Top ▲

FP receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 344

Nomenclature: FP receptor

Family: Prostanoid receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 359 1p31.1 PTGFR prostaglandin F receptor 2,5,25
Mouse 7 366 3 76.96 cM Ptgfr prostaglandin F receptor 16,47
Rat 7 366 2q45 Ptgfr prostaglandin F receptor 23,25
Previous and Unofficial Names Click here for help
PF2AR | PGF receptor | PGF2 alpha receptor | prostaglandin F receptor | prostaglandin F2-alpha receptor | prostaglandin F receptor (FP)
Database Links Click here for help
Specialist databases
GPCRdb pf2r_human (Hs), pf2r_mouse (Mm), pf2r_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
PGD2
PGE2
PGF
PGI2
Comments: PGF is the principal endogenous agonist
Potency order of endogenous ligands
PGF > PGD2 > PGE2 > PGI2, thromboxane A2

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]PGF Small molecule or natural product Ligand is labelled Ligand is radioactive Mm Full agonist 8.9 pKd 47
pKd 8.9 [47]
[3H]PGF Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist 8.1 – 9.0 pKd 1-2,56
pKd 8.1 – 9.0 (Kd 7.9x10-9 – 1x10-9 M) [1-2,56]
cloprostenol Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 9.3 pKi 1
pKi 9.3 [1]
fluprostenol Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.6 pKi 1
pKi 8.6 [1]
latanoprost (free acid form) Small molecule or natural product Approved drug Primary target of this compound Ligand has a PDB structure Hs Full agonist 8.6 pKi 1
pKi 8.6 [1]
latanoprostene bunod Small molecule or natural product Approved drug Hs Agonist ~8.6 pKi 1,24
pKi ~8.6 (Ki ~2.51x10-9 M) [1,24]
Description: Value based on agonist activity of latanoprost.
PGF Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Mm Full agonist 8.5 pKi 22
pKi 8.5 [22]
fluprostenol Small molecule or natural product Mm Full agonist 8.4 pKi 22
pKi 8.4 [22]
PGF Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 7.9 – 8.5 pKi 1,33,56
pKi 7.9 – 8.5 [1,33,56]
ONO-9054 Small molecule or natural product Hs Agonist 7.8 pKi 61
pKi 7.8 (Ki 1.68x10-8 M) [61]
PGD2 Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 7.7 pKi 33
pKi 7.7 [33]
PGD2 Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Mm Full agonist 7.3 pKi 22
pKi 7.3 [22]
enprostil Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.1 pKi 1
pKi 7.1 [1]
PGE2 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Mm Full agonist 7.0 pKi 22
pKi 7.0 [22]
I-BOP Small molecule or natural product Click here for species-specific activity table Mm Full agonist 7.0 pKi 22
pKi 7.0 [22]
MB-28767 Small molecule or natural product Click here for species-specific activity table Mm Full agonist 6.9 pKi 22
pKi 6.9 [22]
sulprostone Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.7 pKi 1
pKi 6.7 [1]
PGE2 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 6.4 – 6.9 pKi 1,33
pKi 6.4 – 6.9 [1,33]
U46619 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 6.6 pKi 1
pKi 6.6 [1]
carbacyclin Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.4 – 6.5 pKi 1
pKi 6.4 – 6.5 [1]
MB-28767 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.3 pKi 1
pKi 6.3 [1]
latanoprost (isopropyl ester) Small molecule or natural product Approved drug Primary target of this compound Hs Full agonist 6.3 pKi 1
pKi 6.3 [1]
iloprost Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Full agonist 6.2 pKi 1
pKi 6.2 [1]
U46619 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Mm Full agonist 6.0 pKi 22
pKi 6.0 [22]
carbacyclin Small molecule or natural product Click here for species-specific activity table Mm Full agonist 5.9 pKi 22
pKi 5.9 [22]
L-888,607 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.0 pKi 14
pKi 5.0 [14]
tafluprost acid Small molecule or natural product Ligand has a PDB structure Hs Agonist 9.3 pEC50 50
pEC50 9.3 (EC50 5.3x10-10 M) [50]
Description: Affinity measured in a cell line stably expressing the recombinant human prostanoid FP receptor.
AL12180 Small molecule or natural product Hs Agonist 7.7 – 7.9 pEC50 44
pEC50 7.7 – 7.9 (EC50 2.2x10-8 – 1.4x10-8 M) [44]
AL-8810 Small molecule or natural product Mm Partial agonist 6.7 pEC50 15
pEC50 6.7 [15]
AL-8810 Small molecule or natural product Rn Partial agonist 6.7 pEC50 15
pEC50 6.7 [15]
