida S, Nakajima R, Saitoh T et al.. (2017) Nonpeptide orexin type-2 receptor agonist ameliorates narcolepsy-cataplexy symptoms in mouse models. Proc Natl Acad Sci USA, 114 (22): 5731-5736. [PMID:28507129]

40. Ishikawa T, Hara H, Kawano A, Tohyama K, Kajita Y, Miyanohana Y, Koike T, Kimura H. (2023) TAK-994, a Novel Orally Available Brain-Penetrant Orexin 2 Receptor-Selective Agonist, Suppresses Fragmentation of Wakefulness and Cataplexy-Like Episodes in Mouse Models of Narcolepsy. J Pharmacol Exp Ther, 385 (3): 193-204. [PMID:37001988]

41. Johansson L, Ekholm ME, Kukkonen JP. (2007) Regulation of OX1 orexin/hypocretin receptor-coupling to phospholipase C by Ca2+ influx. Br J Pharmacol, 150 (1): 97-104. [PMID:17115071]

42. Johansson L, Ekholm ME, Kukkonen JP. (2008) Multiple phospholipase activation by OX(1) orexin/hypocretin receptors. Cell Mol Life Sci, 65 (12): 1948-56. [PMID:18488139]

43. Johnson PL, Truitt W, Fitz SD, Minick PE, Dietrich A, Sanghani S, Träskman-Bendz L, Goddard AW, Brundin L, Shekhar A. (2010) A key role for orexin in panic anxiety. Nat Med, 16 (1): 111-5. [PMID:20037593]

44. Jones DN, Gartlon J, Parker F, Taylor SG, Routledge C, Hemmati P, Munton RP, Ashmeade TE, Hatcher JP, Johns A et al.. (2001) Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity. Psychopharmacology (Berl.), 153 (2): 210-8. [PMID:11205421]

45. Jäntti M, Putula J, Somerharju P, Frohman M, Kukkonen J. (2012) OX(1) orexin/hypocretin receptor activation of phospholipase D. Br J Pharmacol, 165 (4b): 1109-23. [PMID:21718304]

46. Jäntti MH, Putula J, Turunen PM, Näsman J, Reijonen S, Lindqvist C, Kukkonen JP. (2013) Autocrine endocannabinoid signaling through CB1 receptors potentiates OX1 orexin receptor signaling. Mol Pharmacol, 83 (3): 621-32. [PMID:23233488]

47. Kukkonen JP. (2013) Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol, Cell Physiol, 304 (1): C2-32. [PMID:23034387]

48. Kukkonen JP. (2016) G-protein inhibition profile of the reported Gq/11 inhibitor UBO-QIC. Biochem Biophys Res Commun, 469 (1): 101-7. [PMID:26614908]

49. Kukkonen JP. (2016) G-protein-dependency of orexin/hypocretin receptor signalling in recombinant Chinese hamster ovary cells. Biochem Biophys Res Commun, 476 (4): 379-85. [PMID:27237973]

50. Kukkonen JP. (2016) OX2 orexin/hypocretin receptor signal transduction in recombinant Chinese hamster ovary cells. Cell Signal, 28 (2): 51-60. [PMID:26582739]

51. Kukkonen JP. (2017) Orexin/Hypocretin Signaling. Curr Top Behav Neurosci, 33: 17-50. [PMID:27909990]

52. Kukkonen JP, Akerman KE. (2001) Orexin receptors couple to Ca2+ channels different from store-operated Ca2+ channels. Neuroreport, 12 (9): 2017-20. [PMID:11435939]

53. Kukkonen JP, Leonard CS. (2014) Orexin/hypocretin receptor signalling cascades. Br J Pharmacol, 171 (2): 314-31. [PMID:23902572]

54. Kunii K, Yamanaka A, Nambu T, Matsuzaki I, Goto K, Sakurai T. (1999) Orexins/hypocretins regulate drinking behaviour. Brain Res, 842 (1): 256-61. [PMID:10526122]

