Top ▲

P2Y1 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 323

Nomenclature: P2Y1 receptor

Family: P2Y receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 373 3q25.2 P2RY1 purinergic receptor P2Y1 1,27
Mouse 7 373 3 E1 P2ry1 purinergic receptor P2Y, G-protein coupled 1 52
Rat 7 373 2q31 P2ry1 purinergic receptor P2Y1 52
Previous and Unofficial Names Click here for help
ATP receptor | P2 purinoceptor subtype Y1 | P2Y purinoceptor 1 | platelet ADP receptor | Purinergic receptor P2Y1 | P2Y ATP receptor 1 | P2Y1 receptor | purinergic receptor P2Y
Database Links Click here for help
Specialist databases
GPCRdb p2ry1_human (Hs), p2ry1_mouse (Mm), p2ry1_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
ADP
ATP
Potency order of endogenous ligands
ADP>ATP

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]2MeSADP Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Agonist 7.3 pKd 50
pKd 7.3 (Kd 4.9x10-8 M) [50]
MRS2365 Small molecule or natural product Hs Agonist 9.4 pEC50 7
pEC50 9.4 [7]
2-Cl-ADP(α-BH3) Small molecule or natural product Hs Agonist 8.1 pEC50 2
pEC50 8.1 (EC50 7x10-9 M) [2]
compound 3a [PMID: 22873688] Small molecule or natural product Mg Full agonist 7.4 pEC50 55
pEC50 7.4 (EC50 3.8x10-8 M) [55]
ADPβS Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 7.3 pEC50 50
pEC50 7.3 (EC50 4.99x10-8 M) [50]
Ap3a Small molecule or natural product Ligand has a PDB structure Rn Agonist 7.2 pEC50 38
pEC50 7.2 (EC50 6x10-8 M) [38]
Ap5a Small molecule or natural product Hs Agonist <5.3 pEC50 38
pEC50 <5.3 (EC50 >5x10-6 M) [38]
2',3'-ddATP Small molecule or natural product Ligand has a PDB structure Hs Partial agonist 8.0 pIC50 44
pIC50 8.0 [44]
dATPαS Small molecule or natural product Hs Partial agonist 7.7 pIC50 44
pIC50 7.7 [44]
ATPγS Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 7.4 pIC50 44
pIC50 7.4 [44]
2MeSATP Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 6.4 – 7.6 pIC50 44,53
pIC50 6.4 – 7.6 [44,53]
ATP Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Partial agonist 6.1 – 7.8 pIC50 44,53
pIC50 6.1 – 7.8 [44,53]
ADP Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 6.2 – 7.2 pIC50 44,53
pIC50 6.2 – 7.2 [44,53]
2MeSADP Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.4 – 7.0 pIC50 44,53
pIC50 5.4 – 7.0 [44,53]
[35S]ADPβS Small molecule or natural product Ligand is labelled Ligand is radioactive ? Agonist - -
View species-specific agonist tables
Agonist Comments
When the purified recombinant human P2Y1 receptor was reconstituted in liposomes, 2-meSADP, 2-meSATP and ADP were full agonists and ATPγS, ADPβS and ATP were partial agonists [54]. This confirms an earlier study that ATP is a partial agonist [39], so at higher levels of P2Y1 receptor expression ATP acts as an agonist and at low levels as an antagonist [23] (see Antagonist section). Note that in some cases the apparent agonist action of ATP and other triphosphates may be due to impurity and to the rapid conversion to the diphosphate form [23].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[32P]MRS2500 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 9.4 pKd 26
pKd 9.4 [26]
[3H]MRS2279 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 8.1 pKd 53
pKd 8.1 (Kd 8x10-9 M) [53]
MRS2500 Small molecule or natural product Ligand has a PDB structure Hs Antagonist 8.8 – 9.1 pKi 6,29
pKi 8.8 – 9.1 [6,29]
BMS compound 4c Small molecule or natural product Hs Antagonist 8.2 pKi 42
pKi 8.2 (Ki 7x10-9 M) [42]
Pfizer compound 67 [PMID:18445527] Small molecule or natural product Hs Antagonist 8.0 pKi 40
