BB<sub>1</sub> receptor | Bombesin receptors | IUPHAR/BPS Guide to PHARMACOLOGY

Top ▲

BB1 receptor

Target not currently curated in GtoImmuPdb

Target id: 38

Nomenclature: BB1 receptor

Family: Bombesin receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 390 6q21-qter NMBR neuromedin B receptor 4
Mouse 7 390 10 A2 Nmbr neuromedin B receptor 21
Rat 7 390 1p13 Nmbr neuromedin B receptor 5,35
Previous and Unofficial Names
NMB-R [19,35] | BB1 | neuromedin B receptor | neuromedin-B-preferring bombesin receptor
Database Links
Specialist databases
GPCRDB nmbr_human (Hs), nmbr_mouse (Mm), nmbr_rat (Rn)
Other databases
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
RefSeq Nucleotide
RefSeq Protein
Natural/Endogenous Ligands
gastrin-releasing peptide {Sp: Human} , gastrin-releasing peptide {Sp: Mouse, Rat} , gastrin-releasing peptide {Sp: Pig}
gastrin releasing peptide(14-27) (human)
GRP-(18-27) {Sp: Human, Pig} , GRP-(18-27) {Sp: Mouse, Rat}
neuromedin B {Sp: Human, Mouse, Rat, Pig}
Comments: Neuromedin B is the endogenous agonist with the greatest potency