13,14-dihydro-16-m-chlorophenoxy-w-tetranor-PGF Small molecule or natural product Hs Full agonist 8.6 – 9.0 pIC50 55
pIC50 8.6 – 9.0 [55]
bimatoprost (free acid form) Small molecule or natural product Primary target of this compound Hs Full agonist 8.7 pIC50 58
pIC50 8.7 [58]
ONO-9054 Small molecule or natural product Hs Agonist 5.5 pIC50 61
pIC50 5.5 (IC50 3.03x10-6 M) [61]
bimatoprost Small molecule or natural product Approved drug Primary target of this compound Ligand has a PDB structure Hs Full agonist 5.3 pIC50 59
pIC50 5.3 (IC50 5.011x10-6 M) [59]
tafluprost Small molecule or natural product Approved drug Primary target of this compound Hs Agonist - - 50
[50]
View species-specific agonist tables
Agonist Comments
Fluprostenol is a widely used selective FP receptor agonist [18-19]. Latanoprost free acid is a suitable substitute.
AGN-204396 blocks the contractile action of PGF-1-ethanolamide, but not PGF, on cat iris sphincter muscle, indicating the presence of "prostamide receptors".
The free acid form of AL-12182, AL-12180, used in in vitro studies, has a EC50 value of 15nM which is the concentration of the compound giving half-maximal stimulation of IP turnover in HEK-293 cells expressing the human FP receptor [44].
Tafluprost: the FP receptor is tagged as the primary drug target for tafluprost, but note that this is a prodrug and actual activity is attributable to the active metabolite tafluprost acid.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
AS604872 Small molecule or natural product Hs Antagonist 7.5 pKi 7
pKi 7.5 (Ki 3.5x10-8 M) [7]
BAY-6672 Small molecule or natural product Hs Antagonist 7.7 pIC50 4
pIC50 7.7 (IC50 2.2x10-8 M) [4]
Description: Receptor binding determined in a proprietary hFP-R binding assay.
Antagonist Comments
True antagonists for the FP receptor are not available. AL-8810 (11S,15R-11-fluoro-w-pentanor-16-(2-indanyl)-PGF), a selective FP partial agonist, has been used to block FP receptors [15].
Allosteric Modulator Comments
PDC31 and PDC113.824 behave as allosteric inhibitors of FP receptor signaling. The structures of both compounds were presented in Sharif and Klimko (2019) [43].
Immuno Process Associations
Immuno Process:  Inflammation
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  6,17
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
References: 
Tissue Distribution Click here for help
Eye: endothelial and smooth muscle cells of blood vessels of the iris, ciliary body and choroid. Ciliary muscle (circular muscle, collagenous connective tissues).
Species:  Human
Technique:  in situ hybridisation.
References:  30,62
Myometrium.
Species:  Human
Technique:  Northern blotting.
References:  26
Eye: sclera.
Species:  Human
Technique:  Immunocytochemistry and RT-PCR.
References:  3
Kidney (distal tubules), uterus, ovary, testes, skin, liver.
Species:  Mouse
Technique:  In situ hybridisation and β-galactosidase staining.
References:  41
Luteal cells of corpus luteum > kidney, heart, stomach, lung.
Species:  Mouse
Technique:  Northern blotting.
References:  47
Ovary.
Species:  Mouse
Technique:  RT-PCR.
References:  35
Normal, hyperplastic and neoplastic skin.
Species:  Mouse
Technique:  RT-PCR and Northern Blotting.
References:  31
Ovary.
Species:  Rat
Technique:  Immunohistochemistry.
References:  36
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of Ca2+ levels in Xenopus oocytes transfected with the FP receptor using electrophysiology (measurement of Ca2+-dependent Cl- current) and an aequorin luminescence assay.
Species:  Human
Tissue:  Xenopus oocytes.
Response measured:  Increase in Ca2+ concentration.
References:  2
Measurement of Ca2+ levels in HEK 293 cells transfected with the human FP receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Ca2+ mobilisation.
References:  20
Measurement of Ca2+ levels in rat A7r5 cells endogenously expressing the FP receptor.
Species:  Rat
Tissue:  A7r5 cells.
Response measured:  Ca2+ mobilisation.
References:  20
Measurement of Ca2+ levels in mouse Swiss 3T3 cells endogenously expressing the FP receptor.
Species:  Mouse
Tissue:  Swiss 3T3 cells.
Response measured:  Ca2+ mobilisation.
References:  20,57,60
Measurement of phosphoinositide (PI) levels in LLC-PK1 cells transfected with the rat FP receptor.
Species:  Human
Tissue:  LLC-PK1 cells.
