Top ▲
Gene and Protein Information | ||||||
class A G protein-coupled receptor | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 351 | 19q13.41 | FPR2 | formyl peptide receptor 2 | 4,69 |
Mouse | 7 | 351 | 17 A3.2 | Fpr2 | formyl peptide receptor 2 | 34,97 |
Rat | 7 | 351 | 1q12 | Fpr2 | formyl peptide receptor 2 | 14,68 |
Database Links | |
Specialist databases | |
GPCRdb | fpr2_human (Hs), fpr2_mouse (Mm) |
Other databases | |
Alphafold | P25090 (Hs), O88536 (Mm) |
ChEMBL Target | CHEMBL4227 (Hs), CHEMBL4739842 (Mm) |
Ensembl Gene | ENSG00000171049 (Hs), ENSMUSG00000052270 (Mm), ENSRNOG00000042605 (Rn) |
Entrez Gene | 2358 (Hs), 14289 (Mm), 690158 (Rn) |
Human Protein Atlas | ENSG00000171049 (Hs) |
KEGG Gene | hsa:2358 (Hs), mmu:14289 (Mm), rno:690158 (Rn) |
OMIM | 136538 (Hs) |
Pharos | P25090 (Hs) |
RefSeq Nucleotide | NM_001462 (Hs), NM_008042 (Mm) |
RefSeq Protein | NP_001453 (Hs), NP_032068 (Mm) |
UniProtKB | P25090 (Hs), O88536 (Mm) |
Wikipedia | FPR2 (Hs) |
Natural/Endogenous Ligands |
annexin I {Sp: Human} , annexin I {Sp: Mouse} , annexin I {Sp: Rat} |
aspirin triggered lipoxin A4 |
aspirin-triggered resolvin D1 |
CRAMP {Sp: Mouse} |
humanin {Sp: Human} |
LL-37 {Sp: Human} |
LXA4 |
PrP106-126 |
resolvin D1 |
serum amyloid A {Sp: Human} |
Potency order of endogenous and other ligands |
LXA4 = aspirin triggered lipoxin A4 = ATLa2 = resolvin D1 > LTC4 = LTD4 >> 15-deoxy-LXA4 >> fMet-Leu-Phe [17,26,29,39,97] |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific agonist tables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Agonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Listed above are major FPR2/ALX agonists and several agonists for mouse Fpr2 (Fpr-rs2). They are grouped into several classes: 1. Bacteria-derived formyl peptides: The classic tripeptide fMet-Leu-Phe is a low affinity agonist for FPR2/ALX and is not an activator for mouse Fpr2. The PSMα3 peptide from highly pathogenic S. aureus has a pEC50 value of 8.67 and is one of the most potent bacterial formyl peptides for FPR2/ALX. 2. Mitochondria-derived formyl peptides: fMet-Met-Tyr-Ala-Leu-Phe (ND6), fMet-Leu-Lys-Leu-Ile-Val (ND4), and fMet-Tyr-Phe-Ile-Asn-Ile-Leu-Thr-Leu (ND1) are endogenous agonists for FPR2/ALX [83]. 3. Lipid mediators: resolvin D1 (RvD1) and lipoxin A4 (LXA4). LXA4 is highly potent in triggering anti-inflammatory functions in animal models. Cell-based studies suggest that FPR2/ALX is a receptor for LXA4 in several published reports [13,26,28], but others failed to identify LXA4-induced GPCR responses [31,40,78]. One of the reasons could be agonist (LXA4) batch difference. A recent study [54] showed that RvD1 and LXA4 selectively activate the beta-arrestin pathway, suggesting that RvD1 and LXA4 might be partial agonists or biased agonists at ALX/FPR2. See [40] for a different outcome in β-arrestin translocation by LXA4. 4. Host-derived non-amyloidogenic peptides: This class includes SHAAGtide, LL-37, CCL-23, humanin, and uPAR(88-274)/D2D3. Annexin and derived peptides are also host-derived non-amyloidogenic peptides, but some of these peptides are less selective between FPR1 and FPR2/ALX. 5. Host-derived amyloidogenic peptides: SAA and Aβ[1-42] are two agonists in this class. They also bind and activate other receptors. 6. HIV-1 envelope peptides: These are T21/DP107, N36, F peptide, and V3 peptide. 7. Prion peptide: PrP (106-126) is the only member of this class, derived from prion proteins. 8. Peptides identified from library screen: This class is represented by WKYMVm and MMK-1. Other peptides with lower potency or affinity are not shown. 