55. Langmead CJ, Jerman JC, Brough SJ, Scott C, Porter RA, Herdon HJ. (2004) Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. Br J Pharmacol, 141 (2): 340-6. [PMID:14691055]

56. Larsson KP, Peltonen HM, Bart G, Louhivuori LM, Penttonen A, Antikainen M, Kukkonen JP, Akerman KE. (2005) Orexin-A-induced Ca2+ entry: evidence for involvement of trpc channels and protein kinase C regulation. J Biol Chem, 280 (3): 1771-81. [PMID:15537648]

57. Leonard CS, Kukkonen JP. (2014) Orexin/hypocretin receptor signalling: a functional perspective. Br J Pharmacol, 171 (2): 294-313. [PMID:23848055]

58. Lund PE, Shariatmadari R, Uustare A, Detheux M, Parmentier M, Kukkonen JP, Akerman KE. (2000) The orexin OX1 receptor activates a novel Ca2+ influx pathway necessary for coupling to phospholipase C. J Biol Chem, 275 (40): 30806-12. [PMID:10880509]

59. López M, Señarís R, Gallego R, García-Caballero T, Lago F, Seoane L, Casanueva F, Diéguez C. (1999) Orexin receptors are expressed in the adrenal medulla of the rat. Endocrinology, 140 (12): 5991-4. [PMID:10579367]

60. Magga J, Bart G, Oker-Blom C, Kukkonen JP, Akerman KE, Näsman J. (2006) Agonist potency differentiates G protein activation and Ca2+ signalling by the orexin receptor type 1. Biochem Pharmacol, 71 (6): 827-36. [PMID:16430869]

61. Malherbe P, Borroni E, Gobbi L, Knust H, Nettekoven M, Pinard E, Roche O, Rogers-Evans M, Wettstein JG, Moreau JL. (2009) Biochemical and behavioural characterization of EMPA, a novel high-affinity, selective antagonist for the OX(2) receptor. Br J Pharmacol, 156 (8): 1326-41. [PMID:19751316]

62. Malherbe P, Borroni E, Pinard E, Wettstein JG, Knoflach F. (2009) Biochemical and electrophysiological characterization of almorexant, a dual orexin 1 receptor (OX1)/orexin 2 receptor (OX2) antagonist: comparison with selective OX1 and OX2 antagonists. Mol Pharmacol, 76 (3): 618-31. [PMID:19542319]

63. Malherbe P, Roche O, Marcuz A, Kratzeisen C, Wettstein JG, Bissantz C. (2010) Mapping the binding pocket of dual antagonist almorexant to human orexin 1 and orexin 2 receptors: comparison with the selective OX1 antagonist SB-674042 and the selective OX2 antagonist N-ethyl-2-[(6-methoxy-pyridin-3-yl)-(toluene-2-sulfonyl)-amino]-N-pyridin-3-ylmethyl-acetamide (EMPA). Mol Pharmacol, 78 (1): 81-93. [PMID:20404073]

64. McAtee LC, Sutton SW, Rudolph DA, Li X, Aluisio LE, Phuong VK, Dvorak CA, Lovenberg TW, Carruthers NI, Jones TK. (2004) Novel substituted 4-phenyl-[1,3]dioxanes: potent and selective orexin receptor 2 (OX(2)R) antagonists. Bioorg Med Chem Lett, 14 (16): 4225-9. [PMID:15261275]

65. Milasta S, Evans NA, Ormiston L, Wilson S, Lefkowitz RJ, Milligan G. (2005) The sustainability of interactions between the orexin-1 receptor and beta-arrestin-2 is defined by a single C-terminal cluster of hydroxy amino acids and modulates the kinetics of ERK MAPK regulation. Biochem J, 387 (Pt 3): 573-84. [PMID:15683363]

66. Mitsukawa K, Kimura H. (2022) Orexin 2 receptor (OX2R) protein distribution measured by autoradiography using radiolabeled OX2R-selective antagonist EMPA in rodent brain and peripheral tissues. Sci Rep, 12 (1): 8473. [PMID:35589803]