Response measured:  Stimulation of PI hydrolysis.
References:  23
Measurement of PLC activity, Ca2+ levels and [3H]thymidine incorporation in mouse fibroblast NIH 3T3 cells endogenously expressing the FP receptor.
Species:  Mouse
Tissue:  NIH 3T3 cells.
Response measured:  Stimulation of PLC activity, Ca2+ mobilisation and and increase in [3H]thymidine incorporation.
References:  32
Measurement of PLC activity and Ca2+ levels in human granulosa cells endogenously expressing the FP receptor.
Species:  Human
Tissue:  Granulosa cells.
Response measured:  Stimulation of PLCβ activity and an increase in Ca2+.
References:  6
Measurement of IP3 levels in COS cells transfected with the mouse FP receptor.
Species:  Mouse
Tissue:  COS cells.
Response measured:  Stimulation of IP3 accumulation.
References:  47
Determination of PLC activity and Ca2+ mobilisation by electrophysiological measurement of inward current.
Species:  Mouse
Tissue:  Xenopus oocytes.
Response measured:  Stimulation of PLC activity and Ca2+ mobilisation.
References:  47
Physiological Functions Click here for help
Increase force of contraction of cardiac muscle.
Species:  Rat
Tissue:  Left ventricular strips.
References:  40
Luteolysis.
Species:  Mouse
Tissue:  In vivo (ovary).
References:  49
Contraction.
Species:  Mouse
Tissue:  Myometrium.
References:  38
Contraction.
Species:  Human
Tissue:  Myometrium.
References:  12
Decrease in intraocular pressure.
Species:  Mouse
Tissue:  In vivo (eye).
References:  37
Inhibition of prolactin receptor expression in the corpus luteum.
Species:  Rat
Tissue:  In vivo (corpus luteum).
References:  46
Physiological Consequences of Altering Gene Expression Click here for help
FP receptor knockout mice exhibit increased apoptosis in the placenta.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  27-29
FP receptor knockout mice to not exhibit the lowering of intraocular pressure induced by prostaglandin analogues, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  8-9,37
FP receptor knockout mice exhibit decreased aquaporin-8 expression in fetal membranes, which may affect amniotic fluid volume.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  45
FP receptor knockout mice displayed impaired inflammatory tachycardia.
Species:  Human
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  51
FP receptor knockout mice exhibit inhibition of cytokine-induced increase in beating rate, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  51
FP receptor knockout mice fail to exhibit luteolysis and hence initiate parturition, and there is no induction of oxytocin receptors in the uterus. Although FP receptor knockout mice cannot deliver fetuses to term, they can be rescued by caesarean section.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  10,21,48-49,52-53
FP receptor knockout mice exhibit reduced responses in bleomycin-induced pulmonary fibrosis.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  34
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Ptgfrtm1Aic Ptgfrtm1Aic/Ptgfrtm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:97796  MP:0002783 abnormal ovarian secretion PMID: 9235889 
Ptgfrtm1Aic Ptgfrtm1Aic/Ptgfrtm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:97796  MP:0002907 abnormal parturition PMID: 12606450  9235889 
Ptgfrtm1Aic Ptgfrtm1Aic/Ptgfrtm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:97796  MP:0001919 abnormal reproductive system physiology PMID: 9235889 
Biologically Significant Variants Click here for help
Type:  Splice variant
Species:  Human
Description:  The first splice variant of the human FP receptor has been cloned from the heart and placenta and named FPS. It lacks TM 7 and the c-terminal, although the consequences of this are at present unknown.
References:  54
General Comments
Angiotensin II (Ang II) type 1 receptor (AT1R) and the prostaglandin F (PGF) receptor (FP), are both important in the control of smooth muscle contractility, and form a functional heterodimeric complex in HEK 293 and vascular smooth muscle cells [11].
An alternatively spliced C-terminal form of the ovine FP receptor, FPB (318aa), has been described [39,39,42]. Unlike FPA, FPB is resistant to PKC-dependent phosphorylation [13]. There is no clear evidence for FP receptor subtypes.