pKi 8.0 (Ki 1x10-8 M) [40]
MRS2279 Small molecule or natural product Hs Antagonist 7.9 pKi 53
pKi 7.9 [53]
MRS2298 Small molecule or natural product Hs Antagonist 7.5 pKi 6
pKi 7.5 [6]
Pfizer compound 11 [PMID:18445527] Small molecule or natural product Hs Antagonist 7.3 pKi 40
pKi 7.3 (Ki 5x10-8 M) [40]
GlaxoSmithKline compound 6i [PMID:18926700] Small molecule or natural product Hs Antagonist 7.2 pKi 37
pKi 7.2 (Ki 7x10-8 M) [37]
MRS2496 Small molecule or natural product Hs Antagonist 7.1 pKi 6
pKi 7.1 [6]
MRS2179 Small molecule or natural product Hs Antagonist 7.0 – 7.1 pKi 3,53
pKi 7.0 – 7.1 [3,53]
GlaxoSmithKline compound 5h [PMID:20542694] Small molecule or natural product Hs Antagonist 6.8 pKi 51
pKi 6.8 (Ki 1.4x10-7 M) [51]
2-chloroadenosine-5-triphosphate Small molecule or natural product Hs Antagonist 5.6 pKi 23
pKi 5.6 [23]
suramin Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.3 pKi 53
pKi 5.3 [53]
2MeSATP Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.2 pKi 23
pKi 5.2 [23]
PPADS Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.2 pKi 53
pKi 5.2 [53]
ATP Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Antagonist 4.8 pKi 23
pKi 4.8 [23]
A2P5P Small molecule or natural product Ligand has a PDB structure Hs Antagonist 5.8 pEC50 3
pEC50 5.8 [3]
adenosine-3'-5'-bisphosphate Small molecule or natural product Ligand has a PDB structure Hs Antagonist 5.6 pEC50 3
pEC50 5.6 [3]
MRS2950 Small molecule or natural product Hs Antagonist 6.9 pIC50 9
pIC50 6.9 (IC50 1.4x10-7 M) [9]
Antagonist Comments
ATP is a partial agonist [39,54], so at low levels of P2Y1 receptor expression it acts as an antagonist [23]. Similarly, while 2MeSATP is considered to be a full agonist at the purified P2Y1 receptor [54], it has also been shown to act as an competitive antagonist at the same receptor [23]. High-throughput screening against the P2Y1 receptor identified a novel series of tetrahydro-4-quinolinamine antagonists [37].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
BMS compound 16 [PMID:23368907] Small molecule or natural product Ligand has a PDB structure Hs Negative 6.9 pKi 58
pKi 6.9 (Ki 1.2x10-7 M) [58]
Description: Inhibition of [3H]2MeSADP binding to P2Y1 receptors expressed in COS-7 cells.
2,2'-pyridylisatogen tosylate Small molecule or natural product Hs Negative 6.8 pIC50 19
pIC50 6.8 (IC50 1.4x10-7 M) [19]
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Comments:  The activation of PLC leads to mobilisation of calcium from IP3-sensitive intracellular stores. Purified recombinant human P2Y1 receptors coupled to Gαq and Gα11, but not Gα0, Gαi1, Gαi2 or Gαi3.
References:  11,54
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Potassium channel
Comments:  In CHO cells stably expressing CFTR, the endogenous P2Y1 receptor shifts its coupling to Gi/Go [35]
References:  16,32
Tissue Distribution Click here for help
Nucleus accumbens >> putamen > caudate nucleus, striatum > parahippocampal gyrus > hypothalamus, globus pallidus > cingulate gyrus, hippocampus > amygdala, medula oblongata > cerebellum, locus coeruleus, medial frontal gyrus, superior frontal gyrus, spinal cord > thalamus > substantia nigra.
Species:  Human
Technique:  RT-PCR.
References:  36
Placenta > prostate > brain > intestine > skeletal muscle, heart > macrophages > pituitary, lung > pancreas > spleen, foetal liver > adipose> stomach, lymphocytes > liver, kidney.
Species:  Human
Technique:  RT-PCR.
References:  36
Blood platelets.
Species:  Human
Technique:  RT-PCR
References:  28,34