67. Mould R, Brown J, Marshall FH, Langmead CJ. (2014) Binding kinetics differentiates functional antagonism of orexin-2 receptor ligands. Br J Pharmacol, 171 (2): 351-63. [PMID:23692283]

68. Nagahara T, Saitoh T, Kutsumura N, Irukayama-Tomobe Y, Ogawa Y, Kuroda D, Gouda H, Kumagai H, Fujii H, Yanagisawa M et al.. (2015) Design and Synthesis of Non-Peptide, Selective Orexin Receptor 2 Agonists. J Med Chem, 58 (20): 7931-7. [PMID:26267383]

69. Navarro G, Quiroz C, Moreno-Delgado D, Sierakowiak A, McDowell K, Moreno E, Rea W, Cai NS, Aguinaga D, Howell LA et al.. (2015) Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine. J Neurosci, 35 (17): 6639-53. [PMID:25926444]

70. Nowak KW, Strowski MZ, Switonska MM, Kaczmarek P, Singh V, Fabis M, Mackowiak P, Nowak M, Malendowicz LK. (2005) Evidence that orexins A and B stimulate insulin secretion from rat pancreatic islets via both receptor subtypes. Int J Mol Med, 15 (6): 969-72. [PMID:15870901]

71. Näsman J, Bart G, Larsson K, Louhivuori L, Peltonen H, Akerman KE. (2006) The orexin OX1 receptor regulates Ca2+ entry via diacylglycerol-activated channels in differentiated neuroblastoma cells. J Neurosci, 26 (42): 10658-66. [PMID:17050705]

72. Okumura T, Takeuchi S, Motomura W, Yamada H, Egashira Si S, Asahi S, Kanatani A, Ihara M, Kohgo Y. (2001) Requirement of intact disulfide bonds in orexin-A-induced stimulation of gastric acid secretion that is mediated by OX1 receptor activation. Biochem Biophys Res Commun, 280 (4): 976-81. [PMID:11162621]

73. Peltonen HM, Magga JM, Bart G, Turunen PM, Antikainen MS, Kukkonen JP, Akerman KE. (2009) Involvement of TRPC3 channels in calcium oscillations mediated by OX(1) orexin receptors. Biochem Biophys Res Commun, 385 (3): 408-12. [PMID:19464259]

74. Porter RA, Chan WN, Coulton S, Johns A, Hadley MS, Widdowson K, Jerman JC, Brough SJ, Coldwell M, Smart D et al.. (2001) 1,3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor. Bioorg Med Chem Lett, 11 (14): 1907-10. [PMID:11459658]

75. Putula J, Pihlajamaa T, Kukkonen JP. (2014) Calcium affects OX1 orexin (hypocretin) receptor responses by modifying both orexin binding and the signal transduction machinery. Br J Pharmacol, 171 (24): 5816-28. [PMID:25132134]

76. Putula J, Turunen PM, Jäntti MH, Ekholm ME, Kukkonen JP. (2011) Agonist ligand discrimination by the two orexin receptors depends on the expression system. Neurosci Lett, 494 (1): 57-60. [PMID:21362456]

77. Rappas M, Ali AAE, Bennett KA, Brown JD, Bucknell SJ, Congreve M, Cooke RM, Cseke G, de Graaf C, Doré AS et al.. (2020) Comparison of Orexin 1 and Orexin 2 Ligand Binding Modes Using X-ray Crystallography and Computational Analysis. J Med Chem, 63 (4): 1528-1543. [PMID:31860301]

78. Rinne MK, Leino TO, Turku A, Turunen PM, Steynen Y, Xhaard H, Wallén EAA, Kukkonen JP. (2018) Pharmacological characterization of the orexin/hypocretin receptor agonist Nag 26. Eur J Pharmacol, 837: 137-144. [PMID:30194937]

79. Roch C, Bergamini G, Steiner MA, Clozel M. (2021) Nonclinical pharmacology of daridorexant: a new dual orexin receptor antagonist for the treatment of insomnia. Psychopharmacology (Berl), 238 (10): 2693-2708. [PMID:34415378]

