Top ▲
Gene and Protein Information | ||||||
class A G protein-coupled receptor | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 331 | 13q32.3 | GPR18 | G protein-coupled receptor 18 | 6 |
Mouse | 7 | 331 | 14 65.86 cM | Gpr18 | G protein-coupled receptor 18 | |
Rat | 7 | 331 | 15q25 | Gpr18 | G protein-coupled receptor 18 |
Previous and Unofficial Names |
GPCRW | NAGly receptor | N-arachidonoyol glycine receptor |
Database Links | |
Specialist databases | |
GPCRdb | gpr18_human (Hs), gpr18_mouse (Mm), gpr18_rat (Rn) |
Other databases | |
Alphafold | Q14330 (Hs), Q8K1Z6 (Mm), A1A5S3 (Rn) |
ChEMBL Target | CHEMBL2384898 (Hs) |
Ensembl Gene | ENSG00000125245 (Hs), ENSMUSG00000050350 (Mm), ENSRNOG00000012628 (Rn) |
Entrez Gene | 2841 (Hs), 110168 (Mm), 679957 (Rn) |
Human Protein Atlas | ENSG00000125245 (Hs) |
KEGG Gene | hsa:2841 (Hs), mmu:110168 (Mm), rno:679957 (Rn) |
OMIM | 602042 (Hs) |
Pharos | Q14330 (Hs) |
RefSeq Nucleotide | NM_005292 (Hs), NM_182806 (Mm), NM_001079710 (Rn) |
RefSeq Protein | NP_005283 (Hs), NP_877958 (Mm), NP_001073178 (Rn) |
UniProtKB | Q14330 (Hs), Q8K1Z6 (Mm), A1A5S3 (Rn) |
Wikipedia | GPR18 (Hs) |
Natural/Endogenous Ligands |
N-arachidonoylglycine |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Agonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kohno et al. [8] screened a lipid library and identified an endogenous ligand, N-arachidonoylglycine (NAGly) by measuring an increase in intracellular Ca2+ concentrations in GPR18-transfected cells. NAGly also inhibited forskolin-induced cAMP production in a pertussis toxin–sensitive manner in the GPR18-transfected CHO cells, with an EC50 value of 20 nM. NAGly has been suggested to be an endogenous metabolite of the endocannabinoid anandamide, differing only in a change in the oxidation state of the carbon β to the amido nitrogen that greatly reduces agonist activity at cannabinoid receptors CB1 and CB2. McHugh et al. [11-12] reproduced the effect of NAGly in activating p44/42 MAPK in GPR18-transfected HEK293 cells, also showing that anandamide, Δ9-tetrahydrocannabinol and abnormal cannabidiol were agonists of the receptor. However, the pairing of GPR18 with NAGly and Δ9-tetrahydrocannabinol was not reproduced in two studies based on β-arrestin assays [15,18]. For further discussion, see [5] and [1]. |
Immuno Process Associations | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
Primary Transduction Mechanisms | |
Transducer | Effector/Response |
Gi/Go family Gq/G11 family |
|
Comments: One study has indicated that GPR18 may be constitutively active [13]. | |
References: 8,16 |
Tissue Distribution | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
Expression Datasets | |
|
Functional Assays | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
Functional Assay Comments | ||||||||||
Expression of GPR18 mRNA, TNF-α and IL-6 were markedly increased when mouse peritoneal macrophages were treated for differentiation to M1. Consequently, NAGly strongly induced apoptosis in highly GPR18 mRNA-expressing macrophages, while apoptotic effects were not as robust in less GPR18 mRNA-expressing macrophages which were treated for differentiation to M2 [16]. |
Physiological Functions Comments | |
In pancreatic beta cells NAGly causes intracellular Ca2+ mobilisation and insulin release. If this is via GPR18 activation a cooperative mechanism with L-type voltage gated ion channels could be implied [2]. |
Physiological Consequences of Altering Gene Expression | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
Physiological Consequences of Altering Gene Expression Comments | ||||||||||
Studies are currently awaiting availibility of GPR18-/- animals [10]. |
Gene Expression and Pathophysiology Comments | |
GPR18 is abundantly overexpressed and constitutively active, inhibiting apoptosis, in all melanoma metastases [13]. |
General Comments |
