Top ▲
Gene and Protein Information | ||||||
class C G protein-coupled receptor | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 1078 | 3q13.33-q21.1 | CASR | calcium sensing receptor | 77 |
Mouse | 7 | 1079 | 16 25.57 cM | Casr | calcium-sensing receptor | 55 |
Rat | 7 | 1079 | 11q22 | Casr | calcium-sensing receptor | 96 |
Previous and Unofficial Names |
CaR | GPRC2A | extracellular calcium-sensing receptor | divalent cation-sensing receptor | calcium-sensing receptor |
Database Links | |
Specialist databases | |
GPCRdb | casr_human (Hs), casr_mouse (Mm), casr_rat (Rn) |
Other databases | |
Alphafold | P41180 (Hs), Q9QY96 (Mm), P48442 (Rn) |
ChEMBL Target | CHEMBL1878 (Hs), CHEMBL4105868 (Mm), CHEMBL2516 (Rn) |
DrugBank Target | P41180 (Hs) |
Ensembl Gene | ENSG00000036828 (Hs), ENSMUSG00000051980 (Mm), ENSRNOG00000002265 (Rn) |
Entrez Gene | 846 (Hs), 12374 (Mm), 24247 (Rn) |
Human Protein Atlas | ENSG00000036828 (Hs) |
KEGG Gene | hsa:846 (Hs), mmu:12374 (Mm), rno:24247 (Rn) |
OMIM | 601199 (Hs) |
Orphanet | ORPHA119185 (Hs) |
Pharos | P41180 (Hs) |
RefSeq Nucleotide | NM_000388 (Hs), NM_013803 (Mm), NM_016996 (Rn) |
RefSeq Protein | NP_000379 (Hs), NP_038831 (Mm), NP_058692 (Rn) |
SynPHARM | 2181 (in complex with Ca2+) |
UniProtKB | P41180 (Hs), Q9QY96 (Mm), P48442 (Rn) |
Wikipedia | CASR (Hs) |
Natural/Endogenous Ligands |
Ca2+ |
L-tryptophan |
Mg2+ |
spermine |
Amino-acid rank order of potency |
L-phenylalanine, L-tryptophan, L-histidine > L-alanine > L-serine, L-proline, L-glutamic acid > L-aspartic acid (not L-lysine, L-arginine, L-leucine and L-isoleucine) [31] |
Cation rank order of potency |
Gd3+ > Ca2+ > Mg2+ [14] |
Glutamyl peptide rank order of potency |
S-methylglutathione ≈ γGlu-Val-Gly > glutathione > γGlu-Cys [10,86,116] |
Polyamine rank order of potency |
spermine > spermidine > putrescine [93] |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific agonist tables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Agonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Etelcalcetide is a novel peptide agonist of the receptor [115]. Other aminoglycosides show agonist activity [96]. Bovine data is available on a number of other ligands including: polyarginine (and other polycations) (pKd 7) ([15]), Gd3+ and other lanthanides (pKd 4.3-4.9) ([13-14]), neomycin (and other aminoglycosides) (pKd 6.9). |
Antagonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific antagonist tables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antagonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
There have been few, if any, studies evaluating whether these are competitive or noncompetitive antagonists. The binding site for polycationic (type 1) CaR agonists, such as calcium or gadolinium, are almost certainly in a different location from that of these antagonists, with the former being predominantly in the amino-terminal extracellular domain and the latter in the transmembrane domains. However, the binding site for the calcimimetic (type 2) CaR activators, at a minimum, overlaps with that of the antagonists [16,50]. Pathophysiologic concentrations of extracellular phosphate and sulphate may elicit non-competitive antagonism of CaS [18]. |
Allosteric Modulators | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Allosteric Modulator Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Note that aromatic amino acids and calcimimetics are ineffective in the absence of Ca2+. N1-Arylsulfonyl-N2-(1-aryl)ethyl-3-phenylpropane-1,2-diamines [33] and cinacalcet [78,107] are also allosteric regulators, but do not have associated affinity values. Activity is also shown by other aromatic amino acids e.g. L-Phe, L-Tyr, L-His. NPS 89636 and AXT-914 have been shown to be negative allosteric modulators of this receptor, although affinity data and a chemical structures are unavailable [38,67]. Additional functional readouts of receptor activity: tecalcet: functional pKB 5.6 - 6.2 for ERK1/2 phosphorylation (pERK1/2) [32,34], functional pKB 6.8 for inositol phosphate (IP) accumulation [32], functional pKB 9.4 for membrane ruffling [34], pEC50 6.3 for potentiation of 0.5 mM Ca2+-mediated Ca2+i release [82], pEC50 6.5 for potentiation of 2 mM Ca2+-mediated inositol phosphate (IP) accumulation [89]. calindol: functional pKB 5.2 for pERK1/2 [32], functional pKB 6.4 for IP accumulation [32], pEC50 6.5 for potentiation of 2 mM Ca2+-mediated IP accumulation [89]. AC265347: functional pKB 6.3 - 6.7 for pERK1/2 [32,65], functional pKB 8.0 for IP accumulation [32], pEC50 7.6 for potentiation of 1.6 mM Ca2+-mediated cellular proliferation, and pEC50 8.1 for potentiation of 1.6 mM Ca2+-mediated IP accumulation [68]. cinacalcet: functional pKB 5.9 - 6.7 for pERK1/2 [32,34,65-66], functional pKB 6.1 for IP accumulation [32], functional pKB 8.1 for membrane ruffling [34], pEC50 7.3 for potentiation of 0.5 mM Ca2+-mediated Ca2+i release [80]. NPS 2143: functional pKB 6.2 - 6.7 for pERK1/2 [34,65-66], functional pKB 7.8 for membrane ruffling [34], pIC50 7.4 for inhibition of 1.75mM Ca2+-mediated Ca2+i release [79]. |