GI tract: myenteric plexus, submucosal plexus, intestinal crypts of the ileum and along the lumen of the villi.
Species:  Mouse
Technique:  in situ hybridisation.
References:  20
Heart, skeletal muscle > brain, spleen, lung, liver, kidney.
Species:  Rat
Technique:  Northern blotting.
References:  52
Sensory ganglia: dorsal root ganglia (DRG), nodose ganglion (NG) and trigeminal ganglion (TG).
Species:  Rat
Technique:  RT-PCR and Immunohistochemistry.
References:  41
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Voltage clamp technique used to measure the ATP-evoked membrane current in Xenopus oocytes transfected with the P2Y1 receptor.
Species:  Rat
Tissue:  Xenopus oocytes.
Response measured:  Membrane current produced.
References:  52
Measurement of [Ca2+]i levels in Jurkat cells transfected with the P2Y1 receptor.
Species:  Human
Tissue:  Jurkat cells.
Response measured:  Increase in [Ca2+]i levels.
References:  22,34
Measurement of N-type Ca2+ channel currents in rat superior cervical ganglion (SCG) cells expressing the rat P2Y1 receptor.
Species:  Rat
Tissue:  Rat SCG cells.
Response measured:  Inhibition of N-type Ca2+ currents.
References:  15
Measurement of [Ca2+]i in human astrocytoma cells stably expressing the human P2Y1 receptor.
Species:  Human
Tissue:  1321N1 human astrocytoma cells.
Response measured:  Rapid increase in [Ca2+]i.
References:  39
Measurement of [Ca2+]i in rat glioma C6 cells endogenously expressing P2Y1 and P2Y2 receptors.
Species:  Rat
Tissue:  Glioma C6 cells.
Response measured:  Increase in [Ca2+]i via depletion of IP3-sensitive intracellular Ca2+ stores (PLC stimulation) and influx of extracellular Ca2+.
References:  43
Measurement of IP3 levels in response to selective P2Y1 receptor agonists in HEK 293 cells endogenously expressing the P2Y1 and P2Y2 receptors.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Increase in IP3 accumulation.
References:  45
Measurement of Ca2+ levels in response to the P2Y1 agonist ADP in mouse peritoneal macrophages.
Species:  Mouse
Tissue:  Peritoneal macrophages.
Response measured:  Increase in [Ca2+]i.
References:  10
Measurement of K2+ current using patch-clamping of SCG cells transfected with the P2Y1 receptor and GIRK1 and GIRK2 channels.
Species:  Rat
Tissue:  SCG neurons.
Response measured:  Transient activation of GIRK current followed by inactivation.
References:  48
Following mechanical stimulation of an individual 1321N1 cell, measurement of Ca2+ propagation in 1321N1 cells transfected with the P2Y1 cells.
Species:  Rat
Tissue:  1321N1 cells.
Response measured:  Ca2+ wave only spread to cells expressing the P2Y1 receptor. P2Y1 is not required for the initiation of the wave.
References:  18
Measurement of K+ currents in primary cultures of pyramidal hippocampal neurons
Species:  Rat
Tissue:  Hippocampal primary neurons
Response measured:  Inhibition of the M-type K+ current
References:  16
Physiological Functions Click here for help
Glutamate efflux
Species:  Rat
Tissue:  Spinal cord astrocytes
References:  57
Endothelial cell migration
Species:  Human
Tissue:  HUVEC
References:  46
Regulation of EGF activity
Species:  Human
Tissue:  Epithelial cells
References:  4
Mitogenic effects.
Species:  Rat
Tissue:  Aortic smooth muscle cells.
References:  13
Smooth muscle relaxation.
Species:  Mouse
Tissue:  GI tract: stomach fundus, duodenum, ileum and colon.
References:  20
Vasodilation through the NO/cGMP pathway.
Species:  Rat
Tissue:  Arterial mesenteric bed.
References:  5
Platelet shape change.
Species:  Human
Tissue:  Platelets.
References:  28