9. Synthetic compounds which are FPR2/ALX-specific agonists: Quin-C1, N`-Phenylurea derivatives (AG-26, AG-09/37, AG-09/38, AG-09/42, and AG-09/43), 2-(N-piperazinyl) acetamide derivatives (AG-09/3, AG-09/4, AG-09/73 through AG-09/77, and AG-09/82), and acetohydrazide derivatives (AG-09/7, AG-09/92, AG-09/96, AG-09/101, and AG-09/102). Selected chiral 6-methyl-2, 4-disubstituted pyridazin-3(2H)-compounds are potent mixed FPR1/FPR2/ALX agonists, among which R-(-)-forms generally exhibited higher activity than the S-(+)-enantiomers [16]. Pyrazolone, 4-iodo-substituted compound no. 43 activates FPR2/ALX and mouse Fpr1. Mouse Fpr2 shares most of its binding properties with human FPR2/ALX. One of the differences is the inability for the mouse Fpr2 to bind and interact with most formylpeptides tested. The exceptions are long peptides such as fMLFII, fMMYALF (from mitochondria), fMIVIL (from L. monocytogenes), which are better agonists with reasonably good EC50 in most functional assays. Hp(2-20), a peptide from H. pylori induced a rise in intracellular calcium levels in cells tranfected with FPR2/ALX; however the efficacy of this peptide was greater at FPRL2-expressing cells [5]. |
Antagonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antagonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The available FPR2/ALX antagonists are very limited at this time. The recently identified compound (1754-31) is one of the most potent FPR2/ALX antagonists. None of the FPR2/ALX antagonists are found to have inverse agonistic activity. t-Boc-FLFLF is shown in some publications as an antagonist for both FPR1 and FPR2/ALX. In a recent publication, its antagonistic activity is found to be more selective for FPR1 than FPR2/ALX [71]. |
Allosteric Modulators | |||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | Click column headers to sort | ||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Allosteric Modulator Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||
PBP10 is a cell-permeable, rhodamine B-coupled polyphosphoinositide-binding peptide based on gelsolin a.a. 160-169. PBP10 inhibits neutrophil degranulation and superoxide generation induced by FPR2/ALX agonists but not FPR1 agonists. However, PBP10 does not affect agonist-induced calcium mobilization, suggesting that it is an allosteric modulator of FPR2/ALX mediated functions [30,33]. |
Immunopharmacology Comments |
Formyl peptide receptor type 2 (FPR2/ALX) activation by lipoxin A4 and annexin 1 has been linked to resolution of inflammation, via upregulation of anti-inflammatory cytokines including IL-10. Resolvin D1-mediated activation of FPR2/ALX appears to resolve salivary gland inflammation in a mouse model of Sjögren syndrome [101]. FPR2/ALX receptor agonism is a new therapeutic concept that is being investigated for the development of novel non-steroidal anti-inflammatory agents as modulators of pathological dysregulated inflammation [6-7]. Since endogenous pro-resolving mediators like lipoxin A4 are highly unstable, investigators are designing lipoxin mimetics with improved physicochemical properties [18]. |
Immuno Process Associations | ||
|
||
|
||
|
||
|
||
|
Primary Transduction Mechanisms | |
Transducer | Effector/Response |
Gi/Go family |
Phospholipase C stimulation Phospholipase A2 stimulation Phospholipase D stimulation |
References: 26-27,48,57,73-74 |
Secondary Transduction Mechanisms | |
Transducer | Effector/Response |
Gq/G11 family |
Phospholipase C stimulation Phospholipase A2 stimulation Phospholipase D stimulation Other - See Comments |
Comments: FPR2/ALX joins a small group of chemoattractant/chemokine receptors which share a mechanism of using CD38-dependent cyclic ADP ribose for calcium flux and chemotaxis. Many of these receptors also couple to Gq in addition to Gi proteins. | |
References: 73-74 |
Tissue Distribution | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
Expression Datasets | |
|
Functional Assays | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
Physiological Functions | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
Physiological Consequences of Altering Gene Expression | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
Xenobiotics Influencing Gene Expression | ||||||||||