References

Show »

1. Abramovitz M, Adam M, Boie Y, Carrière M, Denis D, Godbout C, Lamontagne S, Rochette C, Sawyer N, Tremblay NM et al.. (2000) The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim Biophys Acta, 1483 (2): 285-93. [PMID:10634944]

2. Abramovitz M, Boie Y, Nguyen T, Rushmore TH, Bayne MA, Metters KM, Slipetz DM, Grygorczyk R. (1994) Cloning and expression of a cDNA for the human prostanoid FP receptor. J Biol Chem, 269 (4): 2632-6. [PMID:8300593]

3. Anthony TL, Lindsey JD, Aihara M, Weinreb RN. (2001) Detection of prostaglandin EP(1), EP(2), and FP receptor subtypes in human sclera. Invest Ophthalmol Vis Sci, 42 (13): 3182-6. [PMID:11726620]

4. Beck H, Thaler T, Meibom D, Meininghaus M, Jöriβen H, Dietz L, Terjung C, Bairlein M, von Bühler C-J, Anlauf S et al.. (2020) Potent and Selective Human Prostaglandin F (FP) Receptor Antagonist (BAY-6672) for the Treatment of Idiopathic Pulmonary Fibrosis (IPF). J Med Chem, [Online ahead of print]. DOI: 10.1021/acs.jmedchem.0c00834 [PMID:32969660]

5. Betz R, Lagercrantz J, Kedra D, Dumanski JP, Nordenskjöld A. (1999) Genomic structure, 5' flanking sequences, and precise localization in 1P31.1 of the human prostaglandin F receptor gene. Biochem Biophys Res Commun, 254 (2): 413-6. [PMID:9918852]

6. Carrasco MP, Asbóth G, Phaneuf S, López Bernal A. (1997) Activation of the prostaglandin FP receptor in human granulosa cells. J Reprod Fertil, 111 (2): 309-17. [PMID:9462300]

7. Cirillo R, Tos EG, Page P, Missotten M, Quattropani A, Scheer A, Schwarz MK, Chollet A. (2007) Arrest of preterm labor in rat and mouse by an oral and selective nonprostanoid antagonist of the prostaglandin F2alpha receptor (FP). Am J Obstet Gynecol, 197 (1): 54.e1-9. [PMID:17618756]

8. Crowston JG, Lindsey JD, Aihara M, Weinreb RN. (2004) Effect of latanoprost on intraocular pressure in mice lacking the prostaglandin FP receptor. Invest Ophthalmol Vis Sci, 45 (10): 3555-9. [PMID:15452062]

9. Crowston JG, Lindsey JD, Morris CA, Wheeler L, Medeiros FA, Weinreb RN. (2005) Effect of bimatoprost on intraocular pressure in prostaglandin FP receptor knockout mice. Invest Ophthalmol Vis Sci, 46 (12): 4571-7. [PMID:16303950]

10. Croy BA, Chantakru S, Narumiya S, Ichikawa A, Sugimoto Y. (2000) Prolonged gestation does not extend survival of uterine natural killer lymphocytes in mice deleted in the receptor for prostaglandin F2alpha. J Reprod Immunol, 46 (2): 125-9. [PMID:10706943]