Primary Transduction Mechanisms | |
Transducer | Effector/Response |
Gi/Go family Gq/G11 family G12/G13 family |
Adenylyl cyclase inhibition Phospholipase C stimulation Phospholipase D stimulation |
Comments: In [53], activation of PLD by the CaR takes place through a direct mechanism involving G12/G13. In some cases, inhibition of adenylate cyclase appears to be indirect, occurring by a calcium sensing receptor-mediated increase in the cytosolic calcium concentration, which then inhibits a calcium-sensitive isoform of adenylate cyclase, see below [35]. | |
References: 19,27,53,58,81 |
Secondary Transduction Mechanisms | |
Transducer | Effector/Response |
Gq/G11 family G protein (identity unknown) |
Adenylyl cyclase stimulation Potassium channel Phospholipase A2 stimulation Phospholipase D stimulation Other - See Comments |
Comments: In addition to the transducers and effectors noted above, the calcium sensing receptor also activates a nonselective cation channel [130], MAPK pathways, e.g. ERK1/2 [48,59,73], p38 MAPK [69], JNK [23], PI-3K [111], PI-4K [52], Rho [92] and the epidermal growth factor receptor [70]. | |
References: 25,35,48,58-59,73,129-130 |
Tissue Distribution | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
Tissue Distribution Comments | ||||||||
A variety of techniques--Northern blotting, RT-PCR, immunocytochemistry and Western blotting--were used to identify the calcium sensing receptor in the receptor distribution studies. Lack of availability of some human tissues, such as kidney, have so far precluded a comprehensive tissue survery for expression of the human calcium sensing receptor in humans. |
Expression Datasets | |
|
Functional Assays | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
Functional Assay Comments | ||||||||||
In addition to these two calcium sensing receptor transfected cell systems, measurement of the same responses AtT-20 cells [57] have also proven to be useful test systems. |
Physiological Functions | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
Physiological Consequences of Altering Gene Expression | ||||||||||
|
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Clinically-Relevant Mutations and Pathophysiology | ||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
|
Biologically Significant Variants | ||||||||
|
||||||||
|
1. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT. (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature, 439 (7076): 599-603. [PMID:16382241]
2. Aslanova UF, Morimoto T, Farajov EI, Kumagai N, Nishino M, Sugawara N, Ohsaga A, Maruyama Y, Tsuchiya S, Takahashi S et al.. (2006) Chloride-dependent intracellular pH regulation via extracellular calcium-sensing receptor in the medullary thick ascending limb of the mouse kidney. Tohoku J Exp Med, 210 (4): 291-300. [PMID:17146194]
3. Ba J, Brown D, Friedman PA. (2003) Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. Am J Physiol Renal Physiol, 285 (6): F1233-43. [PMID:12952858]
4. Bai M, Quinn S, Trivedi S, Kifor O, Pearce SH, Pollak MR, Krapcho K, Hebert SC, Brown EM. (1996) Expression and characterization of inactivating and activating mutations in the human Ca2+o-sensing receptor. J Biol Chem, 271 (32): 19537-45. [PMID:8702647]
5. Balan G, Bauman J, Bhattacharya S, Castrodad M, Healy DR, Herr M, Humphries P, Jennings S, Kalgutkar AS, Kapinos B et al.. (2009) The discovery of novel calcium sensing receptor negative allosteric modulators. Bioorg Med Chem Lett, 19 (12): 3328-32. [PMID:19442519]
6. Bandyopadhyay S, Jeong KH, Hansen JT, Vassilev PM, Brown EM, Chattopadhyay N. (2007) Calcium-sensing receptor stimulates secretion of an interferon-gamma-induced monokine (CXCL10) and monocyte chemoattractant protein-3 in immortalized GnRH neurons. J Neurosci Res, 85 (4): 882-95. [PMID:17285630]
7. Blankenship KA, Williams JJ, Lawrence MS, McLeish KR, Dean WL, Arthur JM. (2001) The calcium-sensing receptor regulates calcium absorption in MDCK cells by inhibition of PMCA. Am J Physiol Renal Physiol, 280 (5): F815-22. [PMID:11292623]
8. Bradbury RA, Cropley J, Kifor O, Lovicu FJ, de Iongh RU, Kable E, Brown EM, Seely EW, Peat BB, Conigrave AD. (2002) Localization of the extracellular Ca(2+)-sensing receptor in the human placenta. Placenta, 23: 192-200. [PMID:11945086]
9. Bradbury RA, Sunn KL, Crossley M, Bai M, Brown EM, Delbridge L, Conigrave AD. (1998) Expression of the parathyroid Ca(2+)-sensing receptor in cytotrophoblasts from human term placenta. J Endocrinol, 156 (3): 425-30. [PMID:9582498]
10. Broadhead GK, Mun HC, Avlani VA, Jourdon O, Church WB, Christopoulos A, Delbridge L, Conigrave AD. (2011) Allosteric modulation of the calcium-sensing receptor by gamma-glutamyl peptides: inhibition of PTH secretion, suppression of intracellular cAMP levels, and a common mechanism of action with L-amino acids. J Biol Chem, 286 (11): 8786-97. [PMID:21187282]
11. Brown AJ, Zhong M, Finch J, Ritter C, McCracken R, Morrissey J, Slatopolsky E. (1996) Rat calcium-sensing receptor is regulated by vitamin D but not by calcium. Am J Physiol, 270 (3 Pt 2): F454-60. [PMID:8780248]
12. Brown EM, Chen CJ. (1989) Calcium, magnesium and the control of PTH secretion. Bone Miner, 5 (3): 249-57. [PMID:2655774]
13. Brown EM, Fuleihan G el-H, Chen CJ, Kifor O. (1990) A comparison of the effects of divalent and trivalent cations on parathyroid hormone release, 3',5'-cyclic-adenosine monophosphate accumulation, and the levels of inositol phosphates in bovine parathyroid cells. Endocrinology, 127 (3): 1064-71. [PMID:2167204]
14. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC. (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature, 366 (6455): 575-80. [PMID:8255296]
15. Brown EM, Katz C, Butters R, Kifor O. (1991) Polyarginine, polylysine, and protamine mimic the effects of high extracellular calcium concentrations on dispersed bovine parathyroid cells. J Bone Miner Res, 6 (11): 1217-25. [PMID:1666808]
16. Bräuner-Osborne H, Jensen AA, Sheppard PO, O'Hara P, Krogsgaard-Larsen P. (1999) The agonist-binding domain of the calcium-sensing receptor is located at the amino-terminal domain. J Biol Chem, 274 (26): 18382-6. [PMID:10373443]
17. Canaff L, Petit JL, Kisiel M, Watson PH, Gascon-Barré M, Hendy GN. (2001) Extracellular calcium-sensing receptor is expressed in rat hepatocytes. coupling to intracellular calcium mobilization and stimulation of bile flow. J Biol Chem, 276 (6): 4070-9. [PMID:11071898]
18. Centeno PP, Herberger A, Mun HC, Tu C, Nemeth EF, Chang W, Conigrave AD, Ward DT. (2019) Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun, 10 (1): 4693. [PMID:31619668]
19. Chang W, Pratt S, Chen TH, Nemeth E, Huang Z, Shoback D. (1998) Coupling of calcium receptors to inositol phosphate and cyclic AMP generation in mammalian cells and Xenopus laevis oocytes and immunodetection of receptor protein by region-specific antipeptide antisera. J Bone Miner Res, 13: 570-580. [PMID:9556057]
20. Chang W, Tu C, Chen TH, Komuves L, Oda Y, Pratt SA, Miller S, Shoback D. (1999) Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology, 140 (12): 5883-93. [PMID:10579354]
21. Chattopadhyay N, Cheng I, Rogers K, Riccardi D, Hall A, Diaz R, Hebert SC, Soybel DI, Brown EM. (1998) Identification and localization of extracellular Ca(2+)-sensing receptor in rat intestine. Am J Physiol, 274 (1): G122-30. [PMID:9458781]
22. Chattopadhyay N, Evliyaoglu C, Heese O, Carroll R, Sanders J, Black P, Brown EM. (2000) Regulation of secretion of PTHrP by Ca(2+)-sensing receptor in human astrocytes, astrocytomas, and meningiomas. Am J Physiol, Cell Physiol, 279 (3): C691-9. [PMID:10942719]
23. Chattopadhyay N, Yano S, Tfelt-Hansen J, Rooney P, Kanuparthi D, Bandyopadhyay S, Ren X, Terwilliger E, Brown EM. (2004) Mitogenic action of calcium-sensing receptor on rat calvarial osteoblasts. Endocrinology, 145 (7): 3451-62. [PMID:15084499]
24. Chattopadhyay N, Ye C, Singh DP, Kifor O, Vassilev PM, Shinohara T, Chylack Jr LT, Brown EM. (1997) Expression of extracellular calcium-sensing receptor by human lens epithelial cells. Biochem Biophys Res Commun, 233 (3): 801-5. [PMID:9168937]
25. Chattopadhyay N, Ye C, Yamaguchi T, Nakai M, Kifor O, Vassilev PM, Nishimura RN, Brown EM. (1999) The extracellular calcium-sensing receptor is expressed in rat microglia and modulates an outward K+ channel. J Neurochem, 72 (5): 1915-22. [PMID:10217268]
26. Chattopadhyay N, Ye CP, Yamaguchi T, Kifor O, Vassilev PM, Nishimura R, Brown EM. (1998) Extracellular calcium-sensing receptor in rat oligodendrocytes: expression and potential role in regulation of cellular proliferation and an outward K+ channel. Glia, 24 (4): 449-58. [PMID:9814825]
27. Chen CJ, Barnett JV, Congo DA, Brown EM. (1989) Divalent cations suppress 3',5'-adenosine monophosphate accumulation by stimulating a pertussis toxin-sensitive guanine nucleotide-binding protein in cultured bovine parathyroid cells. Endocrinology, 124 (1): 233-9. [PMID:2462488]
28. Cheng I, Klingensmith ME, Chattopadhyay N, Kifor O, Butters RR, Soybel DI, Brown EM. (1998) Identification and localization of the extracellular calcium-sensing receptor in human breast. J Clin Endocrinol Metab, 83 (2): 703-7. [PMID:9467597]
29. Cheng I, Qureshi I, Chattopadhyay N, Qureshi A, Butters RR, Hall AE, Cima RR, Rogers KV, Hebert SC, Geibel JP et al.. (1999) Expression of an extracellular calcium-sensing receptor in rat stomach. Gastroenterology, 116 (1): 118-26. [PMID:9869609]
30. Conigrave AD, Mun HC, Delbridge L, Quinn SJ, Wilkinson M, Brown EM. (2004) L-amino acids regulate parathyroid hormone secretion. J Biol Chem, 279 (37): 38151-9. [PMID:15234970]
31. Conigrave AD, Quinn SJ, Brown EM. (2000) L-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci USA, 97 (9): 4814-9. [PMID:10781086]
32. Cook AE, Mistry SN, Gregory KJ, Furness SG, Sexton PM, Scammells PJ, Conigrave AD, Christopoulos A, Leach K. (2015) Biased allosteric modulation at the CaS receptor engendered by structurally diverse calcimimetics. Br J Pharmacol, 172 (1): 185-200. [PMID:25220431]
33. Dauban P, Ferry S, Faure H, Ruat M, Dodd RH. (2000) N1-Arylsulfonyl-N2-(1-aryl)ethyl-3-phenylpropane-1,2-diamines as novel calcimimetics acting on the calcium sensing receptor. Bioorg Med Chem Lett, 10 (17): 2001-4. [PMID:10987436]
34. Davey AE, Leach K, Valant C, Conigrave AD, Sexton PM, Christopoulos A. (2012) Positive and negative allosteric modulators promote biased signaling at the calcium-sensing receptor. Endocrinology, 153 (3): 1232-41. [PMID:22210744]
35. de Jesus Ferreira MC, Héliès-Toussaint C, Imbert-Teboul M, Bailly C, Verbavatz JM, Bellanger AC, Chabardès D. (1998) Co-expression of a Ca2+-inhibitable adenylyl cyclase and of a Ca2+-sensing receptor in the cortical thick ascending limb cell of the rat kidney. Inhibition of hormone-dependent cAMP accumulation by extracellular Ca2+. J Biol Chem, 273 (24): 15192-202. [PMID:9614133]
36. Desfleurs E, Wittner M, Pajaud S, Nitschke R, Rajerison RM, Di Stefano A. (1999) The Ca2+-sensing receptor in the rabbit cortical thick ascending limb (CTAL) is functionally not coupled to phospholipase C. Pflugers Arch, 437 (5): 716-23. [PMID:10087149]
37. Didiuk MT, Griffith DA, Benbow JW, Liu KK, Walker DP, Bi FC, Morris J, Guzman-Perez A, Gao H, Bechle BM et al.. (2009) Short-acting 5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one derivatives as orally-active calcium-sensing receptor antagonists. Bioorg Med Chem Lett, 19 (16): 4555-9. [PMID:19625189]
38. Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, Riccardi D. (2004) Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci USA, 101 (14): 5140-5. [PMID:15051872]
39. Emanuel RL, Adler GK, Kifor O, Quinn SJ, Fuller F, Krapcho K, Brown EM. (1996) Calcium-sensing receptor expression and regulation by extracellular calcium in the AtT-20 pituitary cell line. Mol Endocrinol, 10 (5): 555-65. [PMID:8732686]
40. Fatherazi S, Belton CM, Cai S, Zarif S, Goodwin PC, Lamont RJ, Izutsu KT. (2004) Calcium receptor message, expression and function decrease in differentiating keratinocytes. Pflugers Arch, 448: 93-104. [PMID:14770313]
41. Ferry S, Chatel B, Dodd RH, Lair C, Gully D, Maffrand JP, Ruat M. (1997) Effects of divalent cations and of a calcimimetic on adrenocorticotropic hormone release in pituitary tumor cells. Biochem Biophys Res Commun, 238 (3): 866-73. [PMID:9325183]
42. Freichel M, Zink-Lorenz A, Holloschi A, Hafner M, Flockerzi V, Raue F. (1996) Expression of a calcium-sensing receptor in a human medullary thyroid carcinoma cell line and its contribution to calcitonin secretion. Endocrinology, 137 (9): 3842-8. [PMID:8756555]
43. Fudge NJ, Kovacs CS. (2004) Physiological studies in heterozygous calcium sensing receptor (CaSR) gene-ablated mice confirm that the CaSR regulates calcitonin release in vivo. BMC Physiol, 4: 5. [PMID:15099400]
44. Garrett JE, Tamir H, Kifor O, Simin RT, Rogers KV, Mithal A, Gagel RF, Brown EM. (1995) Calcitonin-secreting cells of the thyroid express an extracellular calcium receptor gene. Endocrinology, 136 (11): 5202-11. [PMID:7588259]
45. Gavai AV, Vaz RJ, Mikkilineni AB, Roberge JY, Liu Y, Lawrence RM, Corte JR, Yang W, Bednarz M, Dickson Jr JK et al.. (2005) Discovery of novel 1-arylmethyl pyrrolidin-2-yl ethanol amines as calcium-sensing receptor antagonists. Bioorg Med Chem Lett, 15 (24): 5478-82. [PMID:16216508]
46. Geibel J, Sritharan K, Geibel R, Geibel P, Persing JS, Seeger A, Roepke TK, Deichstetter M, Prinz C, Cheng SX et al.. (2006) Calcium-sensing receptor abrogates secretagogue- induced increases in intestinal net fluid secretion by enhancing cyclic nucleotide destruction. Proc Natl Acad Sci USA, 103 (25): 9390-7. [PMID:16760252]
47. Haden ST, Brown EM, Stoll AL, Scott J, Fuleihan GE. (1999) The effect of lithium on calcium-induced changes in adrenocorticotrophin levels. J Clin Endocrinol Metab, 84 (1): 198-200. [PMID:9920083]
48. Handlogten ME, Huang C, Shiraishi N, Awata H, Miller RT. (2001) The Ca2+-sensing receptor activates cytosolic phospholipase A2 via a Gqalpha -dependent ERK-independent pathway. J Biol Chem, 276 (17): 13941-8. [PMID:11278341]
49. Hatem S, Hoyaux D, De Decker V, Appelboom T, Pochet R, Steinfeld S. (2002) Expression of calcium-sensing receptor in human minor salivary glands. Clin Exp Rheumatol, 20: 576-576. [PMID:12175122]
50. Hauache OM, Hu J, Ray K, Xie R, Jacobson KA, Spiegel AM. (2000) Effects of a calcimimetic compound and naturally activating mutations on the human Ca2+ receptor and on Ca2+ receptor/metabotropic glutamate chimeric receptors. Endocrinology, 141 (11): 4156-63. [PMID:11089548]
51. Ho C, Conner DA, Pollak MR, Ladd DJ, Kifor O, Warren HB, Brown EM, Seidman JG, Seidman CE. (1995) A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet, 11 (4): 389-94. [PMID:7493018]
52. Huang C, Handlogten ME, Miller RT. (2002) Parallel activation of phosphatidylinositol 4-kinase and phospholipase C by the extracellular calcium-sensing receptor. J Biol Chem, 277 (23): 20293-300. [PMID:11907035]
53. Huang C, Hujer KM, Wu Z, Miller RT. (2004) The Ca2+-sensing receptor couples to Galpha12/13 to activate phospholipase D in Madin-Darby canine kidney cells. Am J Physiol, Cell Physiol, 286 (1): C22-30. [PMID:12954603]
54. Itami A, Kato M, Komoto I, Doi R, Hosotani R, Shimada Y, Imamura M. (2001) Human gastrinoma cells express calcium-sensing receptor. Life Sci, 70 (2): 119-29. [PMID:11787938]
55. Janicic N, Soliman E, Pausova Z, Seldin MF, Rivière M, Szpirer J, Szpirer C, Hendy GN. (1995) Mapping of the calcium-sensing receptor gene (CASR) to human chromosome 3q13.3-21 by fluorescence in situ hybridization, and localization to rat chromosome 11 and mouse chromosome 16. Mamm Genome, 6 (11): 798-801. [PMID:8597637]
56. Kessler A, Faure H, Petrel C, Ruat M, Dauban P, Dodd RH. (2004) N2-benzyl-N1-(1-(1-naphthyl)ethyl)-3-phenylpropane-1,2-diamines and conformationally restrained indole analogues: development of calindol as a new calcimimetic acting at the calcium sensing receptor. Bioorg Med Chem Lett, 14 (12): 3345-9. [PMID:15149704]
57. Kessler A, Faure H, Roussanne MC, Ferry S, Ruat M, Dauban P, Dodd RH. (2004) N(1)-Arylsulfonyl-N(2)-(1-(1-naphthyl)ethyl)-1,2-diaminocyclohexanes: a new class of calcilytic agents acting at the calcium-sensing receptor. Chembiochem, 5 (8): 1131-6. [PMID:15300839]
58. Kifor O, Diaz R, Butters R, Brown EM. (1997) The Ca2+-sensing receptor (CaR) activates phospholipases C, A2, and D in bovine parathyroid and CaR-transfected, human embryonic kidney (HEK293) cells. J Bone Miner Res, 12 (5): 715-25. [PMID:9144337]
59. Kifor O, MacLeod RJ, Diaz R, Bai M, Yamaguchi T, Yao T, Kifor I, Brown EM. (2001) Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. Am J Physiol Renal Physiol, 280: F291-F302. [PMID:11208605]
60. Komoto I, Kato M, Itami A, Shimada Y, Doi R, Hosotani R, Imamura M. (2003) Expression and function of the calcium-sensing receptor in pancreatic islets and insulinoma cells. Pancreas, 26 (2): 178-84. [PMID:12604917]
61. Komuves L, Oda Y, Tu CL, Chang WH, Ho-Pao CL, Mauro T, Bikle DD. (2002) Epidermal expression of the full-length extracellular calcium-sensing receptor is required for normal keratinocyte differentiation. J Cell Physiol, 192 (1): 45-54. [PMID:12115735]
62. Kumar S, Matheny CJ, Hoffman SJ, Marquis RW, Schultz M, Liang X, Vasko JA, Stroup GB, Vaden VR, Haley H et al.. (2010) An orally active calcium-sensing receptor antagonist that transiently increases plasma concentrations of PTH and stimulates bone formation. Bone, 46 (2): 534-42. [PMID:19786130]
63. Kwak JO, Kwak J, Kim HW, Oh KJ, Kim YT, Jung SM, Cha SH. (2005) The extracellular calcium sensing receptor is expressed in mouse mesangial cells and modulates cell proliferation. Exp Mol Med, 37 (5): 457-65. [PMID:16264270]
64. Kállay E, Bonner E, Wrba F, Thakker RV, Peterlik M, Cross HS. (2003) Molecular and functional characterization of the extracellular calcium-sensing receptor in human colon cancer cells. Oncol Res, 13 (12): 551-9. [PMID:12899245]
65. Leach K, Gregory KJ, Kufareva I, Khajehali E, Cook AE, Abagyan R, Conigrave AD, Sexton PM, Christopoulos A. (2016) Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor. Cell Res, 26 (5): 574-92. [PMID:27002221]
66. Leach K, Wen A, Cook AE, Sexton PM, Conigrave AD, Christopoulos A. (2013) Impact of clinically relevant mutations on the pharmacoregulation and signaling bias of the calcium-sensing receptor by positive and negative allosteric modulators. Endocrinology, 154 (3): 1105-16. [PMID:23372019]
67. Letz S, Haag C, Schulze E, Frank-Raue K, Raue F, Hofner B, Mayr B, Schöfl C. (2014) Amino alcohol- (NPS-2143) and quinazolinone-derived calcilytics (ATF936 and AXT914) differentially mitigate excessive signalling of calcium-sensing receptor mutants causing Bartter syndrome Type 5 and autosomal dominant hypocalcemia. PLoS ONE, 9 (12): e115178. [PMID:25506941]
68. Ma JN, Owens M, Gustafsson M, Jensen J, Tabatabaei A, Schmelzer K, Olsson R, Burstein ES. (2011) Characterization of highly efficacious allosteric agonists of the human calcium-sensing receptor. J Pharmacol Exp Ther, 337 (1): 275-84. [PMID:21239511]
69. MacLeod RJ, Chattopadhyay N, Brown EM. (2003) PTHrP stimulated by the calcium-sensing receptor requires MAP kinase activation. Am J Physiol Endocrinol Metab, 284 (2): E435-42. [PMID:12388158]
70. MacLeod RJ, Yano S, Chattopadhyay N, Brown EM. (2004) Extracellular calcium-sensing receptor transactivates the epidermal growth factor receptor by a triple-membrane-spanning signaling mechanism. Biochem Biophys Res Commun, 320 (2): 455-60. [PMID:15219850]
71. Mantovani G, Corbetta S, Romoli R, Alberti L, Beck-Peccoz P, Spada A. (2001) Absence of thyroid transcription factor-1 expression in human parathyroid and pituitary glands. Mol Cell Endocrinol, 182 (1): 13-7. [PMID:11500234]
72. McNeil L, Hobson S, Nipper V, Rodland KD. (1998) Functional calcium-sensing receptor expression in ovarian surface epithelial cells. Am J Obstet Gynecol, 178 (2): 305-13. [PMID:9500491]
73. McNeil SE, Hobson SA, Nipper V, Rodland KD. (1998) Functional calcium-sensing receptors in rat fibroblasts are required for activation of SRC kinase and mitogen-activated protein kinase in response to extracellular calcium. J Biol Chem, 273: 1114-1120. [PMID:9422777]
74. Mitsuma T, Rhue N, Kayama M, Mori Y, Adachi K, Yokoi Y, Ping J, Nogimori T, Hirooka Y. (1999) Distribution of calcium sensing receptor in rats: an immunohistochemical study. Endocr Regul, 33 (2): 55-9. [PMID:10467425]
75. Miyazaki H, Ikeda Y, Sakurai O, Miyake T, Tsubota R, Okabe J, Kuroda M, Hisada Y, Yanagida T, Yoneda H et al.. (2018) Discovery of evocalcet, a next-generation calcium-sensing receptor agonist for the treatment of hyperparathyroidism. Bioorg Med Chem Lett, 28 (11): 2055-2060. [PMID:29724589]
76. Motoyama HI, Friedman PA. (2002) Calcium-sensing receptor regulation of PTH-dependent calcium absorption by mouse cortical ascending limbs. Am J Physiol Renal Physiol, 283 (3): F399-406. [PMID:12167589]
77. Nagy E, Rigby WF. (1995) Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD(+)-binding region (Rossmann fold). J Biol Chem, 270 (6): 2755-63. [PMID:7531693]
78. Nemeth EF. (2004) Calcimimetic and calcilytic drugs: just for parathyroid cells?. Cell Calcium, 35 (3): 283-9. [PMID:15200152]
79. Nemeth EF, Delmar EG, Heaton WL, Miller MA, Lambert LD, Conklin RL, Gowen M, Gleason JG, Bhatnagar PK, Fox J. (2001) Calcilytic compounds: potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone. J Pharmacol Exp Ther, 299 (1): 323-31. [PMID:11561095]
80. Nemeth EF, Heaton WH, Miller M, Fox J, Balandrin MF, Van Wagenen BC, Colloton M, Karbon W, Scherrer J, Shatzen E et al.. (2004) Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J Pharmacol Exp Ther, 308 (2): 627-35. [PMID:14593085]
81. Nemeth EF, Scarpa A. (1986) Cytosolic Ca2+ and the regulation of secretion in parathyroid cells. FEBS Lett, 203: 15-19. [PMID:3755106]
82. Nemeth EF, Steffey ME, Hammerland LG, Hung BC, Van Wagenen BC, DelMar EG, Balandrin MF. (1998) Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA, 95 (7): 4040-5. [PMID:9520489]
83. Oda Y, Tu CL, Chang W, Crumrine D, Kömüves L, Mauro T, Elias PM, Bikle DD. (2000) The calcium sensing receptor and its alternatively spliced form in murine epidermal differentiation. J Biol Chem, 275 (2): 1183-90. [PMID:10625662]
84. Oda Y, Tu CL, Pillai S, Bikle DD. (1998) The calcium sensing receptor and its alternatively spliced form in keratinocyte differentiation. J Biol Chem, 273 (36): 23344-52. [PMID:9722568]
85. Ogata S, Kubota Y, Satoh S, Ito S, Takeuchi H, Ashizuka M, Shirasuna K. (2006) Ca2+ stimulates COX-2 expression through calcium-sensing receptor in fibroblasts. Biochem Biophys Res Commun, 351 (4): 808-14. [PMID:17097611]
86. Ohsu T, Amino Y, Nagasaki H, Yamanaka T, Takeshita S, Hatanaka T, Maruyama Y, Miyamura N, Eto Y. (2010) Involvement of the calcium-sensing receptor in human taste perception. J Biol Chem, 285 (2): 1016-22. [PMID:19892707]
87. Olszak IT, Poznansky MC, Evans RH, Olson D, Kos C, Pollak MR, Brown EM, Scadden DT. (2000) Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo. J Clin Invest, 105 (9): 1299-305. [PMID:10792005]
88. Peiris D, Pacheco I, Spencer C, MacLeod RJ. (2007) The extracellular calcium-sensing receptor reciprocally regulates the secretion of BMP-2 and the BMP antagonist Noggin in colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol, 292 (3): G753-66. [PMID:17138967]
89. Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M. (2004) Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem, 279 (18): 18990-7. [PMID:14976203]
90. Petrel C, Kessler A, Maslah F, Dauban P, Dodd RH, Rognan D, Ruat M. (2003) Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca(2+)-sensing receptor. J Biol Chem, 278 (49): 49487-94. [PMID:14506236]
91. Pi M, Faber P, Ekema G, Jackson PD, Ting A, Wang N, Fontilla-Poole M, Mays RW, Brunden KR, Harrington JJ et al.. (2005) Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem, 280 (48): 40201-9. [PMID:16199532]
92. Pi M, Spurney RF, Tu Q, Hinson T, Quarles LD. (2002) Calcium-sensing receptor activation of rho involves filamin and rho-guanine nucleotide exchange factor. Endocrinology, 143 (10): 3830-8. [PMID:12239094]
93. Quinn SJ, Ye CP, Diaz R, Kifor O, Bai M, Vassilev P, Brown E. (1997) The Ca2+-sensing receptor: a target for polyamines. Am J Physiol, 273 (4): C1315-23. [PMID:9357776]
94. Remy C, Kirchhoff P, Hafner P, Busque SM, Müeller MK, Geibel JP, Wagner CA. (2007) Stimulatory pathways of the Calcium-sensing receptor on acid secretion in freshly isolated human gastric glands. Cell Physiol Biochem, 19 (1-4): 33-42. [PMID:17310098]
95. Riccardi D, Hall AE, Chattopadhyay N, Xu JZ, Brown EM, Hebert SC. (1998) Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am J Physiol, 274 (3): F611-22. [PMID:9530279]
96. Riccardi D, Park J, Lee WS, Gamba G, Brown EM, Hebert SC. (1995) Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc Natl Acad Sci USA, 92 (1): 131-5. [PMID:7816802]
97. Riccardi D, Traebert M, Ward DT, Kaissling B, Biber J, Hebert SC, Murer H. (2000) Dietary phosphate and parathyroid hormone alter the expression of the calcium-sensing receptor (CaR) and the Na+-dependent Pi transporter (NaPi-2) in the rat proximal tubule. Pflugers Arch, 441: 379-387. [PMID:11211126]
98. Rodriguez L, Tu C, Cheng Z, Chen TH, Bikle D, Shoback D, Chang W. (2005) Expression and functional assessment of an alternatively spliced extracellular Ca2+-sensing receptor in growth plate chondrocytes. Endocrinology, 146 (12): 5294-303. [PMID:16166224]
99. Rogers KV, Dunn CK, Hebert SC, Brown EM. (1997) Localization of calcium receptor mRNA in the adult rat central nervous system by in situ hybridization. Brain Res, 744: 47-56. [PMID:9030412]
100. Rutten MJ, Bacon KD, Marlink KL, Stoney M, Meichsner CL, Lee FP, Hobson SA, Rodland KD, Sheppard BC, Trunkey DD et al.. (1999) Identification of a functional Ca2+-sensing receptor in normal human gastric mucous epithelial cells. Am J Physiol, 277 (3): G662-70. [PMID:10484392]
101. Rácz GZ, Kittel A, Riccardi D, Case RM, Elliott AC, Varga G. (2002) Extracellular calcium sensing receptor in human pancreatic cells. Gut, 51 (5): 705-11. [PMID:12377811]
102. Sanders JL, Chattopadhyay N, Kifor O, Yamaguchi T, Brown EM. (2000) Extracellular calcium-sensing receptor (CaR) expression and its potential role in parathyroid hormone-related peptide (PTHrP) secretion in the H-500 rat Leydig cell model of humoral hypercalcemia of malignancy. Biochem Biophys Res Commun, 269 (2): 427-32. [PMID:10708570]
103. Sanders JL, Chattopadhyay N, Kifor O, Yamaguchi T, Brown EM. (2001) Ca(2+)-sensing receptor expression and PTHrP secretion in PC-3 human prostate cancer cells. Am J Physiol Endocrinol Metab, 281 (6): E1267-74. [PMID:11701443]
104. Sanders JL, Chattopadhyay N, Kifor O, Yamaguchi T, Butters RR, Brown EM. (2000) Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines. Endocrinology, 141: 4357-4364. [PMID:11108243]
105. Sands JM, Naruse M, Baum M, Jo I, Hebert SC, Brown EM, Harris HW. (1997) Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest, 99: 1399-1405. [PMID:9077550]
106. Sato H, Murakami S, Horii Y, Nishimura G, Iwai R, Goto M, Takahashi N. (2022) Upacicalcet Is a Novel Secondary Hyperparathyroidism Drug that Targets the Amino Acid Binding Site of Calcium-Sensing Receptor . Mol Pharmacol, 102 (4): 183-195. [PMID:36122913]
107. Shalhoub V, Grisanti M, Padagas J, Scully S, Rattan A, Qi M, Varnum B, Vezina C, Lacey D, Martin D. (2003) In vitro studies with the calcimimetic, cinacalcet HCl, on normal human adult osteoblastic and osteoclastic cells. Crit Rev Eukaryot Gene Expr, 13 (2-4): 89-106. [PMID:14696958]
108. Shcherbakova I, Huang G, Geoffroy OJ, Nair SK, Swierczek K, Balandrin MF, Fox J, Heaton WL, Conklin RL. (2005) Design, new synthesis, and calcilytic activity of substituted 3H-pyrimidin-4-ones. Bioorg Med Chem Lett, 15 (10): 2537-40. [PMID:15863312]
109. Sheinin Y, Kállay E, Wrba F, Kriwanek S, Peterlik M, Cross HS. (2000) Immunocytochemical localization of the extracellular calcium-sensing receptor in normal and malignant human large intestinal mucosa. J Histochem Cytochem, 48 (5): 595-602. [PMID:10769043]
110. Shinagawa Y, Inoue T, Katsushima T, Kiguchi T, Ikenogami T, Ogawa N, Fukuda K, Hirata K, Harada K, Takagi M et al.. (2011) Discovery of a potent and short-acting oral calcilytic with a pulsatile secretion of parathyroid hormone. ACS Med Chem Lett, 2 (3): 238-42. [PMID:24900301]
111. Tfelt-Hansen J, Chattopadhyay N, Yano S, Kanuparthi D, Rooney P, Schwarz P, Brown EM. (2004) Calcium-sensing receptor induces proliferation through p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase but not extracellularly regulated kinase in a model of humoral hypercalcemia of malignancy. Endocrinology, 145 (3): 1211-7. [PMID:14645111]
112. Turksen K, Troy TC. (2003) Overexpression of the calcium sensing receptor accelerates epidermal differentiation and permeability barrier formation in vivo. Mech Dev, 120 (6): 733-44. [PMID:12834872]
113. VanHouten J, Dann P, McGeoch G, Brown EM, Krapcho K, Neville M, Wysolmerski JJ. (2004) The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest, 113: 598-608. [PMID:14966569]
114. Wada M, Nagano N, Furuya Y, Chin J, Nemeth EF, Fox J. (2000) Calcimimetic NPS R-568 prevents parathyroid hyperplasia in rats with severe secondary hyperparathyroidism. Kidney Int, 57 (1): 50-8. [PMID:10620187]
115. Walter S, Baruch A, Dong J, Tomlinson JE, Alexander ST, Janes J, Hunter T, Yin Q, Maclean D, Bell G et al.. (2013) Pharmacology of AMG 416 (Velcalcetide), a novel peptide agonist of the calcium-sensing receptor, for the treatment of secondary hyperparathyroidism in hemodialysis patients. J Pharmacol Exp Ther, 346 (2): 229-40. [PMID:23674604]
116. Wang M, Yao Y, Kuang D, Hampson DR. (2006) Activation of family C G-protein-coupled receptors by the tripeptide glutathione. J Biol Chem, 281 (13): 8864-70. [PMID:16455645]
117. Wang R, Xu C, Zhao W, Zhang J, Cao K, Yang B, Wu L. (2003) Calcium and polyamine regulated calcium-sensing receptors in cardiac tissues. Eur J Biochem, 270 (12): 2680-8. [PMID:12787035]
118. Wang Y, Awumey EK, Chatterjee PK, Somasundaram C, Bian K, Rogers KV, Dunn C, Bukoski RD. (2003) Molecular cloning and characterization of a rat sensory nerve Ca2+-sensing receptor. Am J Physiol Cell Physiol, 285: C64-C75. [PMID:12637267]
119. Widler L. (2011) Calcilytics: antagonists of the calcium-sensing receptor for the treatment of osteoporosis. Future Med Chem, 3 (5): 535-47. [PMID:21526895]
120. Widler L, Altmann E, Beerli R, Breitenstein W, Bouhelal R, Buhl T, Gamse R, Gerspacher M, Halleux C, John MR et al.. (2010) 1-Alkyl-4-phenyl-6-alkoxy-1H-quinazolin-2-ones: a novel series of potent calcium-sensing receptor antagonists. J Med Chem, 53 (5): 2250-63. [PMID:20158186]
121. Yamaguchi T, Chattopadhyay N, Kifor O, Brown EM. (1998) Extracellular calcium (Ca2+(o))-sensing receptor in a murine bone marrow-derived stromal cell line (ST2): potential mediator of the actions of Ca2+(o) on the function of ST2 cells. Endocrinology, 139 (8): 3561-8. [PMID:9681508]
122. Yamaguchi T, Chattopadhyay N, Kifor O, Butters Jr RR, Sugimoto T, Brown EM. (1998) Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells. J Bone Miner Res, 13 (10): 1530-8. [PMID:9783541]
123. Yamaguchi T, Chattopadhyay N, Kifor O, Ye C, Vassilev PM, Sanders JL, Brown EM. (2001) Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line. Am J Physiol, Cell Physiol, 280 (2): C382-93. [PMID:11208534]
124. Yamaguchi T, Yamauchi M, Sugimoto T, Chauhan D, Anderson KC, Brown EM, Chihara K. (2002) The extracellular calcium Ca2+o-sensing receptor is expressed in myeloma cells and modulates cell proliferation. Biochem Biophys Res Commun, 299 (4): 532-8. [PMID:12459170]
125. Yamaguchi T, Ye C, Chattopadhyay N, Sanders JL, Vassilev PM, Brown EM. (2000) Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: potential role in regulation of a nonselective cation channel. Calcif Tissue Int, 66 (5): 375-82. [PMID:10773108]
126. Yang W, Ruan Z, Wang Y, Van Kirk K, Ma Z, Arey BJ, Cooper CB, Seethala R, Feyen JH, Dickson Jr JK. (2009) Discovery and structure-activity relationships of trisubstituted pyrimidines/pyridines as novel calcium-sensing receptor antagonists. J Med Chem, 52 (4): 1204-8. [PMID:19143533]
127. Yang W, Wang Y, Roberge JY, Ma Z, Liu Y, Michael Lawrence R, Rotella DP, Seethala R, Feyen JH, Dickson Jr JK. (2005) Discovery and structure-activity relationships of 2-benzylpyrrolidine-substituted aryloxypropanols as calcium-sensing receptor antagonists. Bioorg Med Chem Lett, 15 (4): 1225-8. [PMID:15686947]
128. Yano S, Macleod RJ, Chattopadhyay N, Tfelt-Hansen J, Kifor O, Butters RR, Brown EM. (2004) Calcium-sensing receptor activation stimulates parathyroid hormone-related protein secretion in prostate cancer cells: role of epidermal growth factor receptor transactivation. Bone, 35 (3): 664-72. [PMID:15336602]
129. Ye C, Chattopadhyay N, Brown EM, Vassilev PM. (2000) Defective extracellular calcium (Ca(o))-sensing receptor (CaR)-mediated stimulation of a Ca(2+)-activated potassium channel in glioblastoma cells transfected with a dominant negative CaR. Brain Res Mol Brain Res, 80: 177-187. [PMID:11038250]
130. Ye C, Rogers K, Bai M, Quinn SJ, Brown EM, Vassilev PM. (1996) Agonists of the Ca(2+)-sensing receptor (CaR) activate nonselective cation channels in HEK293 cells stably transfected with the human CaR. Biochem Biophys Res Commun, 226 (2): 572-9. [PMID:8806675]