Top ▲

TRPML1

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 501

Nomenclature: TRPML1

Family: Transient Receptor Potential channels (TRP)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 1 580 19p13.2 MCOLN1 mucolipin TRP cation channel 1 1,28
Mouse 6 1 580 8 1.92 cM Mcoln1 mucolipin 1 15
Rat 6 1 580 12p12 Mcoln1 mucolipin TRP cation channel 1
Previous and Unofficial Names Click here for help
MCOLN1 | Mucolipin1 | ML1 | mucolipin 1
Database Links Click here for help
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Human TRPML1 channel structures in agonist-bound open conformations
PDB Id:  5WJ9
Ligand:  ML SA1
Resolution:  3.49Å
Species:  Human
References:  24
Image of receptor 3D structure from RCSB PDB
Description:  Human TRPML1 channel structure in closed conformation
PDB Id:  5WJ5
Ligand:  ML SA1
Resolution:  3.72Å
Species:  Human
References:  24
Image of receptor 3D structure from RCSB PDB
Description:  Cryo-EM structure of mammalian endolysosomal TRPML1 channel in nanodiscs
PDB Id:  5WPV
Resolution:  3.59Å
Species:  Mouse
References:  6
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
TRPML2 10,37
TRPML3 10,37
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
ALG2, alpha-1,3/1,6-mannosyltransferase 31
LAPTMs, lysosomal multispanning membrane proteins 32
TPC2 35
heat shock protein family A (Hsp70) member 8 29
HSP40 29
Functional Characteristics Click here for help
TRPML1Va: γ = 40 pS and 76-86 pS at very negative holding potentials with Fe2+ and monovalent cations as charge carriers, respectively; conducts Na+≅ K+>Cs+ and divalent cations (Ba2+>Mn2+>Fe2+>Ca2+> Mg2+> Ni2+>Co2+> Cd2+>Zn2+>>Cu2+); monovalent cation flux suppressed by divalent cations (e.g. Ca2+, Fe2+); inwardly rectifying
Ion Selectivity and Conductance Click here for help
Species:  Human
Rank order:  K+ [84.3 - 92.4 pS] > Na+ [80.8 - 82.6 pS] > Ba2+ [44.6 pS] > Sr2+ [37.2 pS] > Ca2+ [32.5 - 34.4 pS]
References:  18,20
Species:  Mouse
Rank order:  Ca2+ > K+ = Na+ > Cs+
References:  34,38
Ion Selectivity and Conductance Comments
The activating mutation (V432P) and surface-expressing mutation (L15L/AA-L577L/AA, abbreviated as TRPML1–4A) channels are unlikely to affect the pore properties and are currently accepted as representing the wild type TRPML1 permeation properties if such data are not available for wild type TRPML1.

Ion selectivity in mouse was measured using the activating mutation (V432P) of TRPML1. Ion conductance (pS) was recorded at between 11 (from -80 to 40 mV) and 76 (from -140 to -100 mV) in the modified (pH 4.6) “Tyrode” solution (extracellular/luminal) [33-34,38]. Human TRPML1 ion selectivity is Ba2+>Mn2+>Fe2+=Ca2+=Mg2+>Ni2+ =Co2+=Cd2+>Zn2+>>Cu2+ (at pH 4.6, with pS measured at 32-40 in the presence of 30-105mM Fe2+, measured using the activating mutation (V432P) of TRPML1) [11].
Voltage Dependence Comments
Activation is strong inwardly rectifying. Activation is instantaneous at negative voltages and there is no time-dependent inactivation at negative voltages [34].
Activators (Human)
TRPML1Va: Constitutively active, current potentiated by extracellular acidification (equivalent to intralysosomal acidification)