Induction of platelet aggregation.
Species:  Human
Tissue:  Blood platelets.
References:  22
Release of IL-6 stimulation and enhanced neuroprotection
Species:  Rat
Tissue:  Primary hippocampal astrocytes
References:  17
GFAP and GDNF production under ischemic conditions
Species:  Rat
Tissue:  Astrocytes
References:  49
Atherosclerosis enhancement
Species:  Mouse
Tissue:  Aorta
References:  21
Physiological Consequences of Altering Gene Expression Click here for help
P2Y1 receptor knockout mice exhibit increased bleeding time and increased protection from collagen- and ADP-induced thromboembolism.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  14
P2Y1 receptor knockout mice show no obvious abnormalities in their development, survival or reproduction, and have normal platelet morphology and count.
However, they have inpaired platelet aggregation in response to ADP and other agonists, and resistance to thromboembolism.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  33
P2Y1 receptor deficiency resulted in a reduction of atherosclerosis in ApoE knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  21
In vivo knockdown of the P2Y1 receptor by administration of short hairpin RNA selectively impairs the migration of neural progenitors to the subventricular zone
Species:  Mouse
Tissue: 
Technique:  RNAi
References:  32
P2Y1 knockout mice are protected from renal disease and resistant to capillary loss during passive crescentic glomerulonephritis
Species:  Mouse
Tissue: 
Technique:  Knockout by gene targeting in embryonic stem cells
References:  25
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
P2ry1tm1Gac P2ry1tm1Gac/P2ry1tm1Gac
involves: 129S2/SvPas * C57BL/6
MGI:105049  MP:0002551 abnormal blood coagulation PMID: 10606627 
P2ry1tm1Bhk P2ry1tm1Bhk/P2ry1tm1Bhk
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:105049  MP:0005464 abnormal platelet physiology PMID: 10502826 
P2ry1tm1Bhk P2ry1tm1Bhk/P2ry1tm1Bhk
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:105049  MP:0003422 abnormal thrombolysis PMID: 10502826 
P2ry1tm1Gac P2ry1tm1Gac/P2ry1tm1Gac
involves: 129S2/SvPas * C57BL/6
MGI:105049  MP:0009549 decreased platelet aggregation PMID: 10606627 
P2ry1+|P2ry1tm1Gac P2ry1tm1Gac/P2ry1+
involves: 129S2/SvPas * C57BL/6
MGI:105049  MP:0009549 decreased platelet aggregation PMID: 10606627 
P2ry1tm1Gac P2ry1tm1Gac/P2ry1tm1Gac
involves: 129S2/SvPas * C57BL/6
MGI:105049  MP:0005606 increased bleeding time PMID: 10606627 
P2ry1tm1Bhk P2ry1tm1Bhk/P2ry1tm1Bhk
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:105049  MP:0005606 increased bleeding time PMID: 10502826 
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A silent polymorphism in the coding seguence of the P2Y1 gene is associated with different platelet reactivity to ADP
References:  24
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The presence of a polymorphism appears to confer an attenuated antiplatelet effect during aspirin treatment in healthy Chinese subjects
References:  31
General Comments
In all species, the P2Y1 receptor is selective for adenine nucleotides. Presence of P2Y1 receptors has been reported in mitochondria of astrocytes and C6 cells, although its role in these sub-cellular structures remains unclear [30]. 44% of P2Y1 receptors expressed by HEK293 cell membranes exist as dimers in the resting state [8]. Furthermore, P2Y1 receptors appear to form heterodimers with novel pharmacological and signalling properties with a number of other receptors, including P2Y11 [12], P2Y12 [47] and A1 adenosine receptors [56].