11. Fillion D, Devost D, Sleno R, Inoue A, Hébert TE. (2019) Asymmetric Recruitment of β-Arrestin1/2 by the Angiotensin II Type I and Prostaglandin F2α Receptor Dimer. Front Endocrinol (Lausanne), 10: 162. [PMID:30936850]

12. Friel AM, O'Reilly MW, Sexton DJ, Morrison JJ. (2005) Specific PGF(2alpha) receptor (FP) antagonism and human uterine contractility in vitro. BJOG, 112: 1034-1042. [PMID:16045514]

13. Fujino H, Srinivasan D, Pierce KL, Regan JW. (2000) Differential regulation of prostaglandin F(2alpha) receptor isoforms by protein kinase C. Mol Pharmacol, 57 (2): 353-8. [PMID:10648645]

14. Gervais FG, Morello JP, Beaulieu C, Sawyer N, Denis D, Greig G, Malebranche AD, O'Neill GP. (2005) Identification of a potent and selective synthetic agonist at the CRTH2 receptor. Mol Pharmacol, 67 (6): 1834-9. [PMID:15755909]

15. Griffin BW, Klimko P, Crider JY, Sharif NA. (1999) AL-8810: a novel prostaglandin F2 alpha analog with selective antagonist effects at the prostaglandin F2 alpha (FP) receptor. J Pharmacol Exp Ther, 290 (3): 1278-84. [PMID:10454504]

16. Ishikawa TO, Tamai Y, Rochelle JM, Hirata M, Namba T, Sugimoto Y, Ichikawa A, Narumiya S, Taketo MM, Seldin MF. (1996) Mapping of the genes encoding mouse prostaglandin D, E, and F and prostacyclin receptors. Genomics, 32 (2): 285-8. [PMID:8833158]

17. Ito S, Sakamoto K, Mochizuki-Oda N, Ezashi T, Miwa K, Okuda-Ashitaka E, Shevchenko VI, Kiso Y, Hayaishi O. (1994) Prostaglandin F2 alpha receptor is coupled to Gq in cDNA-transfected Chinese hamster ovary cells. Biochem Biophys Res Commun, 200 (2): 756-62. [PMID:8179609]

18. Jones RL, Marr CG. (1977) Actions of 16-aryloxy analogues of prostaglandin F2alpha on preparations responsive to prostaglandin endoperoxides. Br J Pharmacol, 61 (4): 694-6. [PMID:597671]

19. Jones RL, Peesapati V, Wilson NH. (1982) Antagonism of the thromboxane-sensitive contractile systems of the rabbit aorta, dog saphenous vein and guinea-pig trachea. Br J Pharmacol, 76 (3): 423-38. [PMID:6286023]

20. Kelly CR, Williams GW, Sharif NA. (2003) Real-time intracellular Ca2+ mobilization by travoprost acid, bimatoprost, unoprostone, and other analogs via endogenous mouse, rat, and cloned human FP prostaglandin receptors. J Pharmacol Exp Ther, 304 (1): 238-45. [PMID:12490597]

21. Kimura T, Ogita K, Kusui C, Ohashi K, Azuma C, Murata Y. (1999) What knockout mice can tell us about parturition. Rev Reprod, 4: 73-80. [PMID:10357094]

22. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S. (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 122 (2): 217-24. [PMID:9313928]

23. Kitanaka J, Hasimoto H, Sugimoto Y, Negishi M, Aino H, Gotoh M, Ichikawa A, Baba A. (1994) Cloning and expression of a cDNA for rat prostaglandin F2 alpha receptor. Prostaglandins, 48 (1): 31-41. [PMID:7972878]

24. Krauss AH, Impagnatiello F, Toris CB, Gale DC, Prasanna G, Borghi V, Chiroli V, Chong WK, Carreiro ST, Ongini E. (2011) Ocular hypotensive activity of BOL-303259-X, a nitric oxide donating prostaglandin F2α agonist, in preclinical models. Exp Eye Res, 93 (3): 250-5. [PMID:21396362]