|
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Clinically-Relevant Mutations and Pathophysiology | ||||||||||||||||||||
|
||||||||||||||||||||
|
Biologically Significant Variants | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
General Comments |
The nomenclature for this receptor is outlined in the 2022 NC-IUPHAR review by Qin et al. [80]. It is important to validate chemical structures of LXA4, ATL and RvD1 before carrying out receptor assays because these ligands are chemically fragile and require precise working conditions at the bench. Also, it is noteworthy that LXA4 and RvD1 are subject to rapid metabolic conversion by mammalian cells and cell lines. |
1. Ariel A, Chiang N, Arita M, Petasis NA, Serhan CN. (2003) Aspirin-triggered lipoxin A4 and B4 analogs block extracellular signal-regulated kinase-dependent TNF-alpha secretion from human T cells. J Immunol, 170 (12): 6266-72. [PMID:12794159]
2. Asahina Y, Wurtz NR, Arakawa K, Carson N, Fujii K, Fukuchi K, Garcia R, Hsu MY, Ishiyama J, Ito B et al.. (2020) Discovery of BMS-986235/LAR-1219: A Potent Formyl Peptide Receptor 2 (FPR2) Selective Agonist for the Prevention of Heart Failure. J Med Chem, 63 (17): 9003-9019. [PMID:32407089]
3. Bae YS, Lee HY, Jo EJ, Kim JI, Kang HK, Ye RD, Kwak JY, Ryu SH. (2004) Identification of peptides that antagonize formyl peptide receptor-like 1-mediated signaling. J Immunol, 173 (1): 607-14. [PMID:15210823]
4. Bao L, Gerard NP, Eddy RL Jr, Shows TB, Gerard C. (1992) Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19. Genomics, 13: 437-440. [PMID:1612600]
5. Betten A, Bylund J, Christophe T, Cristophe T, Boulay F, Romero A, Hellstrand K, Dahlgren C. (2001) A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. J Clin Invest, 108 (8): 1221-8. [PMID:11602630]
6. Bozinovski S, Anthony D, Anderson GP, Irving LB, Levy BD, Vlahos R. (2013) Treating neutrophilic inflammation in COPD by targeting ALX/FPR2 resolution pathways. Pharmacol Ther, 140 (3): 280-9. [PMID:23880288]
7. Bozinovski S, Anthony D, Vlahos R. (2014) Targeting pro-resolution pathways to combat chronic inflammation in COPD. J Thorac Dis, 6 (11): 1548-56. [PMID:25478196]
8. Brancaleone V, Gobbetti T, Cenac N, le Faouder P, Colom B, Flower RJ, Vergnolle N, Nourshargh S, Perretti M. (2013) A vasculo-protective circuit centered on lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 operative in murine microcirculation. Blood, 122 (4): 608-17. [PMID:23733341]
9. Bürli RW, Xu H, Zou X, Muller K, Golden J, Frohn M, Adlam M, Plant MH, Wong M, McElvain M et al.. (2006) Potent hFPRL1 (ALXR) agonists as potential anti-inflammatory agents. Bioorg Med Chem Lett, 16 (14): 3713-8. [PMID:16697190]
10. Cattaneo F, Parisi M, Ammendola R. (2013) Distinct signaling cascades elicited by different formyl Peptide receptor 2 (FPR2) agonists. Int J Mol Sci, 14 (4): 7193-230. [PMID:23549262]
11. Chen K, Le Y, Liu Y, Gong W, Ying G, Huang J, Yoshimura T, Tessarollo L, Wang JM. (2010) A critical role for the g protein-coupled receptor mFPR2 in airway inflammation and immune responses. J Immunol, 184 (7): 3331-5. [PMID:20200280]
12. Chiang N, Fierro IM, Gronert K, Serhan CN. (2000) Activation of lipoxin A(4) receptors by aspirin-triggered lipoxins and select peptides evokes ligand-specific responses in inflammation. J Exp Med, 191 (7): 1197-208. [PMID:10748237]
13. Chiang N, Serhan CN, Dahlén SE, Drazen JM, Hay DW, Rovati GE, Shimizu T, Yokomizo T, Brink C. (2006) The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol Rev, 58 (3): 463-87. [PMID:16968948]
14. Chiang N, Takano T, Arita M, Watanabe S, Serhan CN. (2003) A novel rat lipoxin A4 receptor that is conserved in structure and function. Br J Pharmacol, 139 (1): 89-98. [PMID:12746227]
15. Christophe T, Karlsson A, Dugave C, Rabiet MJ, Boulay F, Dahlgren C. (2001) The synthetic peptide Trp-Lys-Tyr-Met-Val-Met-NH2 specifically activates neutrophils through FPRL1/lipoxin A4 receptors and is an agonist for the orphan monocyte-expressed chemoattractant receptor FPRL2. J Biol Chem, 276 (24): 21585-93. [PMID:11285256]