References

Show »

1. Ayyanathan K, Webbs TE, Sandhu AK, Athwal RS, Barnard EA, Kunapuli SP. (1996) Cloning and chromosomal localization of the human P2Y1 purinoceptor. Biochem Biophys Res Commun, 218 (3): 783-8. [PMID:8579591]

2. Azran S, Förster D, Danino O, Nadel Y, Reiser G, Fischer B. (2013) Highly efficient biocompatible neuroprotectants with dual activity as antioxidants and P2Y receptor agonists. J Med Chem, 56 (12): 4938-52. [PMID:23751098]

3. Boyer JL, Romero-Avila T, Schachter JB, Harden TK. (1996) Identification of competitive antagonists of the P2Y1 receptor. Mol Pharmacol, 50 (5): 1323-9. [PMID:8913364]

4. Buvinic S, Bravo-Zehnder M, Boyer JL, Huidobro-Toro JP, González A. (2007) Nucleotide P2Y1 receptor regulates EGF receptor mitogenic signaling and expression in epithelial cells. J Cell Sci, 120 (Pt 24): 4289-301. [PMID:18057028]

5. Buvinic S, Briones R, Huidobro-Toro JP. (2002) P2Y(1) and P2Y(2) receptors are coupled to the NO/cGMP pathway to vasodilate the rat arterial mesenteric bed. Br J Pharmacol, 136 (6): 847-56. [PMID:12110609]

6. Cattaneo M, Lecchi A, Ohno M, Joshi BV, Besada P, Tchilibon S, Lombardi R, Bischofberger N, Harden TK, Jacobson KA. (2004) Antiaggregatory activity in human platelets of potent antagonists of the P2Y 1 receptor. Biochem Pharmacol, 68 (10): 1995-2002. [PMID:15476670]

7. Chhatriwala M, Ravi RG, Patel RI, Boyer JL, Jacobson KA, Harden TK. (2004) Induction of novel agonist selectivity for the ADP-activated P2Y1 receptor versus the ADP-activated P2Y12 and P2Y13 receptors by conformational constraint of an ADP analog. J Pharmacol Exp Ther, 311 (3): 1038-43. [PMID:15345752]

8. Choi RC, Simon J, Tsim KW, Barnard EA. (2008) Constitutive and agonist-induced dimerizations of the P2Y1 receptor: relationship to internalization and scaffolding. J Biol Chem, 283 (16): 11050-63. [PMID:18270199]

9. Costanzi S, Santhosh Kumar T, Balasubramanian R, Kendall Harden T, Jacobson KA. (2012) Virtual screening leads to the discovery of novel non-nucleotide P2Y₁ receptor antagonists. Bioorg Med Chem, 20 (17): 5254-61. [PMID:22831801]

10. Coutinho-Silva R, Ojcius DM, Górecki DC, Persechini PM, Bisaggio RC, Mendes AN, Marks J, Burnstock G, Dunn PM. (2005) Multiple P2X and P2Y receptor subtypes in mouse J774, spleen and peritoneal macrophages. Biochem Pharmacol, 69 (4): 641-55. [PMID:15670583]

11. Ding Z, Tuluc F, Bandivadekar KR, Zhang L, Jin J, Kunapuli SP. (2005) Arg333 and Arg334 in the COOH terminus of the human P2Y1 receptor are crucial for Gq coupling. Am J Physiol, Cell Physiol, 288 (3): C559-67. [PMID:15509659]

12. Ecke D, Hanck T, Tulapurkar ME, Schäfer R, Kassack M, Stricker R, Reiser G. (2008) Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem J, 409 (1): 107-16. [PMID:17824841]

13. Erlinge D, Hou M, Webb TE, Barnard EA, Moller S. (1998) Phenotype changes of the vascular smooth muscle cell regulate P2 receptor expression as measured by quantitative RT-PCR. Biochem Biophys Res Commun, 248: 864-870. [PMID:9704019]

14. Fabre JE, Nguyen M, Latour A, Keifer JA, Audoly LP, Coffman TM, Koller BH. (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med, 5 (10): 1199-202. [PMID:10502826]

15. Filippov AK, Brown DA, Barnard EA. (2000) The P2Y(1) receptor closes the N-type Ca(2+) channel in neurones, with both adenosine triphosphates and diphosphates as potent agonists. Br J Pharmacol, 129 (6): 1063-6. [PMID:10725253]