Download all structure-activity data for this target as a CSV file

Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
neuromedin B {Sp: Human, Mouse, Rat, Pig} Hs Full agonist 8.1 – 10.3 pKi 11,25,33
pKi 8.1 – 10.3 (Ki 7.9x10-9 – 5x10-11 M) [11,25,33]
[D-Phe6,β-Ala11,Phe13,Nle14]bombesin-(6-14) Hs Full agonist 7.8 – 9.7 pKi 28,33
pKi 7.8 – 9.7 [28,33]
litorin Rn Full agonist 8.1 pKi 12,14
pKi 8.1 (Ki 7x10-9 M) [12,14]
ranatensin Rn Full agonist 7.9 pKi 12,14
pKi 7.9 (Ki 1.3x10-8 M) [12,14]
bombesin Rn Full agonist 7.5 – 7.7 pKi 1,28
pKi 7.5 – 7.7 (Ki 3.4x10-8 – 2.1x10-8 M) [1,28]
bombesin Hs Full agonist 7.5 – 7.5 pKi 1,28
pKi 7.5 – 7.5 (Ki 3.4x10-8 – 3.2x10-8 M) [1,28]
[Phe13]bombesin Rn Full agonist 6.5 – 8.2 pKi 12,14,28
pKi 6.5 – 8.2 (Ki 3.5x10-7 – 6x10-9 M) [12,14,28]
phyllolitorin Rn Full agonist 7.3 pKi 12,14
pKi 7.3 (Ki 4.7x10-8 M) [12,14]
gastrin-releasing peptide {Sp: Human} Rn Full agonist 6.4 – 6.4 pKi 1,12,14,28
pKi 6.4 – 6.4 (Ki 4.4x10-7 – 4.03x10-7 M) [1,12,14,28]
Rhodei-litorin Rn Full agonist 6.3 pKi 12,14
pKi 6.3 (Ki 4.6x10-7 M) [12,14]
[Leu8]-phyllolitorin Rn Full agonist <5.0 pKi 12,14
pKi <5.0 (Ki >1x10-5 M) [12,14]
Rhodei-litorin Hs Full agonist 9.6 – 9.8 pIC50 33
pIC50 9.6 – 9.8 (IC50 2.6x10-10 – 1.78x10-10 M) [33]
neuromedin B (1-30) (human) Hs Full agonist 9.5 – 9.7 pIC50 33
pIC50 9.5 – 9.7 (IC50 3.04x10-10 – 1.98x10-10 M) [33]
[D-Phe6,β-Ala11,Phe13,Nle14]bombesin-(6-14) Hs Full agonist 9.5 – 9.7 pIC50 33
pIC50 9.5 – 9.7 (IC50 3.2x10-10 – 2.1x10-10 M) [33]
Rhodei-litorin Rn Full agonist 9.0 pIC50 33
pIC50 9.0 (IC50 1.02x10-9 M) [33]
phyllolitorin Hs Full agonist 8.6 – 8.6 pIC50 33
pIC50 8.6 – 8.6 (IC50 2.34x10-9 – 2.3x10-9 M) [33]
bombesin Hs Full agonist 8.4 – 8.8 pIC50 33
pIC50 8.4 – 8.8 (IC50 3.7x10-9 – 1.77x10-9 M) [33]
ranatensin Hs Full agonist 8.4 – 8.8 pIC50 33
pIC50 8.4 – 8.8 (IC50 4.47x10-9 – 1.48x10-9 M) [33]
phyllolitorin Rn Full agonist 7.7 pIC50 33
pIC50 7.7 (IC50 2.04x10-8 M) [33]
gastrin releasing peptide(14-27) (human) Hs Full agonist 6.8 – 6.9 pIC50 33
pIC50 6.8 – 6.9 (IC50 1.48x10-7 – 1.23x10-7 M) [33]
[Leu8]-phyllolitorin Rn Full agonist 6.8 pIC50 33
pIC50 6.8 (IC50 1.45x10-7 M) [33]
gastrin releasing peptide(14-27) (human) Rn Full agonist 6.6 pIC50 33
pIC50 6.6 (IC50 2.3x10-7 M) [33]
[Leu8]-phyllolitorin Hs Full agonist 6.5 – 6.5 pIC50
pIC50 6.5 – 6.5 (IC50 3.09x10-7 – 2.95x10-7 M)
MK-5046 Hs Full agonist <5.0 pIC50 8,18
pIC50 <5.0 (IC50 >1x10-5 M) [8,18]
[125I][Tyr4]bombesin Hs Full agonist - -
[125I]BH-NMB (human, mouse, rat) Hs Full agonist - -
View species-specific agonist tables
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
PD 165929 Hs Antagonist 8.2 pKd 9
pKd 8.2 (Kd 6.31x10-9 M) [9]
D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Nal-NH2 Rn Antagonist 6.7 – 7.2 pKi 28
pKi 6.7 – 7.2 (Ki 2.2x10-7 – 5.9x10-8 M) [28]
kuwanon H Rn Antagonist 5.2 pKi 16
pKi 5.2 (Ki 6.5x10-6 M) [16]
PD 176252 Hs Antagonist 9.3 – 9.8 pIC50 6
pIC50 9.3 – 9.8 (IC50 5.3x10-10 – 1.7x10-10 M) [6]
PD 168368 Hs Antagonist 9.3 – 9.6 pIC50 6
pIC50 9.3 – 9.6 (IC50 5.1x10-10 – 2.5x10-10 M) [6]
PD 168368 Rn Antagonist 7.3 – 7.4 pIC50 28
pIC50 7.3 – 7.4 (IC50 4.5x10-8 – 3.9x10-8 M) [28]
D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Nal-NH2 Hs Antagonist 6.2 – 6.6 pIC50 6
pIC50 6.2 – 6.6 (IC50 6.05x10-7 – 2.75x10-7 M) [6]
D-Nal,Cys,Tyr,D-Trp,Orn,Val,Cys,Nal-NH2 Hs Antagonist 6.2 – 6.3 pIC50 6
pIC50 6.2 – 6.3 (IC50 6.3x10-7 – 4.68x10-7 M) [6]
D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Nal-NH2 Rn Antagonist 6.0 pIC50 23
pIC50 6.0 (IC50 9.97x10-7 M) [23]
JMV641 Rn Antagonist 5.8 pIC50 31
pIC50 5.8 (IC50 1.5x10-6 M) [31]
bantag-1 Hs Antagonist 5.0 – 5.5 pIC50 7,18
pIC50 5.0 – 5.5 (IC50 1x10-5 – 3.3x10-6 M) [7,18]
JMV594 Rn Antagonist <5.0 pIC50 31
pIC50 <5.0 (IC50 >1x10-5 M) [31]
[D-Phe6, Leu13, Cpa14,ψ13-14]bombesin-(6-14) Hs Antagonist <5.0 pIC50 6
pIC50 <5.0 (IC50 >1x10-5 M) [6]
View species-specific antagonist tables
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  2
Tissue Distribution
Testis, Brain (olfactory, thalamic), esophagus, duodenum, rectum and uterus.
Species:  Mouse
Technique:  Northern blotting, RT-PCR, in situ hybridisation.
References:  21