16. Cilibrizzi A, Schepetkin IA, Bartolucci G, Crocetti L, Dal Piaz V, Giovannoni MP, Graziano A, Kirpotina LN, Quinn MT, Vergelli C. (2012) Synthesis, enantioresolution, and activity profile of chiral 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones as potent N-formyl peptide receptor agonists. Bioorg Med Chem, 20 (12): 3781-92. [PMID:22607879]
17. Clish CB, O'Brien JA, Gronert K, Stahl GL, Petasis NA, Serhan CN. (1999) Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo. Proc Natl Acad Sci USA, 96 (14): 8247-52. [PMID:10393980]
18. de Gaetano M, Butler E, Gahan K, Zanetti A, Marai M, Chen J, Cacace A, Hams E, Maingot C, McLoughlin A et al.. (2019) Asymmetric synthesis and biological evaluation of imidazole- and oxazole-containing synthetic lipoxin A4 mimetics (sLXms). Eur J Med Chem, 162: 80-108. [PMID:30419493]
19. De Yang, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O. (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med, 192 (7): 1069-74. [PMID:11015447]
20. Deng X, Ueda H, Su SB, Gong W, Dunlop NM, Gao JL, Murphy PM, Wang JM. (1999) A synthetic peptide derived from human immunodeficiency virus type 1 gp120 downregulates the expression and function of chemokine receptors CCR5 and CXCR4 in monocytes by activating the 7-transmembrane G-protein-coupled receptor FPRL1/LXA4R. Blood, 94 (4): 1165-73. [PMID:10438703]
21. Derian CK, Solomon HF, Higgins 3rd JD, Beblavy MJ, Santulli RJ, Bridger GJ, Pike MC, Kroon DJ, Fischman AJ. (1996) Selective inhibition of N-formylpeptide-induced neutrophil activation by carbamate-modified peptide analogues. Biochemistry, 35 (4): 1265-9. [PMID:8573582]
22. Devchand PR, Arita M, Hong S, Bannenberg G, Moussignac RL, Gronert K, Serhan CN. (2003) Human ALX receptor regulates neutrophil recruitment in transgenic mice: roles in inflammation and host defense. FASEB J, 17 (6): 652-9. [PMID:12665478]
23. Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, D'Acquisto F, Buckingham JC, Perretti M, Flower RJ. (2010) Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J Immunol, 184 (5): 2611-9. [PMID:20107188]
24. Elagoz A, Henderson D, Babu PS, Salter S, Grahames C, Bowers L, Roy MO, Laplante P, Grazzini E, Ahmad S et al.. (2004) A truncated form of CKbeta8-1 is a potent agonist for human formyl peptide-receptor-like 1 receptor. Br J Pharmacol, 141 (1): 37-46. [PMID:14662730]
25. Filep JG, Zouki C, Petasis NA, Hachicha M, Serhan CN. (1999) Anti-inflammatory actions of lipoxin A(4) stable analogs are demonstrable in human whole blood: modulation of leukocyte adhesion molecules and inhibition of neutrophil-endothelial interactions. Blood, 94 (12): 4132-42. [PMID:10590058]
26. Fiore S, Maddox JF, Perez HD, Serhan CN. (1994) Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J Exp Med, 180 (1): 253-60. [PMID:8006586]
27. Fiore S, Romano M, Reardon EM, Serhan CN. (1993) Induction of functional lipoxin A4 receptors in HL-60 cells. Blood, 81 (12): 3395-403. [PMID:8389617]
28. Fiore S, Ryeom SW, Weller PF, Serhan CN. (1992) Lipoxin recognition sites. Specific binding of labeled lipoxin A4 with human neutrophils. J Biol Chem, 267 (23): 16168-76. [PMID:1322894]
29. Fiore S, Serhan CN. (1995) Lipoxin A4 receptor activation is distinct from that of the formyl peptide receptor in myeloid cells: inhibition of CD11/18 expression by lipoxin A4-lipoxin A4 receptor interaction. Biochemistry, 34 (51): 16678-86. [PMID:8527441]
30. Forsman H, Andréasson E, Karlsson J, Boulay F, Rabiet MJ, Dahlgren C. (2012) Structural characterization and inhibitory profile of formyl peptide receptor 2 selective peptides descending from a PIP2-binding domain of gelsolin. J Immunol, 189 (2): 629-37. [PMID:22706076]