16. Filippov AK, Choi RC, Simon J, Barnard EA, Brown DA. (2006) Activation of P2Y1 nucleotide receptors induces inhibition of the M-type K+ current in rat hippocampal pyramidal neurons. J Neurosci, 26 (36): 9340-8. [PMID:16957090]

17. Fujita T, Tozaki-Saitoh H, Inoue K. (2009) P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. Glia, 57 (3): 244-57. [PMID:18756525]

18. Gallagher CJ, Salter MW. (2003) Differential properties of astrocyte calcium waves mediated by P2Y1 and P2Y2 receptors. J Neurosci, 23 (17): 6728-39. [PMID:12890765]

19. Gao ZG, Mamedova L, Tchilibon S, Gross AS, Jacobson KA. (2004) 2,2'-Pyridylisatogen tosylate antagonizes P2Y1 receptor signaling without affecting nucleotide binding. Biochem Pharmacol, 68 (2): 231-7. [PMID:15193995]

20. Giaroni C, Knight GE, Ruan HZ, Glass R, Bardini M, Lecchini S, Frigo G, Burnstock G. (2002) P2 receptors in the murine gastrointestinal tract. Neuropharmacology, 43 (8): 1313-23. [PMID:12527481]

21. Hechler B, Freund M, Ravanat C, Magnenat S, Cazenave JP, Gachet C. (2008) Reduced atherosclerotic lesions in P2Y1/apolipoprotein E double-knockout mice: the contribution of non-hematopoietic-derived P2Y1 receptors. Circulation, 118 (7): 754-63. [PMID:18663083]

22. Hechler B, Leon C, Vial C, Vigne P, Frelin C, Cazenave JP, Gachet C. (1998) The P2Y1 receptor is necessary for adenosine 5'-diphosphate-induced platelet aggregation. Blood, 92: 152-159. [PMID:9639511]

23. Hechler B, Vigne P, Léon C, Breittmayer JP, Gachet C, Frelin C. (1998) ATP derivatives are antagonists of the P2Y1 receptor: similarities to the platelet ADP receptor. Mol Pharmacol, 53 (4): 727-33. [PMID:9547364]

24. Hetherington SL, Singh RK, Lodwick D, Thompson JR, Goodall AH, Samani NJ. (2005) Dimorphism in the P2Y1 ADP receptor gene is associated with increased platelet activation response to ADP. Arterioscler Thromb Vasc Biol, 25 (1): 252-7. [PMID:15514209]

25. Hohenstein B, Renk S, Lang K, Daniel C, Freund M, Léon C, Amann KU, Gachet C, Hugo CP. (2007) P2Y1 gene deficiency protects from renal disease progression and capillary rarefaction during passive crescentic glomerulonephritis. J Am Soc Nephrol, 18 (2): 494-505. [PMID:17215444]

26. Houston D, Ohno M, Nicholas RA, Jacobson KA, Harden TK. (2006) [32P]2-iodo-N6-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate ([32P]MRS2500), a novel radioligand for quantification of native P2Y1 receptors. Br J Pharmacol, 147 (5): 459-67. [PMID:16299552]

27. Janssens R, Communi D, Pirotton S, Samson M, Parmentier M, Boeynaems JM. (1996) Cloning and tissue distribution of the human P2Y1 receptor. Biochem Biophys Res Commun, 221 (3): 588-93. [PMID:8630005]

28. Jin J, Daniel JL, Kunapuli SP. (1998) Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem, 273 (4): 2030-4. [PMID:9442040]

29. Kim HS, Ohno M, Xu B, Kim HO, Choi Y, Ji XD, Maddileti S, Marquez VE, Harden TK, Jacobson KA. (2003) 2-Substitution of adenine nucleotide analogues containing a bicyclo[3.1.0]hexane ring system locked in a northern conformation: enhanced potency as P2Y1 receptor antagonists. J Med Chem, 46 (23): 4974-87. [PMID:14584948]