Brain (olfactory bulb and central thalamic regions), and esophagus.
Species:  Rat
Technique:  Radioligand binding.
References:  35
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Calcium-dependent chloride currents in Xenopus oocytes injected with RNA for the human BB1 receptor could be measured in response to NMB and not blocked by the BB2 specific inhibitor [D-phe]BN(6-13).
Species:  Human
Tissue:  Xenopus oocytes.
Response measured:  Production of chloride currents.
References:  4
Assessment of tyrosine phosphorylation cascades (p125FAK).
Species:  Rat
Tissue:  C6 glioblastoma cells.
Response measured:  Phosphorylation of tyrosine 125 of FAK.
References:  32
Measurement of PLC and PLD activity in rat glioblastoma cells (C6) containing low levels of native BB1 receptors and BALB 3T3 cells transfected with rBB1 receptor.
Species:  Rat
Tissue:  Rat C6 cells and BALB 3T3 cells.
Response measured:  Stimulation of PLC and PLD activity.
References:  10
Assessment of tyrosine phosphorylation cascades (MAP kinase activation).
Species:  Human
Tissue:  Umbilical vein endothelial cells.
Response measured:  Tyrosine 42/44 phosphoryation.
References:  24
Assessment of tyrosine phosphorylation cascades (MAP kinase activation).
Species:  Rat
Tissue:  Rat1 cells transfected with rBB1 receptor.
Response measured:  Tyrosine 42/44 phosphoryation.
References:  3
Physiological Functions
Growth regulation.
Species:  Human
Tissue:  colonic epithelial cells.
References:  15
Receptor activation suppresses food intake by increasing postingestive negative feedback, not by decreasing the palatability of the food.
Species:  Rat
Tissue:  In vivo
References:  29
Inhibits thyrotropin release.
Species:  Rat
Tissue:  In vivo, rat pituitary cells.
References:  22,26-27
Control of body temperature.
Species:  Mouse
Tissue:  BB1 receptor knockout mice.
References:  20
Nociceptive signalling role.
Species:  Mouse
Tissue:  In vivo.
References:  17
Scratching behavior.
Species:  Rat
Tissue:  In vivo.
References:  30
Contraction of smooth musce (GI and urogenital tracts).
Species:  Rat
Tissue:  Esophageal muscle, urogenital muscle.
References:  13,34
Physiological Consequences of Altering Gene Expression
BB1 receptor knockout mice show a disruption in thermoregulation, but no effect on smooth muscle contraction or feeding suppression, providing evidence that the 3 bombesin receptors have distinct tissue functions.
Species:  Mouse
Tissue:  In vivo.
Technique:  Gene targeting in embryonic stem cells.
References:  20
BB1 receptor knockouts showed altered behavioural responsiveness to stress. Knockout mice subjected to stress show memory impairment, although no change to anxiety levels or pain response.
Species:  Mouse
Tissue:  In vivo.
Technique:  Gene targeting in embryonic stem cells.
References:  37
BB1 receptor knockout mice show decreased marble burying behaviour. This has previously been found to be mediated by 5-HT neurons, and so the BB1 receptor may modulate 5-HT neuronal activity.
Species:  Mouse
Tissue:  In vivo.
Technique:  Gene targeting in embryonic stem cells.
References:  38
BB1 receptor knockout mice show reduced hypothermic effect of NMB, but not the effects on gastric smooth muscle contraction or feeding behavior.
Species:  Mouse
Tissue:  In vivo.
Technique:  Gene targeting in embryonic stem cells.
References:  20
BB1 receptor knockout mice showed increased stress vunerability. The knockout mice showed normal maternal behaviour until they were subjected to restraint-induced stress, which caused the mice to exhibit severely decreased maternal behaviour.
Species:  Mouse
Tissue:  In vivo.
Technique:  Gene targeting in embryonic stem cells.
References:  36
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Nmbrtm1Hoh Nmbrtm1Hoh/Nmbrtm1Hoh
involves: 129P2/OlaHsd * C57BL/6J
MGI:1100525  MP:0001777 abnormal body temperature regulation PMID: 9920658 
Nmbrtm1Hoh Nmbrtm1Hoh/Nmbrtm1Hoh
involves: 129P2/OlaHsd * C57BL/6J
MGI:1100525  MP:0001386 abnormal maternal nurturing PMID: 12231437 
Biologically Significant Variant Comments
It is predicted that glycosylation of aa 8, 16, and 192 may occur in both human and mouse and that glycosylation of aa 8 and 192 may occur in rats.