25. Lake S, Gullberg H, Wahlqvist J, Sjögren AM, Kinhult A, Lind P, Hellström-Lindahl E, Stjernschantz J. (1994) Cloning of the rat and human prostaglandin F2 alpha receptors and the expression of the rat prostaglandin F2 alpha receptor. FEBS Lett, 355 (3): 317-25. [PMID:7988697]

26. Matsumoto T, Sagawa N, Yoshida M, Mori T, Tanaka I, Mukoyama M, Kotani M, Nakao K. (1997) The prostaglandin E2 and F2 alpha receptor genes are expressed in human myometrium and are down-regulated during pregnancy. Biochem Biophys Res Commun, 238: 838-841. [PMID:9325177]

27. Mu J, Kanzaki T, Si X, Tomimatsu T, Fukuda H, Fujii E, Hosono T, Murata Y, Sugimoto Y, Ichikawa A. (2002) Apoptosis and related proteins during parturition in prostaglandin F receptor-deficient mice. Biochem Biophys Res Commun, 292: 675-681. [PMID:11922619]

28. Mu J, Kanzaki T, Si X, Tomimatsu T, Fukuda H, Shioji M, Murata Y, Sugimoto Y, Ichikawa A. (2003) Apoptosis and related proteins in placenta of intrauterine fetal death in prostaglandin f receptor-deficient mice. Biol Reprod, 68 (6): 1968-74. [PMID:12606450]

29. Mu J, Kanzaki T, Tomimatsu T, Fukuda H, Wasada K, Fujii E, Endoh M, Kozuki M, Murata Y, Sugimoto Y et al.. (2002) Expression of apoptosis in placentae from mice lacking the prostaglandin F receptor. Placenta, 23 (2-3): 215-23. [PMID:11945089]

30. Mukhopadhyay P, Bian L, Yin H, Bhattacherjee P, Paterson C. (2001) Localization of EP(1) and FP receptors in human ocular tissues by in situ hybridization. Invest Ophthalmol Vis Sci, 42 (2): 424-8. [PMID:11157877]

31. Müller K, Krieg P, Marks F, Fürstenberger G. (2000) Expression of PGF(2alpha) receptor mRNA in normal, hyperplastic and neoplastic skin. Carcinogenesis, 21 (5): 1063-6. [PMID:10783334]

32. Nakao A, Watanabe T, Taniguchi S, Nakamura M, Honda Z, Shimizu T, Kurokawa K. (1993) Characterization of prostaglandin F2 alpha receptor of mouse 3T3 fibroblasts and its functional expression in Xenopus laevis oocytes. J Cell Physiol, 155: 257-264. [PMID:8482718]

33. Neuschäfer-Rube F, Engemaier E, Koch S, Böer U, Püschel GP. (2003) Identification by site-directed mutagenesis of amino acids contributing to ligand-binding specificity or signal transduction properties of the human FP prostanoid receptor. Biochem J, 371 (Pt 2): 443-9. [PMID:12519077]

34. Oga T, Matsuoka T, Yao C, Nonomura K, Kitaoka S, Sakata D, Kita Y, Tanizawa K, Taguchi Y, Chin K et al.. (2009) Prostaglandin F(2alpha) receptor signaling facilitates bleomycin-induced pulmonary fibrosis independently of transforming growth factor-beta. Nat Med, 15 (12): 1426-30. [PMID:19966781]

35. Olofsson JI, Leung CH, Bjurulf E, Ohno T, Selstam G, Peng C, Leung PC. (1996) Characterization and regulation of a mRNA encoding the prostaglandin F2alpha receptor in the rat ovary. Mol Cell Endocrinol, 123 (1): 45-52. [PMID:8912810]

36. Orlicky DJ, Fisher L, Dunscomb N, Miller GJ. (1992) Immunohistochemical localization of PGF2 alpha receptor in the rat ovary. Prostaglandins Leukot Essent Fatty Acids, 46 (3): 223-9. [PMID:1508956]