30. Krzeminski P, Misiewicz I, Pomorski P, Kasprzycka-Guttman T, Barańska J, Brańska J. (2007) Mitochondrial localization of P2Y1, P2Y2 and P2Y12 receptors in rat astrocytes and glioma C6 cells. Brain Res Bull, 71 (6): 587-92. [PMID:17292801]

31. Li Q, Chen BL, Ozdemir V, Ji W, Mao YM, Wang LC, Lei HP, Fan L, Zhang W, Liu J et al.. (2007) Frequency of genetic polymorphisms of COX1, GPIIIa and P2Y1 in a Chinese population and association with attenuated response to aspirin. Pharmacogenomics, 8 (6): 577-86. [PMID:17559347]

32. Liu X, Hashimoto-Torii K, Torii M, Haydar TF, Rakic P. (2008) The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci USA, 105 (33): 11802-7. [PMID:18689674]

33. Léon C, Hechler B, Freund M, Eckly A, Vial C, Ohlmann P, Dierich A, LeMeur M, Cazenave JP, Gachet C. (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. J Clin Invest, 104 (12): 1731-7. [PMID:10606627]

34. Léon C, Hechler B, Vial C, Leray C, Cazenave JP, Gachet C. (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett, 403 (1): 26-30. [PMID:9038354]

35. Marcet B, Chappe V, Delmas P, Verrier B. (2004) Pharmacological and signaling properties of endogenous P2Y1 receptors in cystic fibrosis transmembrane conductance regulator-expressing Chinese hamster ovary cells. J Pharmacol Exp Ther, 309: 533-539. [PMID:14742736]

36. Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC, Murdock PR. (2001) Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys Acta, 1521 (1-3): 107-19. [PMID:11690642]

37. Morales-Ramos AI, Mecom JS, Kiesow TJ, Graybill TL, Brown GD, Aiyar NV, Davenport EA, Kallal LA, Knapp-Reed BA, Li P et al.. (2008) Tetrahydro-4-quinolinamines identified as novel P2Y(1) receptor antagonists. Bioorg Med Chem Lett, 18 (23): 6222-6. [PMID:18926700]

38. Nahum V, Tulapurkar M, Lévesque SA, Sévigny J, Reiser G, Fischer B. (2006) Diadenosine and diuridine poly(borano)phosphate analogues: synthesis, chemical and enzymatic stability, and activity at P2Y1 and P2Y2 receptors. J Med Chem, 49 (6): 1980-90. [PMID:16539385]

39. Palmer RK, Boyer JL, Schachter JB, Nicholas RA, Harden TK. (1998) Agonist action of adenosine triphosphates at the human P2Y1 receptor. Mol Pharmacol, 54 (6): 1118-23. [PMID:9855642]

40. Pfefferkorn JA, Choi C, Winters T, Kennedy R, Chi L, Perrin LA, Lu G, Ping YW, McClanahan T, Schroeder R et al.. (2008) P2Y1 receptor antagonists as novel antithrombotic agents. Bioorg Med Chem Lett, 18 (11): 3338-43. [PMID:18445527]

41. Ruan HZ, Burnstock G. (2003) Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem Cell Biol, 120 (5): 415-26. [PMID:14564529]

42. Ruel R, L'heureux A, Thibeault C, Daris JP, Martel A, Price LA, Wu Q, Hua J, Wexler RR, Rehfuss R et al.. (2013) New azole antagonists with high affinity for the P2Y1 receptor. Bioorg Med Chem Lett, 23 (12): 3519-22. [PMID:23668989]

43. Sabala P, Czajkowski R, Przybyłek K, Kalita K, Kaczmarek L, Barańska J. (2001) Two subtypes of G protein-coupled nucleotide receptors, P2Y(1) and P2Y(2) are involved in calcium signalling in glioma C6 cells. Br J Pharmacol, 132 (2): 393-402. [PMID:11159687]

44. Schachter JB, Harden TK. (1997) An examination of deoxyadenosine 5'(alpha-thio)triphosphate as a ligand to define P2Y receptors and its selectivity as a low potency partial agonist of the P2Y1 receptor. Br J Pharmacol, 121 (2): 338-44. [PMID:9154346]