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
phosphatidyl (3,5) inositol bisphosphate Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Hs Activation 7.3 pEC50 - - 12
pEC50 7.3 (EC50 4.8x10-8 M) Also activates other TRPMLs [12]
ML SA1 Small molecule or natural product Click here for species-specific activity table Hs Activation 7.3 pEC50 - -140.0 25
pEC50 7.3 [25]
Holding voltage: -140.0 mV
MK6-83 Small molecule or natural product Click here for species-specific activity table Hs Activation 7.0 – 7.0 pEC50 - -200.0 4
pEC50 7.0 [4]
Holding voltage: -200.0 mV
pEC50 7.0 (EC50 1.1x10-7 M) [4]
SF-22 Small molecule or natural product Hs Activation 6.3 pEC50 - -200.0 4
pEC50 6.3 [4]
Holding voltage: -200.0 mV
ML-SA5 Small molecule or natural product Hs Activation 5.3 pEC50 - - 36
pEC50 5.3 [36]
SF-51 Small molecule or natural product Hs Activation 4.5 pEC50 - - 25
pEC50 4.5 [25]
ML1-SA1 Small molecule or natural product Hs - - - - - 27
[27]
Activator Comments
ML SA1 (1-20µM), SF-22 (100µM) and SF-51 (100µM) all activate TRPML1 in various cells and heterologous expression systems [17,25]. Proton and sphingosine can up-regulate the channel activity in the presence of agonists.
Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
PRU-10 Small molecule or natural product Click here for species-specific activity table Hs Inhibition 6.4 pIC50 - - 22
pIC50 6.4 (IC50 4.1x10-7 M) [22]
estradiol 3-methyl ether Small molecule or natural product Click here for species-specific activity table Hs Inhibition 6.2 pIC50 - - 22
pIC50 6.2 (IC50 6x10-7 M) [22]
Gating Inhibitor Comments
Sphingomyelins (20µM, [25]), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2, 0.2µM, [38]) and verapamil (1µM, [34]) are reported to act as gating inhibitors of TRPML1. PI(4,5)P2 affects Popen of TRPML1 and verapamil affects the voltage-dependence of the TRPML1-V432P currents.
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
PRU-12 Small molecule or natural product Click here for species-specific activity table Hs Inhibition 6.6 pIC50 - - 22
pIC50 6.6 (IC50 2.8x10-7 M) [22]
Description: via calcium inaging
estradiol 3-methyl ether Small molecule or natural product Click here for species-specific activity table Hs - 6.2 – 6.7 pIC50 - - 22
pIC50 6.7 (IC50 2.2x10-7 M) [22]
Description: via patch clamp assay
pIC50 6.2 (IC50 6x10-7 M) [22]
Description: via calcium imaging
Channel Blocker Comments
The trivalent blocker, La3+ (100 µm), inhibits >80% of ITRPML1-C430P, ITRPML1-C431P, ITRPML1-V432P, and ITRPML1-R427P in a heterologous expression system [13].
Immuno Process Associations
Immuno Process:  T cell (activation)
Immuno Process:  B cell (activation)
Tissue Distribution Click here for help
Brain, skeletal muscle, colon, thymus, liver, lung, leukocytes
Species:  Human
Technique:  Northern Blot
References:  1
Ubiquitously expressed in every tissue with the highest levels of expression located in the brain, kidney, spleen, liver, and heart. Subcellular cellular localization: late endosomes and lysosomes.
Species:  Mouse
Technique:  Northern blot and RT-PCR
References:  1,23
Functional Assays Click here for help
Whole-endolysosome patch-clamp (human or mouse). In the whole-endolysosome configuration, “inward” currents indicate the cations flowing out of the lumen to the cytoplasm.
Species:  Human
Tissue:  Human fibroblasts, mouse macrophages, or COS1 cells transfected with TRPML1
Response measured:  Endogenous and recombinant TRPML1 currents; activation by PI(3,5)P2or ML-SA1.
References:  12,25,33
Inside-out excised-patch recordings
Species:  Mouse
Tissue:  HEK293T cells expressing wild-type TRPML1 or TRPML1–4A channels
Response measured:  Single channel TRPML1 currents
References:  38
GCaMP3-TRPML1 Ca2+ imaging
Species:  Mouse
Tissue:  CHO cells transfected with GCaMP3-TRPML1
Response measured:  Agonist-induced lysosomal Ca2+ release
References:  25
Fe2+ imaging
Species:  Mouse
Tissue:  HEK293 expressing several proline substitutions (activation mutations) of TRPML1 channels
Response measured:  Fe2+ influx
References:  11,13
Ca2+ imaging (human and mouse)
Species:  Human
Tissue:  HEK293T expressing several proline (activation substitutions) or surface-expressing (TRPML1-4A) mutant TRPML1 channels
Response measured:  Constitutive or agonist-induced Ca2+ influx
References:  13,16
Whole-cell recordings
Species:  Mouse
Tissue:  HEK293T cells expressing surface-expressing mutant TRPML1 (TRPML1-L15L/AA-L577L/AA, abbreviated as TRPML1–4A) channels
Response measured:  SF-51 and ML-SA1-activated whole cell currents
References:  25
Physiological Functions Click here for help