Show »

1. Benya RV, Kusui T, Pradhan TK, Battey JF, Jensen RT. (1995) Expression and characterization of cloned human bombesin receptors. Mol. Pharmacol., 47 (1): 10-20. [PMID:7838118]

2. Benya RV, Wada E, Battey JF, Fathi Z, Wang LH, Mantey SA, Coy DH, Jensen RT. (1992) Neuromedin B receptors retain functional expression when transfected into BALB 3T3 fibroblasts: analysis of binding, kinetics, stoichiometry, modulation by guanine nucleotide-binding proteins, and signal transduction and comparison with natively expressed receptors. Mol. Pharmacol., 42 (6): 1058-68. [PMID:1336112]

3. Charlesworth A, Broad S, Rozengurt E. (1996) The bombesin/GRP receptor transfected into Rat-1 fibroblasts couples to phospholipase C activation, tyrosine phosphorylation of p125FAK and paxillin and cell proliferation. Oncogene, 12 (6): 1337-45. [PMID:8649836]

4. Corjay MH, Dobrzanski DJ, Way JM, Viallet J, Shapira H, Worland P, Sausville EA, Battey JF. (1991) Two distinct bombesin receptor subtypes are expressed and functional in human lung carcinoma cells. J. Biol. Chem., 266 (28): 18771-9. [PMID:1655761]

5. Giladi E, Nagalla SR, Spindel ER. (1993) Molecular cloning and characterization of receptors for the mammalian bombesin-like peptides. J. Mol. Neurosci., 4 (1): 41-54. [PMID:8391296]

6. González N, Mantey SA, Pradhan TK, Sancho V, Moody TW, Coy DH, Jensen RT. (2009) Characterization of putative GRP- and NMB-receptor antagonist's interaction with human receptors. Peptides, 30 (8): 1473-86. [PMID:19463875]

7. Guan XM, Chen H, Dobbelaar PH, Dong Y, Fong TM, Gagen K, Gorski J, He S, Howard AD, Jian T et al.. (2010) Regulation of energy homeostasis by bombesin receptor subtype-3: selective receptor agonists for the treatment of obesity. Cell Metab., 11 (2): 101-12. [PMID:20096642]

8. Guan XM, Metzger JM, Yang L, Raustad KA, Wang SP, Spann SK, Kosinski JA, Yu H, Shearman LP, Faidley TD et al.. (2011) Antiobesity effect of MK-5046, a novel bombesin receptor subtype-3 agonist. J. Pharmacol. Exp. Ther., 336 (2): 356-64. [PMID:21036912]

9. Hall MD, Higginbottom M, Horwell DC, Howson W, Hughes J, Jordan RE, Lewthwaite RA, Martin K, McKnight AT, O'Toole JC et al.. (1996) PD 165929- the first high affinity non-peptide neuromedin-B (NMB) receptor selective antagonist. Bioorg. Med. Chem. Lett., 6 (21): 2617-2622.