45. Schachter JB, Sromek SM, Nicholas RA, Harden TK. (1997) HEK293 human embryonic kidney cells endogenously express the P2Y1 and P2Y2 receptors. Neuropharmacology, 36 (9): 1181-7. [PMID:9364473]

46. Shen J, DiCorleto PE. (2008) ADP stimulates human endothelial cell migration via P2Y1 nucleotide receptor-mediated mitogen-activated protein kinase pathways. Circ Res, 102 (4): 448-56. [PMID:18174464]

47. Shrestha SS, Parmar M, Kennedy C, Bushell TJ. (2010) Two-pore potassium ion channels are inhibited by both G(q/11)- and G(i)-coupled P2Y receptors. Mol Cell Neurosci, 43 (4): 363-9. [PMID:20097289]

48. Simon J, Filippov AK, Göransson S, Wong YH, Frelin C, Michel AD, Brown DA, Barnard EA. (2002) Characterization and channel coupling of the P2Y(12) nucleotide receptor of brain capillary endothelial cells. J Biol Chem, 277 (35): 31390-400. [PMID:12080041]

49. Sun JJ, Liu Y, Ye ZR. (2008) Effects of P2Y1 receptor on glial fibrillary acidic protein and glial cell line-derived neurotrophic factor production of astrocytes under ischemic condition and the related signaling pathways. Neurosci Bull, 24 (4): 231-43. [PMID:18668152]

50. Takasaki J, Kamohara M, Saito T, Matsumoto M, Matsumoto S, Ohishi T, Soga T, Matsushime H, Furuichi K. (2001) Molecular cloning of the platelet P2T(AC) ADP receptor: pharmacological comparison with another ADP receptor, the P2Y(1) receptor. Mol Pharmacol, 60: 432-439. [PMID:11502873]

51. Thalji RK, Aiyar N, Davenport EA, Erhardt JA, Kallal LA, Morrow DM, Senadhi S, Burns-Kurtis CL, Marino JP. (2010) Benzofuran-substituted urea derivatives as novel P2Y(1) receptor antagonists. Bioorg Med Chem Lett, 20 (14): 4104-7. [PMID:20542694]

52. Tokuyama Y, Hara M, Jones EM, Fan Z, Bell GI. (1995) Cloning of rat and mouse P2Y purinoceptors. Biochem Biophys Res Commun, 211: 211-218. [PMID:7779087]

53. Waldo GL, Corbitt J, Boyer JL, Ravi G, Kim HS, Ji XD, Lacy J, Jacobson KA, Harden TK. (2002) Quantitation of the P2Y(1) receptor with a high affinity radiolabeled antagonist. Mol Pharmacol, 62 (5): 1249-57. [PMID:12391289]

54. Waldo GL, Harden TK. (2004) Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol, 65 (2): 426-36. [PMID:14742685]

55. Yelovitch S, Barr HM, Camden J, Weisman GA, Shai E, Varon D, Fischer B. (2012) Identification of a promising drug candidate for the treatment of type 2 diabetes based on a P2Y(1) receptor agonist. J Med Chem, 55 (17): 7623-35. [PMID:22873688]

56. Yoshioka K, Saitoh O, Nakata H. (2001) Heteromeric association creates a P2Y-like adenosine receptor. Proc Natl Acad Sci USA, 98 (13): 7617-22. [PMID:11390975]

57. Zeng JW, Liu XH, He WJ, Du L, Zhang JH, Wu XG, Ruan HZ. (2008) Inhibition of ATP-induced glutamate release by MRS2179 in cultured dorsal spinal cord astrocytes. Pharmacology, 82 (4): 257-63. [PMID:18841035]

58. Zhang D, Gao ZG, Zhang K, Kiselev E, Crane S, Wang J, Paoletta S, Yi C, Ma L, Zhang W et al.. (2015) Two disparate ligand-binding sites in the human P2Y1 receptor. Nature, 520 (7547): 317-21. [PMID:25822790]

Contributors

Show »

How to cite this page