31. Forsman H, Dahlgren C. (2009) Lipoxin A(4) metabolites/analogues from two commercial sources have no effects on TNF-alpha-mediated priming or activation through the neutrophil formyl peptide receptors. Scand J Immunol, 70 (4): 396-402. [PMID:19751275]
32. Freer RJ, Day AR, Muthukumaraswamy N, Pinon D, Wu A, Showell HJ, Becker EL. (1982) Formyl peptide chemoattractants: a model of the receptor on rabbit neutrophils. Biochemistry, 21 (2): 257-63. [PMID:6280748]
33. Fu H, Björkman L, Janmey P, Karlsson A, Karlsson J, Movitz C, Dahlgren C. (2004) The two neutrophil members of the formylpeptide receptor family activate the NADPH-oxidase through signals that differ in sensitivity to a gelsolin derived phosphoinositide-binding peptide. BMC Cell Biol, 5 (1): 50. [PMID:15625007]
34. Gao JL, Chen H, Filie JD, Kozak CA, Murphy PM. (1998) Differential expansion of the N-formylpeptide receptor gene cluster in human and mouse. Genomics, 51 (2): 270-6. [PMID:9722950]
35. Gao JL, Guillabert A, Hu J, Le Y, Urizar E, Seligman E, Fang KJ, Yuan X, Imbault V, Communi D et al.. (2007) F2L, a peptide derived from heme-binding protein, chemoattracts mouse neutrophils by specifically activating Fpr2, the low-affinity N-formylpeptide receptor. J Immunol, 178 (3): 1450-6. [PMID:17237393]
36. Gavins FN, Yona S, Kamal AM, Flower RJ, Perretti M. (2003) Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanisms. Blood, 101 (10): 4140-7. [PMID:12560218]
37. Gewirtz AT, Collier-Hyams LS, Young AN, Kucharzik T, Guilford WJ, Parkinson JF, Williams IR, Neish AS, Madara JL. (2002) Lipoxin a4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J Immunol, 168 (10): 5260-7. [PMID:11994483]
38. Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR. (2000) Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol, 164 (4): 1663-7. [PMID:10657608]
39. Gronert K, Martinsson-Niskanen T, Ravasi S, Chiang N, Serhan CN. (2001) Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA(4) and regulation of vascular and inflammatory responses. Am J Pathol, 158 (1): 3-9. [PMID:11141472]
40. Hanson J, Ferreirós N, Pirotte B, Geisslinger G, Offermanns S. (2013) Heterologously expressed formyl peptide receptor 2 (FPR2/ALX) does not respond to lipoxin A4. Biochem Pharmacol, 85 (12): 1795-802. [PMID:23643932]
41. Harada M, Habata Y, Hosoya M, Nishi K, Fujii R, Kobayashi M, Hinuma S. (2004) N-Formylated humanin activates both formyl peptide receptor-like 1 and 2. Biochem Biophys Res Commun, 324 (1): 255-61. [PMID:15465011]
42. Hayhoe RP, Kamal AM, Solito E, Flower RJ, Cooper D, Perretti M. (2006) Annexin 1 and its bioactive peptide inhibit neutrophil-endothelium interactions under flow: indication of distinct receptor involvement. Blood, 107 (5): 2123-30. [PMID:16278303]
43. He HQ, Liao D, Wang ZG, Wang ZL, Zhou HC, Wang MW, Ye RD. (2013) Functional characterization of three mouse formyl peptide receptors. Mol Pharmacol, 83 (2): 389-98. [PMID:23160941]
44. He R, Sang H, Ye RD. (2003) Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R. Blood, 101 (4): 1572-81. [PMID:12393391]
45. He R, Tan L, Browning DD, Wang JM, Ye RD. (2000) The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met is a potent chemotactic agonist for mouse formyl peptide receptor. J Immunol, 165 (8): 4598-605. [PMID:11035102]
46. Hecht I, Rong J, Sampaio AL, Hermesh C, Rutledge C, Shemesh R, Toporik A, Beiman M, Dassa L, Niv H et al.. (2009) A novel peptide agonist of formyl-peptide receptor-like 1 (ALX) displays anti-inflammatory and cardioprotective effects. J Pharmacol Exp Ther, 328 (2): 426-34. [PMID:19023040]
47. Hu JY, Le Y, Gong W, Dunlop NM, Gao JL, Murphy PM, Wang JM. (2001) Synthetic peptide MMK-1 is a highly specific chemotactic agonist for leukocyte FPRL1. J Leukoc Biol, 70 (1): 155-61. [PMID:11435499]
48. Jiang H, Kuang Y, Wu Y, Smrcka A, Simon MI, Wu D. (1996) Pertussis toxin-sensitive activation of phospholipase C by the C5a and fMet-Leu-Phe receptors. J Biol Chem, 271 (23): 13430-4. [PMID:8662841]