37. Ota T, Aihara M, Narumiya S, Araie M. (2005) The effects of prostaglandin analogues on IOP in prostanoid FP-receptor-deficient mice. Invest Ophthalmol Vis Sci, 46 (11): 4159-63. [PMID:16249494]

38. Peri KG, Quiniou C, Hou X, Abran D, Varma DR, Lubell WD, Chemtob S. (2002) THG113: a novel selective FP antagonist that delays preterm labor. Semin Perinatol, 26 (6): 389-97. [PMID:12537309]

39. Pierce KL, Bailey TJ, Hoyer PB, Gil DW, Woodward DF, Regan JW. (1997) Cloning of a carboxyl-terminal isoform of the prostanoid FP receptor. J Biol Chem, 272 (2): 883-7. [PMID:8995377]

40. Pönicke K, Giessler C, Grapow M, Heinroth-Hoffmann I, Becker K, Osten B, Brodde OE. (2000) FP-receptor mediated trophic effects of prostanoids in rat ventricular cardiomyocytes. Br J Pharmacol, 129 (8): 1723-31. [PMID:10780979]

41. Saito O, Guan Y, Qi Z, Davis LS, Kömhoff M, Sugimoto Y, Narumiya S, Breyer RM, Breyer MD. (2003) Expression of the prostaglandin F receptor (FP) gene along the mouse genitourinary tract. Am J Physiol Renal Physiol, 284 (6): F1164-70. [PMID:12631554]

42. Sakamoto K, Ezashi T, Miwa K, Okuda-Ashitaka E, Houtani T, Sugimoto T, Ito S, Hayaishi O. (1994) Molecular cloning and expression of a cDNA of the bovine prostaglandin F2 alpha receptor. J Biol Chem, 269 (5): 3881-6. [PMID:7508922]

43. Sharif NA, Klimko PG. (2019) Prostaglandin FP receptor antagonists: discovery, pharmacological characterization and therapeutic utility. Br J Pharmacol, 176 (8): 1059-1078. [PMID:29679483]

44. Sharif NA, McLaughlin MA, Kelly CR, Xu S, Crider JY, Williams GW, Parker JL. (2006) Preclinical pharmacology of AL-12182, a new ocular hypotensive 11-oxa prostaglandin analog. J Ocul Pharmacol Ther, 22 (5): 291-309. [PMID:17076623]

45. Shioji M, Fukuda H, Kanzaki T, Wasada K, Kanagawa T, Shimoya K, Mu J, Sugimoto Y, Murata Y. (2006) Reduction of aquaporin-8 on fetal membranes under oligohydramnios in mice lacking prostaglandin F2 alpha receptor. J Obstet Gynaecol Res, 32 (4): 373-8. [PMID:16882262]

46. Stocco C, Djiane J, Gibori G. (2003) Prostaglandin F(2alpha) (PGF(2alpha)) and prolactin signaling: PGF(2alpha)-mediated inhibition of prolactin receptor expression in the Corpus luteum. Endocrinology, 144: 3301-3305. [PMID:12865306]

47. Sugimoto Y, Hasumoto K, Namba T, Irie A, Katsuyama M, Negishi M, Kakizuka A, Narumiya S, Ichikawa A. (1994) Cloning and expression of a cDNA for mouse prostaglandin F receptor. J Biol Chem, 269 (2): 1356-60. [PMID:8288601]

48. Sugimoto Y, Segi E, Tsuboi K, Ichikawa A, Narumiya S. (1998) Female reproduction in mice lacking the prostaglandin F receptor. Roles of prostaglandin and oxytocin receptors in parturition. Adv Exp Med Biol, 449: 317-21. [PMID:10026819]

49. Sugimoto Y, Yamasaki A, Segi E, Tsuboi K, Aze Y, Nishimura T, Oida H, Yoshida N, Tanaka T, Katsuyama M et al.. (1997) Failure of parturition in mice lacking the prostaglandin F receptor. Science, 277 (5326): 681-3. [PMID:9235889]

50. Takagi Y, Nakajima T, Shimazaki A, Kageyama M, Matsugi T, Matsumura Y, Gabelt BT, Kaufman PL, Hara H. (2004) Pharmacological characteristics of AFP-168 (tafluprost), a new prostanoid FP receptor agonist, as an ocular hypotensive drug. Exp Eye Res, 78 (4): 767-76. [PMID:15037111]