Lysosomal exocytosis: an involvement in membrane sorting and/or the late steps of endocytosis is suggested by defects in transport along the lysosomal pathway in Mucolipidosis Type IV patients.
Species:  Human
Tissue:  Fibroblasts and HEK293T cells expressing activating mutations of TRPML1
References:  2,13,19
Constitutive cathepsin B release in cells lacking TRPML1
Species:  Human
Tissue:  HEK293T cells
References:  8
Lysosomal H+ homeostasis
Species:  Human
Tissue:  Fibroblasts
References:  7,21
Membrane trafficking in the late endocytic pathways including lysosome-to-Golgi retrograde trafficking and lysosome biogenesis
Species:  Human
Tissue:  Fibroblasts
References:  5
Defective autophagy and mitochondrial fragmentation in fibroblasts and neurons lacking TRPML1 (human and mouse)
Species:  Human
Tissue:  Neurons and fibroblasts
References:  9,30
Lysosomal Fe2+ /Zn2+ homeostasis
Species:  Human
Tissue:  Transfected HEK293T cells and fibroblasts
References:  11,14
Gastric acid secretion
Species:  Mouse
Tissue:  Gastric mucosa
References:  3
Lysosomal Ca2+ release (human and mouse)
Species:  Human
Tissue:  Fibroblasts, macrophages, or CHO cells transfected with TRPML1
References:  25
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0001406 abnormal gait PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0005209 abnormal gastric mucosa morphology PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0003632 abnormal nervous system morphology PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0001330 abnormal optic nerve morphology PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0003731 abnormal retinal outer nuclear layer morphology PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0008843 absent subcutaneous adipose tissue PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0001262 decreased body weight PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0000774 decreased brain size PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0004819 decreased skeletal muscle mass PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0002795 dilated cardiomyopathy PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0001270 distended abdomen PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0000539 distended urinary bladder PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0000755 hindlimb paralysis PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0001505 hunched posture PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0004731 increased circulating gastrin level PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0005202 lethargy PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0001513 limb grasping PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0002083 premature death PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0001326 retinal degeneration PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0001407 short stride length PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0008511 thin retinal inner nuclear layer PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0008513 thin retinal inner plexiform layer PMID: 17924347 
Mcoln1tm1Sasl Mcoln1tm1Sasl/Mcoln1tm1Sasl
involves: 129S6/SvEvTac * C57BL/6
MGI:1890498  MP:0000746 weakness PMID: 17924347 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Mucolipidosis IV
Disease Ontology: DOID:3343
OMIM: 252650
Orphanet: ORPHA578
Role: 
References:  1,28
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Deletion Human g.511-6499del 6434-bp deletion results in a severely truncated protein 28
Frameshift: Deletion Human c.473-474delCC 26
Frameshift: Deletion Human c.598-599delCC 28
Frameshift: Insertion Human c.1444insGCCCTGCTGCG 26
Frameshift: Insertion Human c.1209-1210insT 26
Frameshift: Insertion Human c.1334-1335insT 28
In-frame deletion Human F408del c.1221-1223delCTT Impaired TRPML1 channel function 11,26
Missense Human T232P c.694A>C Impaired TRPML1 channel function 11,26
Missense Human D362Y c.1084G>T Impaired TRPML1 channel function 11,26
Missense Human V446L c.1336G>T Impaired TRPML1 channel function 11,26
Missense Human F465L c.1395C>G Impaired TRPML1 channel function 11,26
Nonsense Human R102X c.304C>T 26
Nonsense Human R172X c.514C>T 26
Nonsense Human R322X c.964C>T 26
Splice site Human 454-469del c.1406A>G 26
Splice site Human g.5534A>G 26
Disease:  Niemann-Pick disease
Disease Ontology: DOID:14504
Role: 
References:  25
Clinically-Relevant Mutations and Pathophysiology Comments
Mucolipidosis IV is associated with mutations in TRPML1. For detailed molecular genetics involving Mucolipidosis IV, see the link to OMIM ID 252650 above.