GPR18 has close affinity with EBI2 in view of their close chromosomal proximity and similar receptor expression patterns, suggesting that GPR18 and EBI2 may have similar biologic functions [3]. |
1. Alexander SP. (2012) So what do we call GPR18 now?. Br J Pharmacol, 165 (8): 2411-3. [PMID:22014123]
2. Bradshaw HB, Lee SH, McHugh D. (2009) Orphan endogenous lipids and orphan GPCRs: a good match. Prostaglandins Other Lipid Mediat, 89 (3-4): 131-4. [PMID:19379823]
3. Brown DG, Sanderson MR, Garman E, Neidle S. (1992) Crystal structure of a berenil-d(CGCAAATTTGCG) complex. An example of drug-DNA recognition based on sequence-dependent structural features. J Mol Biol, 226 (2): 481-90. [PMID:1640462]
4. Burstein SH, McQuain CA, Ross AH, Salmonsen RA, Zurier RE. (2011) Resolution of inflammation by N-arachidonoylglycine. J Cell Biochem, 112 (11): 3227-33. [PMID:21732409]
5. Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, Liew WC, Mpamhanga CP, Bonner TI, Neubig RR et al.. (2013) International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev, 65 (3): 967-86. [PMID:23686350]
6. Gantz I, Muraoka A, Yang YK, Samuelson LC, Zimmerman EM, Cook H, Yamada T. (1997) Cloning and chromosomal localization of a gene (GPR18) encoding a novel seven transmembrane receptor highly expressed in spleen and testis. Genomics, 42 (3): 462-6. [PMID:9205118]
7. Juknat A, Pietr M, Kozela E, Rimmerman N, Levy R, Coppola G, Geschwind D, Vogel Z. (2012) Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Δ9-tetrahydrocannabinol in BV-2 microglial cells. Br J Pharmacol, 165 (8): 2512-28. [PMID:21542829]
8. Kohno M, Hasegawa H, Inoue A, Muraoka M, Miyazaki T, Oka K, Yasukawa M. (2006) Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem Biophys Res Commun, 347 (3): 827-32. [PMID:16844083]
9. Mahardhika AB, Załuski M, Schoeder CT, Boshta NM, Schabikowski J, Perri F, Łażewska D, Neumann A, Kremers S, Oneto A et al.. (2024) Potent, Selective Agonists for the Cannabinoid-like Orphan G Protein-Coupled Receptor GPR18: A Promising Drug Target for Cancer and Immunity. J Med Chem, 67 (12): 9896-9926. [PMID:38885438]
10. McHugh D. (2012) GPR18 in microglia: implications for the CNS and endocannabinoid system signalling. Br J Pharmacol, 167 (8): 1575-82. [PMID:22563843]
11. McHugh D, Hu SS, Rimmerman N, Juknat A, Vogel Z, Walker JM, Bradshaw HB. (2010) N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci, 11: 44. [PMID:20346144]
12. McHugh D, Page J, Dunn E, Bradshaw HB. (2012) Δ(9) -Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br J Pharmacol, 165 (8): 2414-24. [PMID:21595653]
13. Qin Y, Verdegaal EM, Siderius M, Bebelman JP, Smit MJ, Leurs R, Willemze R, Tensen CP, Osanto S. (2011) Quantitative expression profiling of G-protein-coupled receptors (GPCRs) in metastatic melanoma: the constitutively active orphan GPCR GPR18 as novel drug target. Pigment Cell Melanoma Res, 24 (1): 207-18. [PMID:20880198]
14. Schoeder CT, Mahardhika AB, Drabczyńska A, Kieć-Kononowicz K, Müller CE. (2020) Discovery of Tricyclic Xanthines as Agonists of the Cannabinoid-Activated Orphan G-Protein-Coupled Receptor GPR18. ACS Medicinal Chemistry Letters, Articles ASAP. DOI: 10.1021/acsmedchemlett.0c00208
15. Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, Merritt A, Bassoni DL, Raab WJ, Quinn E, Wehrman TS et al.. (2013) Screening β-Arrestin Recruitment for the Identification of Natural Ligands for Orphan G-Protein-Coupled Receptors. J Biomol Screen, 18 (5): 599-609. [PMID:23396314]
16. Takenouchi R, Inoue K, Kambe Y, Miyata A. (2012) N-arachidonoyl glycine induces macrophage apoptosis via GPR18. Biochem Biophys Res Commun, 418 (2): 366-71. [PMID:22266325]
17. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC et al.. (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA, 100 (8): 4903-8. [PMID:12679517]
18. Yin H, Chu A, Li W, Wang B, Shelton F, Otero F, Nguyen DG, Caldwell JS, Chen YA. (2009) Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem, 284: 12328-12338. [PMID:19286662]