49. Kim HJ, Cho SH, Park JS, Lee TH, Lee EJ, Kim YH, Uh ST, Chung IY, Kim MK, Choi IS et al.. (2012) Association analysis of formyl peptide receptor 2 (FPR2) polymorphisms and aspirin exacerbated respiratory diseases. J Hum Genet, 57 (4): 247-53. [PMID:22377711]
50. Kirpotina LN, Khlebnikov AI, Schepetkin IA, Ye RD, Rabiet MJ, Jutila MA, Quinn MT. (2010) Identification of novel small-molecule agonists for human formyl peptide receptors and pharmacophore models of their recognition. Mol Pharmacol, 77 (2): 159-70. [PMID:19903830]
51. Klein C, Paul JI, Sauvé K, Schmidt MM, Arcangeli L, Ransom J, Trueheart J, Manfredi JP, Broach JR, Murphy AJ. (1998) Identification of surrogate agonists for the human FPRL-1 receptor by autocrine selection in yeast. Nat Biotechnol, 16 (13): 1334-7. [PMID:9853614]
52. Kretschmer D, Gleske AK, Rautenberg M, Wang R, Köberle M, Bohn E, Schöneberg T, Rabiet MJ, Boulay F, Klebanoff SJ et al.. (2010) Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe, 7 (6): 463-73. [PMID:20542250]
53. Krishnamoorthy S, Recchiuti A, Chiang N, Fredman G, Serhan CN. (2012) Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. Am J Pathol, 180 (5): 2018-27. [PMID:22449948]
54. Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, Petasis NA, Serhan CN. (2010) Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci USA, 107 (4): 1660-5. [PMID:20080636]
55. Kucharzik T, Gewirtz AT, Merlin D, Madara JL, Williams IR. (2003) Lateral membrane LXA4 receptors mediate LXA4's anti-inflammatory actions on intestinal epithelium. Am J Physiol, Cell Physiol, 284 (4): C888-96. [PMID:12456400]
56. Kurosaka K, Chen Q, Yarovinsky F, Oppenheim JJ, Yang D. (2005) Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J Immunol, 174 (10): 6257-65. [PMID:15879124]
57. Lad PM, Olson CV, Smiley PA. (1985) Association of the N-formyl-Met-Leu-Phe receptor in human neutrophils with a GTP-binding protein sensitive to pertussis toxin. Proc Natl Acad Sci USA, 82 (3): 869-73. [PMID:2983319]
58. Le Y, Gong W, Li B, Dunlop NM, Shen W, Su SB, Ye RD, Wang JM. (1999) Utilization of two seven-transmembrane, G protein-coupled receptors, formyl peptide receptor-like 1 and formyl peptide receptor, by the synthetic hexapeptide WKYMVm for human phagocyte activation. J Immunol, 163 (12): 6777-84. [PMID:10586077]
59. Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, Dunlop NM, Gao JL, Murphy PM, Oppenheim JJ et al.. (2001) Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci, 21 (2): RC123. [PMID:11160457]
60. Le Y, Jiang S, Hu J, Gong W, Su S, Dunlop NM, Shen W, Li B, Ming Wang J. (2000) N36, a synthetic N-terminal heptad repeat domain of the HIV-1 envelope protein gp41, is an activator of human phagocytes. Clin Immunol, 96 (3): 236-42. [PMID:10964542]
61. Lee HY, Kim MK, Park KS, Bae YH, Yun J, Park JI, Kwak JY, Bae YS. (2005) Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells. Biochem Biophys Res Commun, 330 (3): 989-98. [PMID:15809093]
62. Levy BD, Fokin VV, Clark JM, Wakelam MJ, Petasis NA, Serhan CN. (1999) Polyisoprenyl phosphate (PIPP) signaling regulates phospholipase D activity: a 'stop' signaling switch for aspirin-triggered lipoxin A4. FASEB J, 13 (8): 903-11. [PMID:10224233]
63. Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Wang A, Gao JL, Murphy PM, Wang JM. (2012) Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Sci Rep, 2: 786. [PMID:23139859]
64. Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN. (1997) Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem, 272 (11): 6972-8. [PMID:9054386]
65. Maddox JF, Serhan CN. (1996) Lipoxin A4 and B4 are potent stimuli for human monocyte migration and adhesion: selective inactivation by dehydrogenation and reduction. J Exp Med, 183 (1): 137-46. [PMID:8551217]
66. Miao Z, Premack BA, Wei Z, Wang Y, Gerard C, Showell H, Howard M, Schall TJ, Berahovich R. (2007) Proinflammatory proteases liberate a discrete high-affinity functional FPRL1 (CCR12) ligand from CCL23. J Immunol, 178 (11): 7395-404. [PMID:17513790]