References

Show »

1. Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M, Frumkin A, Raas-Rothschild A, Glusman G, Lancet D, Bach G. (2000) Identification of the gene causing mucolipidosis type IV. Nat Genet, 26 (1): 118-23. [PMID:10973263]

2. Bargal R, Bach G. (1997) Mucolipidosis type IV: abnormal transport of lipids to lysosomes. J Inherit Metab Dis, 20 (5): 625-32. [PMID:9323557]

3. Chandra M, Zhou H, Li Q, Muallem S, Hofmann SL, Soyombo AA. (2011) A role for the Ca2+ channel TRPML1 in gastric acid secretion, based on analysis of knockout mice. Gastroenterology, 140 (3): 857-67. [PMID:21111738]

4. Chen CC, Keller M, Hess M, Schiffmann R, Urban N, Wolfgardt A, Schaefer M, Bracher F, Biel M, Wahl-Schott C et al.. (2014) A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. Nat Commun, 5: 4681. [PMID:25119295]

5. Chen CS, Bach G, Pagano RE. (1998) Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease. Proc Natl Acad Sci USA, 95 (11): 6373-8. [PMID:9600972]

6. Chen Q, She J, Zeng W, Guo J, Xu H, Bai XC, Jiang Y. (2017) Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature, 550 (7676): 415-418. [PMID:29019981]

7. Cheng X, Shen D, Samie M, Xu H. (2010) Mucolipins: Intracellular TRPML1-3 channels. FEBS Lett, 584 (10): 2013-21. [PMID:20074572]

8. Colletti GA, Miedel MT, Quinn J, Andharia N, Weisz OA, Kiselyov K. (2012) Loss of lysosomal ion channel transient receptor potential channel mucolipin-1 (TRPML1) leads to cathepsin B-dependent apoptosis. J Biol Chem, 287 (11): 8082-91. [PMID:22262857]

9. Curcio-Morelli C, Charles FA, Micsenyi MC, Cao Y, Venugopal B, Browning MF, Dobrenis K, Cotman SL, Walkley SU, Slaugenhaupt SA. (2010) Macroautophagy is defective in mucolipin-1-deficient mouse neurons. Neurobiol Dis, 40 (2): 370-7. [PMID:20600908]

10. Curcio-Morelli C, Zhang P, Venugopal B, Charles FA, Browning MF, Cantiello HF, Slaugenhaupt SA. (2010) Functional multimerization of mucolipin channel proteins. J Cell Physiol, 222 (2): 328-35. [PMID:19885840]

11. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H. (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature, 455 (7215): 992-6. [PMID:18794901]

12. Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M et al.. (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun, 1: 38. [PMID:20802798]

13. Dong XP, Wang X, Shen D, Chen S, Liu M, Wang Y, Mills E, Cheng X, Delling M, Xu H. (2009) Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J Biol Chem, 284 (46): 32040-52. [PMID:19638346]

14. Eichelsdoerfer JL, Evans JA, Slaugenhaupt SA, Cuajungco MP. (2010) Zinc dyshomeostasis is linked with the loss of mucolipidosis IV-associated TRPML1 ion channel. J Biol Chem, 285 (45): 34304-8. [PMID:20864526]

15. Falardeau JL, Kennedy JC, Acierno Jr JS, Sun M, Stahl S, Goldin E, Slaugenhaupt SA. (2002) Cloning and characterization of the mouse Mcoln1 gene reveals an alternatively spliced transcript not seen in humans. BMC Genomics, 3: 3. [PMID:11897010]

16. Grimm C, Cuajungco MP, van Aken AF, Schnee M, Jörs S, Kros CJ, Ricci AJ, Heller S. (2007) A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci USA, 104 (49): 19583-8. [PMID:18048323]

17. Grimm C, Jörs S, Saldanha SA, Obukhov AG, Pan B, Oshima K, Cuajungco MP, Chase P, Hodder P, Heller S. (2010) Small molecule activators of TRPML3. Chem Biol, 17 (2): 135-48. [PMID:20189104]

18. LaPlante JM, Falardeau J, Sun M, Kanazirska M, Brown EM, Slaugenhaupt SA, Vassilev PM. (2002) Identification and characterization of the single channel function of human mucolipin-1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway. FEBS Lett, 532 (1-2): 183-7. [PMID:12459486]

19. LaPlante JM, Sun M, Falardeau J, Dai D, Brown EM, Slaugenhaupt SA, Vassilev PM. (2006) Lysosomal exocytosis is impaired in mucolipidosis type IV. Mol Genet Metab, 89 (4): 339-48. [PMID:16914343]

20. LaPlante JM, Ye CP, Quinn SJ, Goldin E, Brown EM, Slaugenhaupt SA, Vassilev PM. (2004) Functional links between mucolipin-1 and Ca2+-dependent membrane trafficking in mucolipidosis IV. Biochem Biophys Res Commun, 322 (4): 1384-91. [PMID:15336987]