80. Rodgers RJ, Halford JC, Nunes de Souza RL, Canto de Souza AL, Piper DC, Arch JR, Upton N, Porter RA, Johns A, Blundell JE. (2001) SB-334867, a selective orexin-1 receptor antagonist, enhances behavioural satiety and blocks the hyperphagic effect of orexin-A in rats. Eur J Neurosci, 13 (7): 1444-52. [PMID:11298806]

81. Roecker AJ, Mercer SP, Schreier JD, Cox CD, Fraley ME, Steen JT, Lemaire W, Bruno JG, Harrell CM, Garson SL et al.. (2014) Discovery of 5''-chloro-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2,2':5',3''-terpyridine-3'-carboxamide (MK-1064): a selective orexin 2 receptor antagonist (2-SORA) for the treatment of insomnia. ChemMedChem, 9 (2): 311-22. [PMID:24376006]

82. Roecker AJ, Reger TS, Mattern MC, Mercer SP, Bergman JM, Schreier JD, Cube RV, Cox CD, Li D, Lemaire W et al.. (2014) Discovery of MK-3697: a selective orexin 2 receptor antagonist (2-SORA) for the treatment of insomnia. Bioorg Med Chem Lett, 24 (20): 4884-90. [PMID:25248679]

83. Rouet-Benzineb P, Rouyer-Fessard C, Jarry A, Avondo V, Pouzet C, Yanagisawa M, Laboisse C, Laburthe M, Voisin T. (2004) Orexins acting at native OX(1) receptor in colon cancer and neuroblastoma cells or at recombinant OX(1) receptor suppress cell growth by inducing apoptosis. J Biol Chem, 279 (44): 45875-86. [PMID:15310763]

84. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S et al.. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92 (4): 573-85. [PMID:9491897]

85. Salvadore G, Bonaventure P, Shekhar A, Johnson PL, Lord B, Shireman BT, Lebold TP, Nepomuceno D, Dugovic C, Brooks S et al.. (2020) Translational evaluation of novel selective orexin-1 receptor antagonist JNJ-61393215 in an experimental model for panic in rodents and humans. Transl Psychiatry, 10 (1): 308. [PMID:32895369]

86. Savaskan E, Müller-Spahn F, Meier F, Wirz-Justice A, Meyer P. (2004) Orexins and their receptors in the human retina. Pathobiology, 71 (4): 211-6. [PMID:15263810]

87. Schneeberger M, Brice NL, Pellegrino K, Parolari L, Shaked JT, Page KJ, Marchildon F, Barrows DW, Carroll TS, Topilko T et al.. (2022) Pharmacological targeting of glutamatergic neurons within the brainstem for weight reduction. Nat Metab, 4 (11): 1495-1513. [PMID:36411386]

88. Smart D, Jerman JC, Brough SJ, Rushton SL, Murdock PR, Jewitt F, Elshourbagy NA, Ellis CE, Middlemiss DN, Brown F. (1999) Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br J Pharmacol, 128 (1): 1-3. [PMID:10498827]

89. Steiner MA, Gatfield J, Brisbare-Roch C, Dietrich H, Treiber A, Jenck F, Boss C. (2013) Discovery and characterization of ACT-335827, an orally available, brain penetrant orexin receptor type 1 selective antagonist. ChemMedChem, 8 (6): 898-903. [PMID:23589487]

90. Tran DT, Bonaventure P, Hack M, Mirzadegan T, Dvorak C, Letavic M, Carruthers N, Lovenberg T, Sutton SW. (2011) Chimeric, mutant orexin receptors show key interactions between orexin receptors, peptides and antagonists. Eur J Pharmacol, 667 (1-3): 120-8. [PMID:21679703]

91. Treiber A, de Kanter R, Roch C, Gatfield J, Boss C, von Raumer M, Schindelholz B, Muehlan C, van Gerven J, Jenck F. (2017) The Use of Physiology-Based Pharmacokinetic and Pharmacodynamic Modeling in the Discovery of the Dual Orexin Receptor Antagonist ACT-541468. J Pharmacol Exp Ther, 362 (3): 489-503. [PMID:28663311]

92. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM. (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett, 438: 71-75. [PMID:9821961]

93. Turunen PM, Ekholm ME, Somerharju P, Kukkonen JP. (2010) Arachidonic acid release mediated by OX1 orexin receptors. Br J Pharmacol, 159 (1): 212-21. [PMID:20002100]

94. Turunen PM, Jäntti MH, Kukkonen JP. (2012) OX1 orexin/hypocretin receptor signaling through arachidonic acid and endocannabinoid release. Mol Pharmacol, 82 (2): 156-67. [PMID:22550093]

95. Voisin T, El Firar A, Fasseu M, Rouyer-Fessard C, Descatoire V, Walker F, Paradis V, Bedossa P, Henin D, Lehy T et al.. (2011) Aberrant expression of OX1 receptors for orexins in colon cancers and liver metastases: an openable gate to apoptosis. Cancer Res, 71 (9): 3341-51. [PMID:21415167]

96. Voisin T, El Firar A, Rouyer-Fessard C, Gratio V, Laburthe M. (2008) A hallmark of immunoreceptor, the tyrosine-based inhibitory motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives apoptosis: a novel mechanism. FASEB J, 22 (6): 1993-2002. [PMID:18198212]

97. Wayner MJ, Armstrong DL, Phelix CF, Oomura Y. (2004) Orexin-A (Hypocretin-1) and leptin enhance LTP in the dentate gyrus of rats in vivo. Peptides, 25 (6): 991-6. [PMID:15203246]

98. Winrow CJ, Gotter AL, Cox CD, Tannenbaum PL, Garson SL, Doran SM, Breslin MJ, Schreier JD, Fox SV, Harrell CM et al.. (2012) Pharmacological characterization of MK-6096 - A dual orexin receptor antagonist for insomnia. Neuropharmacology, 62 (2): 978-87. [PMID:22019562]

99. Yamamoto T, Nozaki-Taguchi N, Chiba T. (2002) Analgesic effect of intrathecally administered orexin-A in the rat formalin test and in the rat hot plate test. Br J Pharmacol, 137 (2): 170-6. [PMID:12208773]

100. Yin J, Babaoglu K, Brautigam CA, Clark L, Shao Z, Scheuermann TH, Harrell CM, Gotter AL, Roecker AJ, Winrow CJ et al.. (2016) Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat Struct Mol Biol, 23 (4): 293-9. [PMID:26950369]

101. Yoshida Y, Naoe Y, Terauchi T, Ozaki F, Doko T, Takemura A, Tanaka T, Sorimachi K, Beuckmann CT, Suzuki M et al.. (2015) Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006): A Potent and Efficacious Oral Orexin Receptor Antagonist. J Med Chem, 58 (11): 4648-64. [PMID:25953512]

102. Young JK, Wu M, Manaye KF, Kc P, Allard JS, Mack SO, Haxhiu MA. (2005) Orexin stimulates breathing via medullary and spinal pathways. J Appl Physiol, 98 (4): 1387-95. [PMID:15557013]

103. Yukitake H, Fujimoto T, Ishikawa T, Suzuki A, Shimizu Y, Rikimaru K, Ito M, Suzuki M, Kimura H. (2019) TAK-925, an orexin 2 receptor-selective agonist, shows robust wake-promoting effects in mice. Pharmacol Biochem Behav, 187: 172794. [PMID:31654653]

104. Zhang D, Perrey DA, Decker AM, Langston TL, Mavanji V, Harris DL, Kotz CM, Zhang Y. (2021) Discovery of Arylsulfonamides as Dual Orexin Receptor Agonists. J Med Chem, 64 (12): 8806-8825. [PMID:34101446]

105. Zhu Y, Miwa Y, Yamanaka A, Yada T, Shibahara M, Abe Y, Sakurai T, Goto K. (2003) Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. J Pharmacol Sci, 92: 259-266. [PMID:12890892]

Contributors

Show »

How to cite this page