51. Takayama K, Yuhki K, Ono K, Fujino T, Hara A, Yamada T, Kuriyama S, Karibe H, Okada Y, Takahata O et al.. (2005) Thromboxane A2 and prostaglandin F2alpha mediate inflammatory tachycardia. Nat Med, 11 (5): 562-6. [PMID:15834430]

52. Tsuboi K, Iwane A, Nakazawa S, Sugimoto Y, Ichikawa A. (2003) Role of prostaglandin H2 synthase 2 in murine parturition: study on ovariectomy-induced parturition in prostaglandin F receptor-deficient mice. Biol Reprod, 69 (1): 195-201. [PMID:12620936]

53. Tsuboi K, Sugimoto Y, Iwane A, Yamamoto K, Yamamoto S, Ichikawa A. (2000) Uterine expression of prostaglandin H2 synthase in late pregnancy and during parturition in prostaglandin F receptor-deficient mice. Endocrinology, 141 (1): 315-24. [PMID:10614653]

54. Vielhauer GA, Fujino H, Regan JW. (2004) Cloning and localization of hFP(S): a six-transmembrane mRNA splice variant of the human FP prostanoid receptor. Arch Biochem Biophys, 421 (2): 175-85. [PMID:14984197]

55. Wang Y, Wos JA, Dirr MJ, Soper DL, deLong MA, Mieling GE, De B, Amburgey JS, Suchanek EG, Taylor CJ. (2000) Design and synthesis of 13,14-dihydro prostaglandin F(1alpha) analogues as potent and selective ligands for the human FP receptor. J Med Chem, 43 (5): 945-52. [PMID:10715159]

56. Wilson RJ, Giblin GM, Roomans S, Rhodes SA, Cartwright KA, Shield VJ, Brown J, Wise A, Chowdhury J, Pritchard S et al.. (2006) GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist. Br J Pharmacol, 148 (3): 326-39. [PMID:16604093]

57. Woodward DF, Fairbairn CE, Krauss AH, Lawrence RA, Protzman CE. (1995) Radioligand binding analysis of receptor subtypes in two FP receptor preparations that exhibit different functional rank orders of potency in response to prostaglandins. J Pharmacol Exp Ther, 273 (1): 285-7. [PMID:7714778]

58. Woodward DF, Krauss AH, Chen J, Gil DW, Kedzie KM, Protzman CE, Shi L, Chen R, Krauss HA, Bogardus A et al.. (2000) Replacement of the carboxylic acid group of prostaglandin f(2alpha) with a hydroxyl or methoxy substituent provides biologically unique compounds. Br J Pharmacol, 130 (8): 1933-43. [PMID:10952685]

59. Woodward DF, Krauss AH, Chen J, Liang Y, Li C, Protzman CE, Bogardus A, Chen R, Kedzie KM, Krauss HA et al.. (2003) Pharmacological characterization of a novel antiglaucoma agent, Bimatoprost (AGN 192024). J Pharmacol Exp Ther, 305 (2): 772-85. [PMID:12606640]

60. Woodward DF, Lawrence RA. (1994) Identification of a single (FP) receptor associated with prostanoid-induced Ca2+ signals in Swiss 3T3 cells. Biochem Pharmacol, 47 (9): 1567-74. [PMID:8185669]

61. Yamane S, Karakawa T, Nakayama S, Nagai K, Moriyuki K, Neki S, Suto F, Kambe T, Hirota Y, Kawabata K. (2015) IOP-Lowering Effect of ONO-9054, A Novel Dual Agonist of Prostanoid EP3 and FP Receptors, in Monkeys. Invest Ophthalmol Vis Sci, 56 (4): 2547-52. [PMID:25788650]

62. Zhang Z, Yin H. (2002) Detection of EP1 and FP receptor mRNAs in the iris-ciliary body using in situ hybridization. Chin Med J (Engl), 115: 1226-1228. [PMID:12215298]

Contributors

Show »

How to cite this page