21. Puertollano R, Kiselyov K. (2009) TRPMLs: in sickness and in health. Am J Physiol Renal Physiol, 296 (6): F1245-54. [PMID:19158345]

22. Rühl P, Rosato AS, Urban N, Gerndt S, Tang R, Abrahamian C, Leser C, Sheng J, Jha A, Vollmer G et al.. (2021) Estradiol analogs attenuate autophagy, cell migration and invasion by direct and selective inhibition of TRPML1, independent of estrogen receptors. Sci Rep, 11 (1): 8313. [PMID:33859333]

23. Samie MA, Grimm C, Evans JA, Curcio-Morelli C, Heller S, Slaugenhaupt SA, Cuajungco MP. (2009) The tissue-specific expression of TRPML2 (MCOLN-2) gene is influenced by the presence of TRPML1. Pflugers Arch, 459 (1): 79-91. [PMID:19763610]

24. Schmiege P, Fine M, Blobel G, Li X. (2017) Human TRPML1 channel structures in open and closed conformations. Nature, 550 (7676): 366-370. [PMID:29019983]

25. Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, Dong XP, Yu T, Lieberman AP, Showalter HD et al.. (2012) Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun, 3: 731. [PMID:22415822]

26. Slaugenhaupt SA. (2002) The molecular basis of mucolipidosis type IV. Curr Mol Med, 2 (5): 445-50. [PMID:12125810]

27. Spix B, Butz ES, Chen CC, Rosato AS, Tang R, Jeridi A, Kudrina V, Plesch E, Wartenberg P, Arlt E et al.. (2022) Lung emphysema and impaired macrophage elastase clearance in mucolipin 3 deficient mice. Nat Commun, 13 (1): 318. DOI: 10.1038/s41467-021-27860-x [PMID:35031603]

28. Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC, Acierno JS, Bove C, Kaneski CR, Nagle J, Bromley MC, Colman M, Schiffmann R, Slaugenhaupt SA. (2000) Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet, 9 (17): 2471-8. [PMID:11030752]

29. Venugopal B, Mesires NT, Kennedy JC, Curcio-Morelli C, Laplante JM, Dice JF, Slaugenhaupt SA. (2009) Chaperone-mediated autophagy is defective in mucolipidosis type IV. J Cell Physiol, 219 (2): 344-53. [PMID:19117012]

30. Vergarajauregui S, Connelly PS, Daniels MP, Puertollano R. (2008) Autophagic dysfunction in mucolipidosis type IV patients. Hum Mol Genet, 17 (17): 2723-37. [PMID:18550655]

31. Vergarajauregui S, Martina JA, Puertollano R. (2009) Identification of the penta-EF-hand protein ALG-2 as a Ca2+-dependent interactor of mucolipin-1. J Biol Chem, 284 (52): 36357-66. [PMID:19864416]

32. Vergarajauregui S, Martina JA, Puertollano R. (2011) LAPTMs regulate lysosomal function and interact with mucolipin 1: new clues for understanding mucolipidosis type IV. J Cell Sci, 124 (Pt 3): 459-68. [PMID:21224396]

33. Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J et al.. (2012) TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell, 151 (2): 372-83. [PMID:23063126]

34. Xu H, Delling M, Li L, Dong X, Clapham DE. (2007) Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. Proc Natl Acad Sci USA, 104 (46): 18321-6. [PMID:17989217]

35. Yamaguchi S, Jha A, Li Q, Soyombo AA, Dickinson GD, Churamani D, Brailoiu E, Patel S, Muallem S. (2011) Transient receptor potential mucolipin 1 (TRPML1) and two-pore channels are functionally independent organellar ion channels. J Biol Chem, 286 (26): 22934-42. [PMID:21540176]

36. Yu L, Zhang X, Yang Y, Li D, Tang K, Zhao Z, He W, Wang C, Sahoo N, Converso-Baran K et al.. (2020) Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models. Sci Adv, 6 (6): eaaz2736. [PMID:32128386]

37. Zeevi DA, Lev S, Frumkin A, Minke B, Bach G. (2010) Heteromultimeric TRPML channel assemblies play a crucial role in the regulation of cell viability models and starvation-induced autophagy. J Cell Sci, 123 (Pt 18): 3112-24. [PMID:20736310]

38. Zhang X, Li X, Xu H. (2012) Phosphoinositide isoforms determine compartment-specific ion channel activity. Proc Natl Acad Sci USA, 109 (28): 11384-9. [PMID:22733759]

Contributors

Show »

How to cite this page