10. Hou W, Tsuda T, Jensen RT. (1998) Neuromedin B activates phospholipase D through both PKC-dependent and PKC-independent mechanisms. Biochim. Biophys. Acta, 1391 (3): 337-50. [PMID:9555086]

11. Jensen RT, Battey JF, Spindel ER, Benya RV. (2008) International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol. Rev., 60 (1): 1-42. [PMID:18055507]

12. Katsuno T, Pradhan TK, Ryan RR, Mantey SA, Hou W, Donohue PJ, Akeson MA, Spindel ER, Battey JF, Coy DH et al.. (1999) Pharmacology and cell biology of the bombesin receptor subtype 4 (BB4-R). Biochemistry, 38 (22): 7307-20. [PMID:10353842]

13. Kilgore WR, Mantyh PW, Mantyh CR, McVey DC, Vigna SR. (1993) Bombesin/GRP-preferring and neuromedin B-preferring receptors in the rat urogenital system. Neuropeptides, 24: 43-52. [PMID:8381528]

14. Mantey SA, Weber HC, Sainz E, Akeson M, Ryan RR, Pradhan TK, Searles RP, Spindel ER, Battey JF, Coy DH et al.. (1997) Discovery of a high affinity radioligand for the human orphan receptor, bombesin receptor subtype 3, which demonstrates that it has a unique pharmacology compared with other mammalian bombesin receptors. J. Biol. Chem., 272 (41): 26062-71. [PMID:9325344]

15. Matusiak D, Glover S, Nathaniel R, Matkowskyj K, Yang J, Benya RV. (2005) Neuromedin B and its receptor are mitogens in both normal and malignant epithelial cells lining the colon. Am. J. Physiol. Gastrointest. Liver Physiol., 288 (4): G718-28. [PMID:15528253]

16. Mihara S, Hara M, Nakamura M, Sakurawi K, Tokura K, Fujimoto M, Fukai T, Nomura T. (1995) Non-peptide bombesin receptor antagonists, kuwanon G and H, isolated from mulberry. Biochem. Biophys. Res. Commun., 213 (2): 594-9. [PMID:7646517]

17. Mishra SK, Holzman S, Hoon MA. (2012) A nociceptive signaling role for neuromedin B. J. Neurosci., 32 (25): 8686-95. [PMID:22723708]

18. Moreno P, Mantey SA, Nuche-Berenguer B, Reitman ML, Gonzalez N, , Coy DH, Jensen RT. (2013) Comparative Pharmacology of Bombesin Receptor Subtype-3, Nonpeptide Agonist MK-5046, a Universal Peptide Agonist, and Peptide Antagonist Bantag-1 for Human Bombesin Receptors. Pharmacol Exp Therap, 347 (1): 100-116. [PMID:23892571]

19. Ohki-Hamazaki H. (2000) Neuromedin B. Prog. Neurobiol., 62 (3): 297-312. [PMID:10840151]

20. Ohki-Hamazaki H, Sakai Y, Kamata K, Ogura H, Okuyama S, Watase K, Yamada K, Wada K. (1999) Functional properties of two bombesin-like peptide receptors revealed by the analysis of mice lacking neuromedin B receptor. J. Neurosci., 19 (3): 948-54. [PMID:9920658]

21. Ohki-Hamazaki H, Wada E, Matsui K, Wada K. (1997) Cloning and expression of the neuromedin B receptor and the third subtype of bombesin receptor genes in the mouse. Brain Res., 762 (1-2): 165-72. [PMID:9262170]

22. Oliveira KJ, Cabanelas A, Veiga MA, Paula GS, Ortiga-Carvalho TM, Wada E, Wada K, Pazos-Moura CC. (2008) Impaired serum thyrotropin response to hypothyroidism in mice with disruption of neuromedin B receptor. Regul. Pept., 146 (1-3): 213-7. [PMID:17931717]

23. Orbuch M, Taylor JE, Coy DH, Mrozinski Jr JE, Mantey SA, Battey JF, Moreau JP, Jensen RT. (1993) Discovery of a novel class of neuromedin B receptor antagonists, substituted somatostatin analogues. Mol. Pharmacol., 44 (4): 841-50. [PMID:7901752]

24. Park HJ, Kim SR, Bae SK, Choi YK, Bae YH, Kim EC, Kim WJ, Jang HO, Yun I, Kim YM, Bae MK. (2009) Neuromedin B induces angiogenesis via activation of ERK and Akt in endothelial cells. Experimental Cell Research, 315 (19): 3359-69. [PMID:19703440]

25. Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. (2015) Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides, 72: 128-44. [PMID:25976083]

26. Rettori V, Milenkovic L, Fahim AM, Polak J, Bloom SR, McCann SM. (1989) Role of neuromedin B in the control of the release of thyrotropin in the rat. Proc. Natl. Acad. Sci. U.S.A., 86 (12): 4789-92. [PMID:2499891]

27. Rettori V, Pazos-Moura CC, Moura EG, Polak J, McCann SM. (1992) Role of neuromedin B in control of the release of thyrotropin in hypothyroid and hyperthyroid rats. Proc. Natl. Acad. Sci. U.S.A., 89 (7): 3035-9. [PMID:1557409]

28. Ryan RR, Katsuno T, Mantey SA, Pradhan TK, Weber HC, Coy DH, Battey JF, Jensen RT. (1999) Comparative pharmacology of the nonpeptide neuromedin B receptor antagonist PD 168368. J. Pharmacol. Exp. Ther., 290 (3): 1202-11. [PMID:10454496]

29. Stratford TR, Gibbs J, Smith GP. (1995) Microstructural analysis of licking behavior following peripheral administration of bombesin or gastrin-releasing peptide. Peptides, 16 (5): 903-9. [PMID:7479333]

30. Su PY, Ko MC. (2011) The role of central gastrin-releasing peptide and neuromedin B receptors in the modulation of scratching behavior in rats. J. Pharmacol. Exp. Ther., 337 (3): 822-9. [PMID:21421741]

31. Tokita K, Katsuno T, Hocart SJ, Coy DH, Llinares M, Martinez J, Jensen RT. (2001) Molecular basis for selectivity of high affinity peptide antagonists for the gastrin-releasing peptide receptor. J. Biol. Chem., 276 (39): 36652-63. [PMID:11463790]

32. Tsuda T, Kusui T, Jensen RT. (1997) Neuromedin B receptor activation causes tyrosine phosphorylation of p125FAK by a phospholipase C independent mechanism which requires p21rho and integrity of the actin cytoskeleton. Biochemistry., 36 (51): 16328-37. [PMID:9405068]

33. Uehara H, González N, Sancho V, Mantey SA, Nuche-Berenguer B, Pradhan T, Coy DH, Jensen RT. (2011) Pharmacology and selectivity of various natural and synthetic bombesin related peptide agonists for human and rat bombesin receptors differs. Peptides, 32 (8): 1685-99. [PMID:21729729]

34. Von Schrenck T, Heinz-Erian P, Moran T, Mantey SA, Gardner JD, Jensen RT. (1989) Neuromedin B receptor in esophagus: evidence for subtypes of bombesin receptors. Am. J. Physiol., 256 (4 Pt 1): G747-58. [PMID:2539739]

35. Wada E, Way J, Shapira H, Kusano K, Lebacq-Verheyden AM, Coy D, Jensen R, Battery J. (1991) cDNA cloning, characterization, and brain region-specific expression of a neuromedin-B-preferring bombesin receptor. Neuron, 6 (3): 421-30. [PMID:1848080]

36. Yamada K, Santo-Yamada Y, Wada K. (2002) Restraint stress impaired maternal behavior in female mice lacking the neuromedin B receptor (NMB-R) gene. Neurosci. Lett., 330 (2): 163-6. [PMID:12231437]

37. Yamada K, Santo-Yamada Y, Wada K. (2003) Stress-induced impairment of inhibitory avoidance learning in female neuromedin B receptor-deficient mice. Physiol. Behav., 78 (2): 303-9. [PMID:12576129]

38. Yamada K, Wada E, Yamano M, Sun YJ, Ohara-Imaizumi M, Nagamatsu S, Wada K. (2002) Decreased marble burying behavior in female mice lacking neuromedin-B receptor (NMB-R) implies the involvement of NMB/NMB-R in 5-HT neuron function. Brain Res., 942 (1-2): 71-8. [PMID:12031854]


Show »

How to cite this page

Select citation format: