Top ▲

CB1 receptor

Click here for help

Immunopharmacology Ligand target has curated data in GtoImmuPdb

Target id: 56

Nomenclature: CB1 receptor

Family: Cannabinoid receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 472 6q15 CNR1 cannabinoid receptor 1 28,37
Mouse 7 473 4 16.28 cM Cnr1 cannabinoid receptor 1 9
Rat 7 473 5q21 Cnr1 cannabinoid receptor 1 66
Previous and Unofficial Names Click here for help
Central cannabinoid receptor | Neuronal cannabinoid receptor | THC receptor | CB-R | Cann6 [87] | SKR6R | CB1R | Cann7
Database Links Click here for help
Specialist databases
GPCRdb cnr1_human (Hs), cnr1_mouse (Mm), cnr1_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal Structure of the Human Cannabinoid Receptor CB1
PDB Id:  5TGZ
Ligand:  AM6538
Resolution:  2.8Å
Species:  Human
References:  41
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human CB1 in complex with agonist AM11542
PDB Id:  5XRA
Ligand:  AM11542
Resolution:  2.8Å
Species:  Human
References:  40
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human CB1 in complex with agonist AM841
PDB Id:  5XR8
Ligand:  AM841
Resolution:  2.95Å
Species:  Human
References:  40
Image of receptor 3D structure from RCSB PDB
Description:  High-resolution crystal structure of the human CB1 cannabinoid receptor
PDB Id:  5U09
Ligand:  taranabant
Resolution:  2.6Å
Species:  Human
References:  83
Natural/Endogenous Ligands Click here for help
anandamide
2-arachidonoylglycerol
Comments: Endogenous ligands include other endocannabinoids

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]HU-243 Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Full agonist 10.4 pKd 16
pKd 10.4 [16]
[3H]CP55940 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Full agonist 8.5 – 9.4 pKd 5-6,21,29,85,88
pKd 8.5 – 9.4 [5-6,21,29,85,88]
[3H]WIN55212-2 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 7.8 – 7.9 pKd 11,90
pKd 7.8 – 7.9 [11,90]
MDMB-Fubinaca Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 10.0 pKi 82
pKi 10.0 (Ki 9.8x10-11 M) [82]
AM11542 Small molecule or natural product Ligand has a PDB structure Hs Agonist 10.0 pKi 40
pKi 10.0 (Ki 1.1x10-10 M) [40]
HU-210 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.1 – 10.2 pKi 20,88
pKi 9.1 – 10.2 [20,88]
AM2201 Small molecule or natural product Rn Agonist 9.0 pKi 64
pKi 9.0 (Ki 1x10-9 M) [64]
Description: Binding affinity vs. rat forebrain membranes.
AM841 Small molecule or natural product Ligand has a PDB structure Hs Agonist 8.9 pKi 40
pKi 8.9 (Ki 1.14x10-9 M) [40]
arachidonyl-2-chloroethylamide Small molecule or natural product Rn Full agonist 8.9 pKi 35
pKi 8.9 [35]
CP55940 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 8.3 – 9.2 pKi 20,80,88
pKi 8.3 – 9.2 [20,80,88]
arachidonylcyclopropylamide Small molecule or natural product Rn Full agonist 8.7 pKi 35
pKi 8.7 [35]
MRI-1867 Small molecule or natural product Primary target of this compound Immunopharmacology Ligand Hs Inverse agonist 8.6 pKi 13
pKi 8.6 (Ki 2.3x10-9 M) [13]
Description: Measured in a radioligand displacement assay using [3H]-CP55940 as tracer and membranes from CB1R-expressing CHO-K1 cells.
AM7499 Small molecule or natural product Rn Agonist 8.6 pKi 50
pKi 8.6 (Ki 2.4x10-9 M) [50]
levonantradol Small molecule or natural product Rn Agonist 8.5 pKi 31
pKi 8.5 (Ki 2.9x10-9 M) [31]
O-1812 Small molecule or natural product Rn Full agonist 8.5 pKi 17
pKi 8.5 (Ki 3.16x10-9 M) [17]
nabilone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 8.4 pKi 4
pKi 8.4 (Ki 3.98x10-9 M) [4]
JWH-018 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.0 pKi 12
pKi 8.0 [12]
AZD1940 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.9 pKi 59
pKi 7.9 (Ki 1.17x10-8 M) [59]
WIN55212-2 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 6.9 – 8.7 pKi 20,86,88
pKi 6.9 – 8.7 [20,86,88]
R-(+)-methanandamide Small molecule or natural product Rn Agonist 7.7 pKi 47
pKi 7.7 (Ki 2x10-8 M) [47]
lenabasum Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Agonist 7.5 pKi 31,76
pKi 7.5 (Ki 3.23x10-8 M) [31,76]
Δ9-tetrahydrocannabinol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 7.3 – 7.4 pKi 20,88
pKi 7.3 – 7.4 [20,88]
BAY-593074 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 7.3 pKi 14
pKi 7.3 (Ki 4.83x10-8 M) [14]
BAY-593074 Small molecule or natural product Rn Partial agonist 7.3 pKi 14
pKi 7.3 (Ki 5.54x10-8 M) [14]
2-arachidonoylglycerol Small molecule or natural product Ligand is endogenous in the given species Ligand has a PDB structure Rn Full agonist 6.3 – 7.2 pKi 3,67
pKi 6.3 – 7.2 [3,67]
anandamide Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Partial agonist 6.3 – 7.0 pKi 20,88
pKi 6.3 – 7.0 [20,88]
AM1710 Small molecule or natural product Rn Agonist 6.4 pKi 48
pKi 6.4 (Ki 3.6x10-7 M) [48]
cannabinol Small molecule or natural product Hs Partial agonist 6.0 – 6.5 pKi 20,88
pKi 6.0 – 6.5 [20,88]
Sch.336 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Inverse agonist 6.0 pKi 57
pKi 6.0 (Ki 9.05x10-7 M) [57]
AM2201 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.4 pEC50 1
pEC50 7.4 (EC50 3.8x10-8 M) [1]
Sch.336 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Inverse agonist 6.7 pEC50 60
pEC50 6.7 (EC50 2x10-7 M) [60]
olorinab Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist <5.0 pEC50 32
pEC50 <5.0 (EC50 >1x10-5 M) [32]
Description: In a DiscoverX PathHunter β-arrestin recruitment assay.
olorinab Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Agonist <5.0 pEC50 32
pEC50 <5.0 (EC50 >1x10-5 M) [32]
Description: In a DiscoverX PathHunter β-arrestin recruitment assay.
BMS-202 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Agonist 7.0 pIC50 1
pIC50 7.0 (IC50 1.02x10-7 M) [1]
View species-specific agonist tables
Agonist Comments
The higher pKi value of anandamide (7.05) was determined in the presence of phenylmethylsulfonyl fluoride to prevent enzymic hydrolysis. For reviews see references [38,69-70]. The functional activity of a range of synthetic indole cannabinoids is reported by Banister et al. (2015) [1].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[123I]AM251 Small molecule or natural product Ligand is labelled Ligand is radioactive Mm Antagonist 9.6 pKd 24
pKd 9.6 [24]
[3H]rimonabant Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Antagonist 8.9 – 10.0 pKd 8,36,46,71,79,89,94
pKd 8.9 – 10.0 (Kd 1.2x10-9 – 1x10-10 M) [8,36,46,71,79,89,94]
taranabant Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Inverse agonist 9.5 pKi 22
pKi 9.5 (Ki 3x10-10 M) [22]
Description: Displacement of [3H]rimonabant from human CB1 receptor expressed in HEK293 cells by liquid scintillation counting.
JD5037 Small molecule or natural product Hs Antagonist 9.5 pKi 93
pKi 9.5 (Ki 3.5x10-10 M) [93]
otenabant Small molecule or natural product Primary target of this compound Hs Inverse agonist 9.1 pKi 27
pKi 9.1 (Ki 7x10-10 M) [27]
Description: Displacement of [3H]SR141716A from human CB1 receptor expressed in HEK293 cells
PF-514273 Small molecule or natural product Hs Antagonist 9.1 pKi 18
pKi 9.1 (Ki 8.2x10-10 M) [18]
Description: Antagonism of CP-55940-induced GTPgamma[35S] binding at CB1 expressed in CHOK1 cells
otenabant Small molecule or natural product Rn Inverse agonist 8.6 pKi 27
pKi 8.6 (Ki 2.8x10-9 M) [27]
Description: Displacement of [3H]SR141716A from CB1 receptor in rat brain
AM6545 Small molecule or natural product Hs Antagonist 8.5 pKi 7
pKi 8.5 (Ki 3.3x10-9 M) [7]
surinabant Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.5 pKi 77
pKi 8.5 (Ki 3.5x10-9 M) [77]
Description: Inhibition of [3H]CP-55940 binding to human cannabinoid receptor 1 expressed in CHO cells
AM6538 Small molecule or natural product Primary target of this compound Ligand has a PDB structure Hs Antagonist 8.3 pKi 41
pKi 8.3 (Ki 4.6x10-9 M) [41]
Description: Competition binding assay using [3H]-CP55,940
rimonabant Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.9 – 8.7 pKi 19-20,78,81,88
pKi 7.9 – 8.7 (Ki 1.26x10-8 – 1.99x10-9 M) [19-20,78,81,88]
compound 70 [PMID: 26161824] Small molecule or natural product Primary target of this compound Hs Antagonist 8.1 pKi 84
pKi 8.1 (Ki 7x10-9 M) [84]
ibipinabant Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.1 pKi 53
pKi 8.1 (Ki 7.8x10-9 M) [53]
Description: Displacement of CP-55940 binding from recombinant human cannabinoid receptor 1 expressed in CHO cells
AM251 Small molecule or natural product Rn Antagonist 8.1 pKi 52
pKi 8.1 (Ki 7.94x10-9 M) [52]
AM281 Small molecule or natural product Rn Antagonist 7.9 pKi 51
pKi 7.9 (Ki 1.26x10-8 M) [51]
LY320135 Small molecule or natural product Hs Antagonist 6.9 pKi 19
pKi 6.9 (Ki 1.26x10-7 M) [19]
VCE-004.3 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 5.6 pKi 15
pKi 5.6 (Ki 2.454x10-6 M) [15]
TM39875 Small molecule or natural product Hs Antagonist 8.3 pIC50 30
pIC50 8.3 (IC50 4.8x10-9 M) [30]
Description: Determined as antagonism in a GTPγS assay
TM38837 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.1 pIC50 30,42
pIC50 8.1 (IC50 6.7x10-9 M) [30,42]
Description: Determined as antagonism in a GTPγS assay.
TM38837 Small molecule or natural product Click here for species-specific activity table Hs Inverse agonist 7.6 pIC50 30
pIC50 7.6 (IC50 2.4x10-8 M) [30]
Description: Determined in a GTPγS assay
TM39875 Small molecule or natural product Hs Inverse agonist 7.3 pIC50 30
pIC50 7.3 (IC50 5.1x10-8 M) [30]
Description: Determined in a GTPγS assay
View species-specific antagonist tables
Antagonist Comments
AM6538 behaves as a competitive antagonist in functional assays in vitro. It inhibits CP55940- and Δ9-tetrahydrocannabinol (THC)-mediated inhibition of adenylyl cyclase activity and β-arrestin2 recruitment at the human CB1 receptor and [35S]-GTPγS binding in mouse cerebellum [41].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
pepcan-12 Peptide Click here for species-specific activity table Hs Negative 8.1 – 8.3 pKB 2
pKB 8.1 – 8.3 [2]
GAT100 Small molecule or natural product Hs Negative 6.4 – 7.7 pEC50 49,55
pEC50 7.7 (EC50 1.92x10-8 M) [49]
Description: Although GAT100 antagonized CP55940-induced stimulation of [35S]GTPγS binding to human CB1 CHO cell membranes, it enhanced the binding of [3H]CP55940 to these membranes. The EC50 and Emax values of GAT100 for this enhancement, with the 95% confidence limits shown in brackets, were 19.6 nM (10.4 & 36.9 nM) and 116.5% (108.3 & 124.6%), respectively. GAT100 (500 nM) was also found to enhance saturation binding of [3H]CP55940 to human CB1 HEK293 cell membranes.
pEC50 6.4 (EC50 4.098x10-7 M) [55]
Description: Measuring GAT100's inhibition of [3H]SR141716A binding, in radioligand binding assays
Org27569 Small molecule or natural product Primary target of this compound Ligand has a PDB structure Hs Positive 6.8 pEC50 74
pEC50 6.8 (EC50 1.4x10-7 M) [74]
Description: Measured as increased binding of radiolabelled orthosteric agonist CP55940
ZCZ011 Small molecule or natural product Mm Positive 6.3 – 6.9 pEC50 43
pEC50 6.9 [43]
Description: Equilibrium binding experiment versus [3H]CP55940, to mouse brain membranes.
pEC50 6.3 [43]
Description: Equilibrium binding experiment versus [3HWIN55212, to mouse brain membranes.
cannabidiol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Negative - - 54
[54]
GAT211 Small molecule or natural product Hs Positive - - 56
[56]
View species-specific allosteric modulator tables
Allosteric Modulator Comments
It is likely that ZCZ011 can also behave as a positive allosteric modulator of CB1 receptor activation when it is administered in vivo. Thus, evidence was obtained that it can act in vivo to enhance pharmacological effects both of exogenously administered anandamide and CP55940, and of endogenously released anandamide, that are most probably CB1-receptor mediated.
Immunopharmacology Comments
CB1 receptor is involved in controlling mast cell degranulation and maturation [91], and mediates production of MCP-1 by mast cells which results in recruitment of monocytic myeloid-derived suppressor cells with immunosuppressive outcome [44]. High levels of CB1 expression in the CNS suggest a possible role in neuroinflammation and potential as a drug target [73].
Cell Type Associations
Immuno Cell Type:  Mast cells
Cell Ontology Term:   mast cell (CL:0000097)
Comment:  Mast cells express both cannabinoid receptors, although the CB1 receptor is most abundantly expressed in the central nervous system.
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  Immune regulation
Immuno Process:  Cellular signalling
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Potassium channel
Calcium channel
Other - See Comments
Comments:  Activation of MAP kinase leading to immediate early gene expression[38]
References:  5,10,23,25,33,39,61-62,68,92,97
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family Adenylyl cyclase stimulation
References:  26,75
Tissue Distribution Click here for help
Primarily CNS and some peripheral neurones; particularly prevalent in basal ganglia, hippocampus, cerebellum, cerebral cortex. Also present in some non-neuronal cells and tissues, for example leukocytes and testis.
Species:  Human
Technique:  Radioligand binding
References:  34,38,63,69
Primarily CNS and innervation to tissues by peripheral nervous system; particularly prevalent in basal ganglia, hippocampus, cerebellum, cerebral cortex.
Species:  Rat
Technique:  Radioligand binding
References:  34,45,95
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Drug discrimination (also primates and pigeons)
Species:  Rat
Tissue:  In vivo
Response measured:  Drug discrimination
References:  38
Tetrad of hypothermia, antinociception, hypoactivity and catalepsy
Species:  Rat
Tissue:  In vivo
Response measured:  Rectal temperature, tail flick or hot plate response, spontaneous locomotor activity and ring immobility, all measured in the same animal.
References:  38,65,98
Nerve-smooth muscle tissue preparation
Species:  Mouse
Tissue:  Vas deferens
Response measured:  Inhibition of electrically-evoked contractions
References:  38,69
Tetrad of hypothermia, antinociception, hypoactivity and catalepsy
Species:  Mouse
Tissue:  In vivo
Response measured:  Rectal temperature, tail flick or hot plate response, spontaneous locomotor activity and ring immobility, all measured in the same animal.
References:  38,65,98
Reduction by GAT100 of β-arrestin recruitment induced by the established CB1 receptor orthosteric agonist, CP55940 (EC50 31.1 nM). The antagonistic EC50 of GAT100 was 2.09 nM.
Species:  Human
Tissue:  CB1 receptor expressing CHO cells
Response measured:  β-arrestin recruitment
References:  49
Reduction by GAT100 of inhibition of forskolin-induced stimulation the established CB1 receptor orthosteric agonist, CP55940 (EC50 7.5 nM). The antagonistic EC50 of GAT100 was 174 nM.
Species:  Human
Tissue:  CB1 receptor expressing CHO cells
Response measured:  Forskolin-induced stimulation
References:  49
Reduction by GAT100 of the Emax of the established CB1 receptor orthosteric agonist, CP55940, for its stimulation of [35S]GTPγS binding.
Species:  Human
Tissue:  CB1 receptor expressing CHO cell membranes
Response measured:  [35S]GTPγS binding
References:  49
Significant enhancement, by 100 nM ZCZ011, of the Emax value but not the potency of the endocannabinoid, anandamide, for its stimulation of [35S]GTPγS binding.
Species:  Mouse
Tissue:  Mouse brain membranes
Response measured:  [35S]GTPγS binding
References:  43
Significant enhancement of the potencies but not the Emax values of (i) the endocannabinoid, anandamide, by 10 and 100 nM ZCZ011, and (ii) the synthetic CB1 receptor agonist, CP55940 by 1 µM ZCZ011, for their activation of ERK 1/2 MAP-kinase phosphorylation.
Species:  Human
Tissue:  CHO cells stably transfected with cDNA encoding human cannabinoid CB1 receptors
Response measured:  ERK 1/2 MAP-kinase phosphorylation
References:  43
Inhibition of forskolin-induced stimulation of cyclic AMP production in human CB1 cells by ZCZ011 when administered alone, hence behaving as an apparent CB1 agonist (pEC50 5.68).
Species:  Human
Tissue:  CHO cells stably transfected with cDNA encoding human cannabinoid CB1 receptors
Response measured:  Forskolin-induced stimulation of cyclic AMP production
References:  43
Concentration-dependent enhancement by 100 nM and 1 µM ZCZ011 of the Emax value but not the potency of anandamide for its stimulation of β-arrestin recruitment.
Species:  Human
Tissue:  PathHunter® cells expressing the human CB1 receptor
Response measured:  β-arrestin recruitment
References:  43
Physiological Functions Click here for help
Modulation of neurotransmitter release
Species:  Rat
Tissue:  Brain, spinal cord and some peripheral tissues
References:  38
Modulation of neurotransmitter release
Species:  Mouse
Tissue:  Brain and some peripheral tissues
References:  38
Physiological Consequences of Altering Gene Expression Click here for help
CB1 knockout mice bred on a C57BL/6J background show hypoactivity, reduced locomotion and rearing, hypoalgesia, hypophagia, changed male hormone balance and increased mortality. CB1 knockout mice bred on a CD1 background show increased locomotor and exploratory activity when newly exposed to an arena but no change in nociception or mortality. Neither of these mouse lines respond to CB1 receptor agonists in CB1 assays, one notable exception being the antinociceptive response to Δ9-THC that is exhibited in the tail flick test by CB1 knockout mice with the C57/BL/6J background. CB1 knockout mice respond less than wild-type mice to the reinforcing properties of opioids.
Species:  Mouse
Tissue: 
Technique:  Induced mutation.
References:  58,99
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Cnr1tm1.2Ltz|Tg(dlx6a-cre)1Mekk Cnr1tm1.2Ltz/Cnr1tm1.2Ltz,Tg(dlx6a-cre)1Mekk/?
involves: 129P2/OlaHsd
MGI:104615  MGI:3758078  MP:0000788 abnormal cerebral cortex morphology PMID: 17525344 
Cnr1tm1Ojm Cnr1tm1Ojm/Cnr1tm1Ojm
involves: 129P2/OlaHsd * C57BL/6
MGI:104615  MP:0002912 abnormal excitatory postsynaptic potential PMID: 12060781 
Cnr1tm1Ojm Cnr1tm1Ojm/Cnr1tm1Ojm
involves: 129P2/OlaHsd * C57BL/6
MGI:104615  MP:0005449 abnormal food intake PMID: 14770190 
Cnr1tm1.2Ltz|Tg(dlx6a-cre)1Mekk Cnr1tm1.2Ltz/Cnr1tm1.2Ltz,Tg(dlx6a-cre)1Mekk/?
involves: 129P2/OlaHsd * C57BL/6NCrl
MGI:104615  MGI:3758078  MP:0002945 abnormal inhibitory postsynaptic currents PMID: 16908411 
Cnr1tm1.1Ltz Cnr1tm1.1Ltz/Cnr1tm1.1Ltz
B6.129P2-Cnr1
MGI:104615  MP:0002063 abnormal learning/memory/conditioning PMID: 12152079 
Cnr1tm1Map Cnr1tm1Map/Cnr1tm1Map
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:104615  MP:0004948 abnormal neuronal precursor proliferation PMID: 15266010 
Cnr1tm1.1Ltz Cnr1tm1.1Ltz/Cnr1tm1.1Ltz
B6.129P2-Cnr1
MGI:104615  MP:0002918 abnormal paired-pulse facilitation PMID: 12152079 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0002907 abnormal parturition PMID: 18833324 
Cnr1tm1Zim|Ptgs1tm1Unc Cnr1tm1Zim/Cnr1tm1Zim,Ptgs1tm1Unc/Ptgs1tm1Unc
involves: 129/Sv * 129P2/OlaHsd * C57BL/6J
MGI:104615  MGI:97797  MP:0002907 abnormal parturition PMID: 18833324 
Cnr1tm1Map Cnr1tm1Map/Cnr1tm1Map
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:104615  MP:0003461 abnormal response to novel object PMID: 9888857 
Cnr1tm1Ojm Cnr1tm1Ojm/Cnr1tm1Ojm
involves: 129P2/OlaHsd * C57BL/6
MGI:104615  MP:0001899 absent long term depression PMID: 12060781 
Cnr1tm1.1Ltz Cnr1tm1.1Ltz/Cnr1tm1.1Ltz
B6.129P2-Cnr1
MGI:104615  MP:0001899 absent long term depression PMID: 12152079 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0002822 catalepsy PMID: 10318961 
Cnr1tm1Ojm Cnr1tm1Ojm/Cnr1tm1Ojm
involves: 129P2/OlaHsd * C57BL/6
MGI:104615  MP:0001262 decreased body weight PMID: 14770190 
Cnr1tm1Map Cnr1tm1Map/Cnr1tm1Map
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:104615  MP:0001982 decreased chemically-elicited antinociception PMID: 9888857 
Cnr1tm1Ojm Cnr1tm1Ojm/Cnr1tm1Ojm
involves: 129P2/OlaHsd * C57BL/6
MGI:104615  MP:0002727 decreased circulating insulin level PMID: 14770190 
Cnr1tm1Ojm Cnr1tm1Ojm/Cnr1tm1Ojm
involves: 129P2/OlaHsd * C57BL/6
MGI:104615  MP:0005668 decreased circulating leptin level PMID: 14770190 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0005185 decreased circulating progesterone level PMID: 18833324 
Cnr1tm1.1Ltz Cnr1tm1.1Ltz/Cnr1tm1.1Ltz
B6.129P2-Cnr1
MGI:104615  MP:0001417 decreased exploration in new environment PMID: 12152079 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0008770 decreased survivor rate PMID: 10318961 
Cnr1tm1Ojm Cnr1tm1Ojm/Cnr1tm1Ojm
involves: 129P2/OlaHsd * C57BL/6
MGI:104615  MP:0010025 decreased total body fat amount PMID: 14770190 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0002757 decreased vertical activity PMID: 10318962 
Cnr1tm1.1Ltz Cnr1tm1.1Ltz/Cnr1tm1.1Ltz
B6.129P2-Cnr1
MGI:104615  MP:0003008 enhanced long term potentiation PMID: 12152079 
Cnr1tm1Map Cnr1tm1Map/Cnr1tm1Map
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:104615  MP:0001399 hyperactivity PMID: 9888857 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0001402 hypoactivity PMID: 10318961  10318962 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0003043 hypoalgesia PMID: 10318961 
Cnr1tm1Map Cnr1tm1Map/Cnr1tm1Map
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:104615  MP:0009750 impaired behavioral response to addictive substance PMID: 9888857 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0009750 impaired behavioral response to addictive substance PMID: 10318961 
Cnr1tm1Map Cnr1tm1Map/Cnr1tm1Map
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:104615  MP:0009757 impaired behavioral response to morphine PMID: 9888857 
Cnr1tm1Dgen Cnr1tm1Dgen/Cnr1tm1Dgen
involves: 129S1/Sv * 129X1/SvJ
MGI:104615  MP:0009747 impaired behavioral response to xenobiotic PMID: 12917492 
Cnr1tm1Map Cnr1tm1Map/Cnr1tm1Map
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:104615  MP:0009712 impaired conditioned place preference behavior PMID: 9888857 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0008531 increased chemical nociceptive threshold PMID: 10318961 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0001745 increased circulating corticosterone level PMID: 18833324 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0005182 increased circulating estradiol level PMID: 18833324 
Cnr1tm1Map Cnr1tm1Map/Cnr1tm1Map
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:104615  MP:0001415 increased exploration in new environment PMID: 9888857 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0005131 increased follicle stimulating hormone level PMID: 18833324 
Cnr1tm1Ojm Cnr1tm1Ojm/Cnr1tm1Ojm
involves: 129P2/OlaHsd * C57BL/6
MGI:104615  MP:0002891 increased insulin sensitivity PMID: 14770190 
Cnr1tm1Ojm Cnr1tm1Ojm/Cnr1tm1Ojm
involves: 129P2/OlaHsd * C57BL/6
MGI:104615  MP:0005659 increased resistance to diet-induced obesity PMID: 14770190 
Cnr1tm1.1Ltz Cnr1tm1.1Ltz/Cnr1tm1.1Ltz
involves: 129P2/OlaHsd * C57BL/6N
MGI:104615  MP:0009766 increased sensitivity to xenobiotic induced morbidity/mortality PMID: 14526074 
Cnr1tm1.2Ltz|Tg(Camk2a-cre)2Gsc Cnr1tm1.2Ltz/Cnr1tm1.2Ltz,Tg(Camk2a-cre)2Gsc/0
involves: 129P2/OlaHsd * C57BL/6N
MGI:104615  MGI:2181425  MP:0009766 increased sensitivity to xenobiotic induced morbidity/mortality PMID: 14526074 
Cnr1tm1.2Ltz|Tg(Camk2a-cre)2Gsc Cnr1tm1.2Ltz/Cnr1tm1.2Ltz,Tg(Camk2a-cre)2Gsc/0
involves: 129P2/OlaHsd * C57BL/6N
MGI:104615  MGI:2181425  MP:0008235 increased susceptibility to neuronal excitotoxicity PMID: 14526074 
Cnr1tm1.1Ltz Cnr1tm1.1Ltz/Cnr1tm1.1Ltz
involves: 129P2/OlaHsd * C57BL/6N
MGI:104615  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 14526074 
Cnr1+|Cnr1tm1.1Ltz Cnr1tm1.1Ltz/Cnr1+
involves: 129P2/OlaHsd * C57BL/6N
MGI:104615  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 14526074 
Cnr1tm1.2Ltz|Tg(Camk2a-cre)2Gsc Cnr1tm1.2Ltz/Cnr1tm1.2Ltz,Tg(Camk2a-cre)2Gsc/0
involves: 129P2/OlaHsd * C57BL/6N
MGI:104615  MGI:2181425  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 14526074 
Cnr1tm1.2Ltz|Tg(Camk2a-cre)2Gsc Cnr1tm1.2Ltz/Cnr1tm1.2Ltz,Tg(Camk2a-cre)2Gsc/?
involves: 129P2/OlaHsd * C57BL/6NCrl * FVB/N
MGI:104615  MGI:2181425  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 16908411 
Cnr1tm1.2Ltz Cnr1tm1.2Ltz/Cnr1tm1.2Ltz
involves: 129P2/OlaHsd * C57BL/6NCrl
MGI:104615  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 16908411 
Cnr1tm1.2Ltz|Neurod6+|Neurod6tm1(cre)Kan Cnr1tm1.2Ltz/Cnr1tm1.2Ltz,Neurod6tm1(cre)Kan/Neurod6+
involves: 129P2/OlaHsd * 129S1/Sv * 129X1/SvJ * C57BL/6NCrl
MGI:104615  MGI:106593  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 16908411 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0001973 increased thermal nociceptive threshold PMID: 10318961 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0003718 maternal effect PMID: 18833324 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0002082 postnatal lethality PMID: 10318961 
Cnr1tm1Zim Cnr1tm1Zim/Cnr1tm1Zim
involves: 129/Sv * C57BL/6J
MGI:104615  MP:0002083 premature death PMID: 10318961 
Cnr1tm1Dgen Cnr1tm1Dgen/Cnr1tm1Dgen
involves: 129S1/Sv * 129X1/SvJ * ICR
MGI:104615  MP:0001475 reduced long term depression PMID: 18256258 
Cnr1tm1Ojm Cnr1tm1Ojm/Cnr1tm1Ojm
involves: 129P2/OlaHsd * C57BL/6
MGI:104615  MP:0001263 weight loss PMID: 14770190 
Biologically Significant Variants Click here for help
Type:  Splice variant
Species:  Human
Description:  A shorter human splice variant (411aa) has been identified in the brain and other tissues by reverse-transcriptase PCR but mRNA levels were less than 10-fold the levels of the longer isoform. It is unlikely to exist in mouse or rat due to an altered splice donor site. The pharmacological characteristics of the isoforms are similar. CB1 receptor knock-out mice are now available to clarify receptor-mediated responses.
References:  38,87
General Comments
Techniques used include in situ hybridization and immunohistochemistry [72,96].

References

Show »

1. Banister SD, Stuart J, Kevin RC, Edington A, Longworth M, Wilkinson SM, Beinat C, Buchanan AS, Hibbs DE, Glass M et al.. (2015) Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem Neurosci, 6 (8): 1445-58. [PMID:25921407]

2. Bauer M, Chicca A, Tamborrini M, Eisen D, Lerner R, Lutz B, Poetz O, Pluschke G, Gertsch J. (2012) Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J Biol Chem, 287 (44): 36944-67. [PMID:22952224]

3. Ben-Shabat S, Fride E, Sheskin T, Tamiri T, Rhee MH, Vogel Z, Bisogno T, De Petrocellis L, Di Marzo V, Mechoulam R. (1998) An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol, 353 (1): 23-31. [PMID:9721036]

4. Blaazer AR, Lange JH, van der Neut MA, Mulder A, den Boon FS, Werkman TR, Kruse CG, Wadman WJ. (2011) Novel indole and azaindole (pyrrolopyridine) cannabinoid (CB) receptor agonists: design, synthesis, structure-activity relationships, physicochemical properties and biological activity. Eur J Med Chem, 46 (10): 5086-98. [PMID:21885167]

5. Bouaboula M, Bourrié B, Rinaldi-Carmona M, Shire D, Le Fur G, Casellas P. (1995) Stimulation of cannabinoid receptor CB1 induces krox-24 expression in human astrocytoma cells. J Biol Chem, 270 (23): 13973-80. [PMID:7775459]

6. Bouaboula M, Poinot-Chazel C, Bourrié B, Canat X, Calandra B, Rinaldi-Carmona M, Le Fur G, Casellas P. (1995) Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J, 312 ( Pt 2): 637-41. [PMID:8526880]

7. Bowles NP, Karatsoreos IN, Li X, Vemuri VK, Wood JA, Li Z, Tamashiro KL, Schwartz GJ, Makriyannis AM, Kunos G et al.. (2015) A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome. Proc Natl Acad Sci USA, 112 (1): 285-90. [PMID:25535367]

8. Breivogel CS, Sim LJ, Childers SR. (1997) Regional differences in cannabinoid receptor/G-protein coupling in rat brain. J Pharmacol Exp Ther, 282 (3): 1632-42. [PMID:9316881]

9. Chakrabarti A, Onaivi ES, Chaudhuri G. (1995) Cloning and sequencing of a cDNA encoding the mouse brain-type cannabinoid receptor protein. DNA Seq, 5 (6): 385-8. [PMID:8777318]

10. Childers SR, Deadwyler SA. (1996) Role of cyclic AMP in the actions of cannabinoid receptors. Biochem Pharmacol, 52 (6): 819-27. [PMID:8781498]

11. Chin CN, Lucas-Lenard J, Abadji V, Kendall DA. (1998) Ligand binding and modulation of cyclic AMP levels depend on the chemical nature of residue 192 of the human cannabinoid receptor 1. J Neurochem, 70 (1): 366-73. [PMID:9422383]

12. Chin CN, Murphy JW, Huffman JW, Kendall DA. (1999) The third transmembrane helix of the cannabinoid receptor plays a role in the selectivity of aminoalkylindoles for CB2, peripheral cannabinoid receptor. J Pharmacol Exp Ther, 291 (2): 837-44. [PMID:10525107]

13. Cinar R, Iyer MR, Liu Z, Cao Z, Jourdan T, Erdelyi K, Godlewski G, Szanda G, Liu J, Park JK et al.. (2016) Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis. JCI Insight, 1 (11). [PMID:27525312]

14. De Vry J, Denzer D, Reissmueller E, Eijckenboom M, Heil M, Meier H, Mauler F. (2004) 3-[2-cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 59-3074): a novel cannabinoid Cb1/Cb2 receptor partial agonist with antihyperalgesic and antiallodynic effects. J Pharmacol Exp Ther, 310 (2): 620-32. [PMID:15140913]

15. Del Rio C, Cantarero I, Palomares B, Gómez-Cañas M, Fernández-Ruiz J, Pavicic C, García-Martín A, Luz Bellido M, Ortega-Castro R, Pérez-Sánchez C et al.. (2018) VCE-004.3, a cannabidiol aminoquinone derivative, prevents bleomycin-induced skin fibrosis and inflammation through PPARγ- and CB2 receptor-dependent pathways. Br J Pharmacol, 175 (19): 3813-3831. [PMID:30033591]

16. Devane WA, Breuer A, Sheskin T, Järbe TU, Eisen MS, Mechoulam R. (1992) A novel probe for the cannabinoid receptor. J Med Chem, 35 (11): 2065-9. [PMID:1317925]

17. Di Marzo V, Bisogno T, De Petrocellis L, Brandi I, Jefferson RG, Winckler RL, Davis JB, Dasse O, Mahadevan A, Razdan RK, Martin BR. (2001) Highly selective CB1 cannabinoid receptor ligands and novel CB1/VR1 vanilloid receptor "hybrid" ligands. Biochem Biophys Res Commun, 281: 444-451. [PMID:11181068]

18. Dow RL, Carpino PA, Hadcock JR, Black SC, Iredale PA, DaSilva-Jardine P, Schneider SR, Paight ES, Griffith DA, Scott DO et al.. (2009) Discovery of 2-(2-chlorophenyl)-3-(4-chlorophenyl)-7-(2,2-difluoropropyl)-6,7-dihydro-2H-pyrazolo[3,4-f][1,4]oxazepin-8(5H)-one (PF-514273), a novel, bicyclic lactam-based cannabinoid-1 receptor antagonist for the treatment of obesity. J Med Chem, 52 (9): 2652-5. [PMID:19351113]

19. Felder CC, Joyce KE, Briley EM, Glass M, Mackie KP, Fahey KJ, Cullinan GJ, Hunden DC, Johnson DW, Chaney MO et al.. (1998) LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J Pharmacol Exp Ther, 284 (1): 291-7. [PMID:9435190]

20. Felder CC, Joyce KE, Briley EM, Mansouri J, Mackie K, Blond O, Lai Y, Ma AL, Mitchell RL. (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol, 48 (3): 443-50. [PMID:7565624]

21. Felder CC, Veluz JS, Williams HL, Briley EM, Matsuda LA. (1992) Cannabinoid agonists stimulate both receptor- and non-receptor-mediated signal transduction pathways in cells transfected with and expressing cannabinoid receptor clones. Mol Pharmacol, 42 (5): 838-45. [PMID:1331766]

22. Foloppe N, Benwell K, Brooks TD, Kennett G, Knight AR, Misra A, Monck NJ. (2009) Discovery and functional evaluation of diverse novel human CB(1) receptor ligands. Bioorg Med Chem Lett, 19 (15): 4183-90. [PMID:19520572]

23. Galiègue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P. (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem, 232 (1): 54-61. [PMID:7556170]

24. Gatley SJ, Lan R, Pyatt B, Gifford AN, Volkow ND, Makriyannis A. (1997) Binding of the non-classical cannabinoid CP 55,940, and the diarylpyrazole AM251 to rodent brain cannabinoid receptors. Life Sci, 61 (14): PL 191-7. [PMID:9335234]

25. Gebremedhin D, Lange AR, Campbell WB, Hillard CJ, Harder DR. (1999) Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Physiol, 276 (6): H2085-93. [PMID:10362691]

26. Glass M, Felder CC. (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci, 17 (14): 5327-33. [PMID:9204917]

27. Griffith DA, Hadcock JR, Black SC, Iredale PA, Carpino PA, DaSilva-Jardine P, Day R, DiBrino J, Dow RL, Landis MS et al.. (2009) Discovery of 1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylaminopiperidine-4-carboxylic acid amide hydrochloride (CP-945,598), a novel, potent, and selective cannabinoid type 1 receptor antagonist. J Med Chem, 52 (2): 234-7. [PMID:19102698]

28. Gérard C, Mollereau C, Vassart G, Parmentier M. (1990) Nucleotide sequence of a human cannabinoid receptor cDNA. Nucleic Acids Res, 18 (23): 7142. [PMID:2263478]

29. Gérard CM, Mollereau C, Vassart G, Parmentier M. (1991) Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J, 279 ( Pt 1): 129-34. [PMID:1718258]

30. Högberg T, Receveur JM, Murray A, Linget JM, Nørregaard PK, Little PB, Cooper M. (2024) Optimizing and characterizing 4-methyl substituted pyrazol-3-carboxamides leading to the peripheral cannabinoid 1 receptor inverse agonist TM38837. Bioorg Med Chem Lett, 98: 129572. [PMID:38043690]

31. Han S, Thatte J, Buzard DJ, Jones RM. (2013) Therapeutic utility of cannabinoid receptor type 2 (CB(2)) selective agonists. J Med Chem, 56 (21): 8224-56. [PMID:23865723]

32. Han S, Thoresen L, Jung JK, Zhu X, Thatte J, Solomon M, Gaidarov I, Unett DJ, Yoon WH, Barden J et al.. (2017) Discovery of APD371: Identification of a Highly Potent and Selective CB2 Agonist for the Treatment of Chronic Pain. ACS Med Chem Lett, 8 (12): 1309-1313. [PMID:29259753]

33. Henry DJ, Chavkin C. (1995) Activation of inwardly rectifying potassium channels (GIRK1) by co-expressed rat brain cannabinoid receptors in Xenopus oocytes. Neurosci Lett, 186 (2-3): 91-4. [PMID:7777206]

34. Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC. (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA, 87 (5): 1932-6. [PMID:2308954]

35. Hillard CJ, Manna S, Greenberg MJ, DiCamelli R, Ross RA, Stevenson LA, Murphy V, Pertwee RG, Campbell WB. (1999) Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J Pharmacol Exp Ther, 289 (3): 1427-33. [PMID:10336536]

36. Hirst RA, Almond SL, Lambert DG. (1996) Characterisation of the rat cerebella CB1 receptor using SR141716A, a central cannabinoid receptor antagonist. Neurosci Lett, 220 (2): 101-4. [PMID:8981483]

37. Hoehe MR, Caenazzo L, Martinez MM, Hsieh WT, Modi WS, Gershon ES, Bonner TI. (1991) Genetic and physical mapping of the human cannabinoid receptor gene to chromosome 6q14-q15. New Biol, 3 (9): 880-5. [PMID:1931832]

38. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR et al.. (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev, 54 (2): 161-202. [PMID:12037135]

39. Howlett AC, Qualy JM, Khachatrian LL. (1986) Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol Pharmacol, 29 (3): 307-13. [PMID:2869405]

40. Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho JH et al.. (2017) Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature, 547 (7664): 468-471. [PMID:28678776]

41. Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y, Zhao S, Shui W, Li S, Korde A et al.. (2016) Crystal Structure of the Human Cannabinoid Receptor CB1. Cell, 167 (3): 750-762.e14. [PMID:27768894]

42. Hung MS, Chang CP, Li TC, Yeh TK, Song JS, Lin Y, Wu CH, Kuo PC, Amancha PK, Wong YC et al.. (2010) Discovery of 1-(2,4-dichlorophenyl)-4-ethyl-5-(5-(2-(4-(trifluoromethyl)phenyl)ethynyl)thiophen-2-yl)-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide as a potential peripheral cannabinoid-1 receptor inverse agonist. ChemMedChem, 5 (9): 1439-43. [PMID:20652930]

43. Ignatowska-Jankowska BM, Baillie GL, Kinsey S, Crowe M, Ghosh S, Owens RA, Damaj IM, Poklis J, Wiley JL, Zanda M et al.. (2015) A Cannabinoid CB1 Receptor-Positive Allosteric Modulator Reduces Neuropathic Pain in the Mouse with No Psychoactive Effects. Neuropsychopharmacology, 40 (13): 2948-59. [PMID:26052038]

44. Jackson AR, Hegde VL, Nagarkatti PS, Nagarkatti M. (2014) Characterization of endocannabinoid-mediated induction of myeloid-derived suppressor cells involving mast cells and MCP-1. J Leukoc Biol, 95 (4): 609-19. [PMID:24319288]

45. Jansen EM, Haycock DA, Ward SJ, Seybold VS. (1992) Distribution of cannabinoid receptors in rat brain determined with aminoalkylindoles. Brain Res, 575 (1): 93-102. [PMID:1504787]

46. Jung M, Calassi R, Rinaldi Carmona M, Chardenot P, Le Fur G, Soubrie P, Oury-Donat F. (1997) Characterization of CB1 receptors on rat neuronal cell cultures: binding and functional studies using the selective receptor antagonist SR 141716A. J Neurochem, 68: 402-409. [PMID:8978752]

47. Khanolkar AD, Abadji V, Lin S, Hill WA, Taha G, Abouzid K, Meng Z, Fan P, Makriyannis A. (1996) Head group analogs of arachidonylethanolamide, the endogenous cannabinoid ligand. J Med Chem, 39 (22): 4515-9. [PMID:8893848]

48. Khanolkar AD, Lu D, Ibrahim M, Duclos Jr RI, Thakur GA, Malan Jr TP, Porreca F, Veerappan V, Tian X, George C et al.. (2007) Cannabilactones: a novel class of CB2 selective agonists with peripheral analgesic activity. J Med Chem, 50 (26): 6493-500. [PMID:18038967]

49. Kulkarni PM, Kulkarni AR, Korde A, Tichkule RB, Laprairie RB, Denovan-Wright EM, Zhou H, Janero DR, Zvonok N, Makriyannis A et al.. (2016) Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s). J Med Chem, 59 (1): 44-60. [PMID:26529344]

50. Kulkarni S, Nikas SP, Sharma R, Jiang S, Paronis CA, Leonard MZ, Zhang B, Honrao C, Mallipeddi S, Raghav JG et al.. (2016) Novel C-Ring-Hydroxy-Substituted Controlled Deactivation Cannabinergic Analogues. J Med Chem, 59 (14): 6903-19. [PMID:27367336]

51. Lan R, Gatley J, Lu Q, Fan P, Fernando SR, Volkow ND, Pertwee R, Makriyannis A. (1999) Design and synthesis of the CB1 selective cannabinoid antagonist AM281: a potential human SPECT ligand. AAPS PharmSci, 1 (2): E4. [PMID:11741201]

52. Lan R, Liu Q, Fan P, Lin S, Fernando SR, McCallion D, Pertwee R, Makriyannis A. (1999) Structure-activity relationships of pyrazole derivatives as cannabinoid receptor antagonists. J Med Chem, 42 (4): 769-76. [PMID:10052983]

53. Lange JH, Coolen HK, van Stuivenberg HH, Dijksman JA, Herremans AH, Ronken E, Keizer HG, Tipker K, McCreary AC, Veerman W et al.. (2004) Synthesis, biological properties, and molecular modeling investigations of novel 3,4-diarylpyrazolines as potent and selective CB(1) cannabinoid receptor antagonists. J Med Chem, 47 (3): 627-43. [PMID:14736243]

54. Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM. (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol, 172 (20): 4790-805. [PMID:26218440]

55. Laprairie RB, Kulkarni AR, Kulkarni PM, Hurst DP, Lynch D, Reggio PH, Janero DR, Pertwee RG, Stevenson LA, Kelly ME et al.. (2016) Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe. ACS Chem Neurosci, 7 (6): 776-98. [PMID:27046127]

56. Laprairie RB, Kulkarni PM, Deschamps JR, Kelly MEM, Janero DR, Cascio MG, Stevenson LA, Pertwee RG, Kenakin TP, Denovan-Wright EM et al.. (2017) Enantiospecific Allosteric Modulation of Cannabinoid 1 Receptor. ACS Chem Neurosci, 8 (6): 1188-1203. [PMID:28103441]

57. Lavey BJ, Kozlowski JA, Hipkin RW, Gonsiorek W, Lundell DJ, Piwinski JJ, Narula S, Lunn CA. (2005) Triaryl bis-sulfones as a new class of cannabinoid CB2 receptor inhibitors: identification of a lead and initial SAR studies. Bioorg Med Chem Lett, 15 (3): 783-6. [PMID:15664857]

58. Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, Böhme GA, Imperato A, Pedrazzini T, Roques BP et al.. (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science, 283 (5400): 401-4. [PMID:9888857]

59. Leleu-Chavain N, Baudelet D, Heloire VM, Rocha DE, Renault N, Barczyk A, Djouina M, Body-Malapel M, Carato P, Millet R. (2019) Benzo[d]thiazol-2(3H)-ones as new potent selective CB2 agonists with anti-inflammatory properties. Eur J Med Chem, 165: 347-362. [PMID:30583970]

60. Lunn CA, Fine JS, Rojas-Triana A, Jackson JV, Fan X, Kung TT, Gonsiorek W, Schwarz MA, Lavey B, Kozlowski JA et al.. (2006) A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo. J Pharmacol Exp Ther, 316 (2): 780-8. [PMID:16258021]

61. Mackie K, Hille B. (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci USA, 89 (9): 3825-9. [PMID:1315042]

62. Mackie K, Lai Y, Westenbroek R, Mitchell R. (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci, 15: 6552-6561. [PMID:7472417]

63. Mailleux P, Parmentier M, Vanderhaeghen JJ. (1992) Distribution of cannabinoid receptor messenger RNA in the human brain: an in situ hybridization histochemistry with oligonucleotides. Neurosci Lett, 143 (1-2): 200-4. [PMID:1436667]

64. Makriyannis A, Deng H. (2001) Cannabimimetic indole derivatives. Patent number: WO2001028557. Assignee: University Of Connecticut. Priority date: 18/10/1999. Publication date: 26/04/2001.

65. Martin BR, Compton DR, Thomas BF, Prescott WR, Little PJ, Razdan RK, Johnson MR, Melvin LS, Mechoulam R, Ward SJ. (1991) Behavioral, biochemical, and molecular modeling evaluations of cannabinoid analogs. Pharmacol Biochem Behav, 40 (3): 471-8. [PMID:1666911]

66. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 346 (6284): 561-4. [PMID:2165569]

67. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR et al.. (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol, 50 (1): 83-90. [PMID:7605349]

68. Pacheco M, Childers SR, Arnold R, Casiano F, Ward SJ. (1991) Aminoalkylindoles: actions on specific G-protein-linked receptors. J Pharmacol Exp Ther, 257 (1): 170-83. [PMID:1902257]

69. Pertwee RG. (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther, 74 (2): 129-80. [PMID:9336020]

70. Pertwee RG. (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem, 6 (8): 635-64. [PMID:10469884]

71. Petitet F, Marin L, Doble A. (1996) Biochemical and pharmacological characterization of cannabinoid binding sites using [3H]SR141716A. Neuroreport, 7: 789-792. [PMID:8733746]

72. Pettit DA, Harrison MP, Olson JM, Spencer RF, Cabral GA. (1998) Immunohistochemical localization of the neural cannabinoid receptor in rat brain. J Neurosci Res, 51 (3): 391-402. [PMID:9486774]

73. Pini A, Mannaioni G, Pellegrini-Giampietro D, Passani MB, Mastroianni R, Bani D, Masini E. (2012) The role of cannabinoids in inflammatory modulation of allergic respiratory disorders, inflammatory pain and ischemic stroke. Curr Drug Targets, 13 (7): 984-93. [PMID:22420307]

74. Piscitelli F, Ligresti A, La Regina G, Coluccia A, Morera L, Allarà M, Novellino E, Di Marzo V, Silvestri R. (2012) Indole-2-carboxamides as allosteric modulators of the cannabinoid CB₁ receptor. J Med Chem, 55 (11): 5627-31. [PMID:22571451]

75. Rhee MH, Bayewitch M, Avidor-Reiss T, Levy R, Vogel Z. (1998) Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J Neurochem, 71 (4): 1525-34. [PMID:9751186]

76. Rhee MH, Vogel Z, Barg J, Bayewitch M, Levy R, Hanus L, Breuer A, Mechoulam R. (1997) Cannabinol derivatives: binding to cannabinoid receptors and inhibition of adenylylcyclase. J Med Chem, 40 (20): 3228-33. [PMID:9379442]

77. Rinaldi-Carmona M, Barth F, Congy C, Martinez S, Oustric D, Pério A, Poncelet M, Maruani J, Arnone M, Finance O et al.. (2004) SR147778 [5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-ethyl-N-(1-piperidinyl)-1H-pyrazole-3-carboxamide], a new potent and selective antagonist of the CB1 cannabinoid receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther, 310 (3): 905-14. [PMID:15131245]

78. Rinaldi-Carmona M, Barth F, Héaulme M, Shire D, Calandra B, Congy C, Martinez S, Maruani J, Néliat G, Caput D et al.. (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett, 350 (2-3): 240-4. [PMID:8070571]

79. Rinaldi-Carmona M, Pialot F, Congy C, Redon E, Barth F, Bachy A, Breliere JC, Soubrie P, Le Fur G. (1996) Characterization and distribution of binding sites for [3H]-SR 141716A, a selective brain (CB1) cannabinoid receptor antagonist, in rodent brain. Life Sci, 58: 1239-1247. [PMID:8614277]

80. Ross RA, Brockie HC, Stevenson LA, Murphy VL, Templeton F, Makriyannis A, Pertwee RG. (1999) Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L759633, L759656 and AM630. Br J Pharmacol, 126: 665-672. [PMID:10188977]

81. Ruiu S, Pinna GA, Marchese G, Mussinu JM, Saba P, Tambaro S, Casti P, Vargiu R, Pani L. (2003) Synthesis and characterization of NESS 0327: a novel putative antagonist of the CB1 cannabinoid receptor. J Pharmacol Exp Ther, 306 (1): 363-70. [PMID:12663689]

82. Schoeder CT, Hess C, Madea B, Meiler J, Müller CE. (2018) Pharmacological evaluation of new constituents of "Spice": synthetic cannabinoids based on indole, indazole, benzimidazole and carbazole scaffolds. Forensic Toxicol, 36 (2): 385-403. [PMID:29963207]

83. Shao Z, Yin J, Chapman K, Grzemska M, Clark L, Wang J, Rosenbaum DM. (2016) High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature, 540 (7634): 602-606. [PMID:27851727]

84. Sharma MK, Murumkar PR, Barmade MA, Giridhar R, Yadav MR. (2015) A comprehensive patents review on cannabinoid 1 receptor antagonists as antiobesity agents. Expert Opin Ther Pat, 25 (10): 1093-116. [PMID:26161824]

85. Shire D, Calandra B, Delpech M, Dumont X, Kaghad M, Le Fur G, Caput D, Ferrara P. (1996) Structural features of the central cannabinoid CB1 receptor involved in the binding of the specific CB1 antagonist SR 141716A. J Biol Chem, 271 (12): 6941-6. [PMID:8636122]

86. Shire D, Calandra B, Rinaldi-Carmona M, Oustric D, Pessègue B, Bonnin-Cabanne O, Le Fur G, Caput D, Ferrara P. (1996) Molecular cloning, expression and function of the murine CB2 peripheral cannabinoid receptor. Biochim Biophys Acta, 1307 (2): 132-6. [PMID:8679694]

87. Shire D, Carillon C, Kaghad M, Calandra B, Rinaldi-Carmona M, Le Fur G, Caput D, Ferrara P. (1995) An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J Biol Chem, 270 (8): 3726-31. [PMID:7876112]

88. Showalter VM, Compton DR, Martin BR, Abood ME. (1996) Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands. J Pharmacol Exp Ther, 278 (3): 989-99. [PMID:8819477]

89. Sim LJ, Hampson RE, Deadwyler SA, Childers SR. (1996) Effects of chronic treatment with delta9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPgammaS autoradiography in rat brain. J Neurosci, 16 (24): 8057-66. [PMID:8987831]

90. Song ZH, Bonner TI. (1996) A lysine residue of the cannabinoid receptor is critical for receptor recognition by several agonists but not WIN55212-2. Mol Pharmacol, 49 (5): 891-6. [PMID:8622639]

91. Sugawara K, Zákány N, Hundt T, Emelianov V, Tsuruta D, Schäfer C, Kloepper JE, Bíró T, Paus R. (2013) Cannabinoid receptor 1 controls human mucosal-type mast cell degranulation and maturation in situ. J Allergy Clin Immunol, 132 (1): 182-93. [PMID:23453134]

92. Sugiura T, Kodaka T, Kondo S, Tonegawa T, Nakane S, Kishimoto S, Yamashita A, Waku K. (1996) 2-Arachidonoylglycerol, a putative endogenous cannabinoid receptor ligand, induces rapid, transient elevation of intracellular free Ca2+ in neuroblastoma x glioma hybrid NG108-15 cells. Biochem Biophys Res Commun, 229 (1): 58-64. [PMID:8954083]

93. Tam J, Cinar R, Liu J, Godlewski G, Wesley D, Jourdan T, Szanda G, Mukhopadhyay B, Chedester L, Liow JS et al.. (2012) Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab, 16 (2): 167-79. [PMID:22841573]

94. Thomas BF, Gilliam AF, Burch DF, Roche MJ, Seltzman HH. (1998) Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther, 285 (1): 285-92. [PMID:9536023]

95. Thomas BF, Wei X, Martin BR. (1992) Characterization and autoradiographic localization of the cannabinoid binding site in rat brain using [3H]11-OH-delta 9-THC-DMH. J Pharmacol Exp Ther, 263 (3): 1383-90. [PMID:1335065]

96. Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM. (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience, 83: 393-411. [PMID:9460749]

97. Twitchell W, Brown S, Mackie K. (1997) Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J Neurophysiol, 78 (1): 43-50. [PMID:9242259]

98. Wiley JL, Martin BR. (2003) Cannabinoid pharmacological properties common to other centrally acting drugs. Eur J Pharmacol, 471 (3): 185-93. [PMID:12826237]

99. Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI. (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA, 96 (10): 5780-5. [PMID:10318961]

Contributors

Show »

How to cite this page