67. Migeotte I, Communi D, Parmentier M. (2006) Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev, 17 (6): 501-19. [PMID:17084101]
68. Morley AD, King S, Roberts B, Lever S, Teobald B, Fisher A, Cook T, Parker B, Wenlock M, Phillips C et al.. (2012) Lead optimisation of pyrazoles as novel FPR1 antagonists. Bioorg Med Chem Lett, 22 (1): 532-6. [PMID:22094028]
69. Murphy PM, Ozçelik T, Kenney RT, Tiffany HL, McDermott D, Francke U. (1992) A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. J Biol Chem, 267 (11): 7637-43. [PMID:1373134]
70. Nanamori M, Cheng X, Mei J, Sang H, Xuan Y, Zhou C, Wang MW, Ye RD. (2004) A novel nonpeptide ligand for formyl peptide receptor-like 1. Mol Pharmacol, 66 (5): 1213-22. [PMID:15308762]
71. NCBI. LPHN2 - Ovarian cancer and depression. Accessed on 02/05/2013. Modified on 02/05/2013. NCBI Geoprofiles, http://www.ncbi.nlm.nih.gov/geoprofiles
72. Norling LV, Dalli J, Flower RJ, Serhan CN, Perretti M. (2012) Resolvin D1 limits polymorphonuclear leukocyte recruitment to inflammatory loci: receptor-dependent actions. Arterioscler Thromb Vasc Biol, 32 (8): 1970-8. [PMID:22499990]
73. Partida-Sánchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, Garvy B, Kusser K, Goodrich S, Howard M, Harmsen A et al.. (2001) Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med, 7 (11): 1209-16. [PMID:11689885]
74. Partidá-Sánchez S, Rivero-Nava L, Shi G, Lund FE. (2007) CD38: an ecto-enzyme at the crossroads of innate and adaptive immune responses. Adv Exp Med Biol, 590: 171-83. [PMID:17191385]
75. Perretti M, Chiang N, La M, Fierro IM, Marullo S, Getting SJ, Solito E, Serhan CN. (2002) Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat Med, 8 (11): 1296-302. [PMID:12368905]
76. Petri MH, Laguna-Fernandez A, Tseng CN, Hedin U, Perretti M, Bäck M. (2015) Aspirin-triggered 15-epi-lipoxin A₄ signals through FPR2/ALX in vascular smooth muscle cells and protects against intimal hyperplasia after carotid ligation. Int J Cardiol, 179: 370-2. [PMID:25464488]
77. Pinilla C, Edwards BS, Appel JR, Yates-Gibbins T, Giulianotti MA, Medina-Franco JL, Young SM, Santos RG, Sklar LA, Houghten RA. (2013) Selective agonists and antagonists of formylpeptide receptors: duplex flow cytometry and mixture-based positional scanning libraries. Mol Pharmacol, 84 (3): 314-24. [PMID:23788657]
78. Planagumà A, Domenech T, Jover I, Ramos I, Sentellas S, Malhotra R, Miralpeix M. (2013) Lack of activity of 15-epi-lipoxin A4 on FPR2/ALX and CysLT1 receptors in interleukin-8-driven human neutrophil function. Clin Exp Immunol, 173 (2): 298-309. [PMID:23607720]
79. Prat C, Bestebroer J, de Haas CJ, van Strijp JA, van Kessel KP. (2006) A new staphylococcal anti-inflammatory protein that antagonizes the formyl peptide receptor-like 1. J Immunol, 177 (11): 8017-26. [PMID:17114475]
80. Qin CX, Norling LV, Vecchio EA, Brennan EP, May LT, Wootten D, Godson C, Perretti M, Ritchie RH. (2022) Formylpeptide receptor 2: Nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. Br J Pharmacol, 179 (19): 4617-4639. [PMID:35797341]
81. Qiu FH, Devchand PR, Wada K, Serhan CN. (2001) Aspirin-triggered lipoxin A4 and lipoxin A4 up-regulate transcriptional corepressor NAB1 in human neutrophils. FASEB J, 15 (14): 2736-8. [PMID:11687510]
82. Quehenberger O, Prossnitz ER, Cavanagh SL, Cochrane CG, Ye RD. (1993) Multiple domains of the N-formyl peptide receptor are required for high-affinity ligand binding. Construction and analysis of chimeric N-formyl peptide receptors. J Biol Chem, 268 (24): 18167-75. [PMID:8349692]
83. Rabiet MJ, Huet E, Boulay F. (2005) Human mitochondria-derived N-formylated peptides are novel agonists equally active on FPR and FPRL1, while Listeria monocytogenes-derived peptides preferentially activate FPR. Eur J Immunol, 35 (8): 2486-95. [PMID:16025565]
84. Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M, Blasi F. (2002) The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci USA, 99 (3): 1359-64. [PMID:11818541]
85. Sawmynaden P, Perretti M. (2006) Glucocorticoid upregulation of the annexin-A1 receptor in leukocytes. Biochem Biophys Res Commun, 349 (4): 1351-5. [PMID:16973129]
86. Seo JK, Choi SY, Kim Y, Baek SH, Kim KT, Chae CB, Lambeth JD, Suh PG, Ryu SH. (1997) A peptide with unique receptor specificity: stimulation of phosphoinositide hydrolysis and induction of superoxide generation in human neutrophils. J Immunol, 158 (4): 1895-901. [PMID:9029131]
87. Shen W, Proost P, Li B, Gong W, Le Y, Sargeant R, Murphy PM, Van Damme J, Wang JM. (2000) Activation of the chemotactic peptide receptor FPRL1 in monocytes phosphorylates the chemokine receptor CCR5 and attenuates cell responses to selected chemokines. Biochem Biophys Res Commun, 272 (1): 276-83. [PMID:10872839]
88. Simiele F, Recchiuti A, Mattoscio D, De Luca A, Cianci E, Franchi S, Gatta V, Parolari A, Werba JP, Camera M et al.. (2012) Transcriptional regulation of the human FPR2/ALX gene: evidence of a heritable genetic variant that impairs promoter activity. FASEB J, 26 (3): 1323-33. [PMID:22131270]
89. Sodin-Semrl S, Spagnolo A, Barbaro B, Varga J, Fiore S. (2004) Lipoxin A4 counteracts synergistic activation of human fibroblast-like synoviocytes. Int J Immunopathol Pharmacol, 17 (1): 15-25. [PMID:15000862]
90. Sodin-Semrl S, Spagnolo A, Mikus R, Barbaro B, Varga J, Fiore S. (2004) Opposing regulation of interleukin-8 and NF-kappaB responses by lipoxin A4 and serum amyloid A via the common lipoxin A receptor. Int J Immunopathol Pharmacol, 17 (2): 145-56. [PMID:15171815]
91. Sodin-Semrl S, Taddeo B, Tseng D, Varga J, Fiore S. (2000) Lipoxin A4 inhibits IL-1 beta-induced IL-6, IL-8, and matrix metalloproteinase-3 production in human synovial fibroblasts and enhances synthesis of tissue inhibitors of metalloproteinases. J Immunol, 164 (5): 2660-6. [PMID:10679106]
92. Southgate EL, He RL, Gao JL, Murphy PM, Nanamori M, Ye RD. (2008) Identification of formyl peptides from Listeria monocytogenes and Staphylococcus aureus as potent chemoattractants for mouse neutrophils. J Immunol, 181 (2): 1429-37. [PMID:18606697]
93. Stalder AK, Lott D, Strasser DS, Cruz HG, Krause A, Groenen PM, Dingemanse J. (2017) Biomarker-guided clinical development of the first-in-class anti-inflammatory FPR2/ALX agonist ACT-389949. Br J Clin Pharmacol, 83 (3): 476-486. [PMID:27730665]
94. Stenfeldt AL, Karlsson J, Wennerås C, Bylund J, Fu H, Dahlgren C. (2007) Cyclosporin H, Boc-MLF and Boc-FLFLF are antagonists that preferentially inhibit activity triggered through the formyl peptide receptor. Inflammation, 30 (6): 224-9. [PMID:17687636]
95. Su SB, Gao Jl, Gong Wh, Dunlop NM, Murphy PM, Oppenheim JJ, Wang JM. (1999) T21/DP107, A synthetic leucine zipper-like domain of the HIV-1 envelope gp41, attracts and activates human phagocytes by using G-protein-coupled formyl peptide receptors. J Immunol, 162 (10): 5924-30. [PMID:10229829]
96. Su SB, Gong W, Gao JL, Shen W, Murphy PM, Oppenheim JJ, Wang JM. (1999) A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J Exp Med, 189 (2): 395-402. [PMID:9892621]
97. Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN. (1997) Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J Exp Med, 185 (9): 1693-704. [PMID:9151906]
98. Tiffany HL, Lavigne MC, Cui YH, Wang JM, Leto TL, Gao JL, Murphy PM. (2001) Amyloid-beta induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. J Biol Chem, 276 (26): 23645-52. [PMID:11316806]
99. Waechter V, Marti-Jaun J, Weber A, Madi ZL, Hersberger M. (2012) No evidence for the involvement of the lipoxin A4 receptor (FPR2/ALX ) gene in the susceptibility to coronary artery disease. Clin Chem Lab Med, 50 (1): 177-9. [PMID:22734147]
100. Walther A, Riehemann K, Gerke V. (2000) A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol Cell, 5 (5): 831-40. [PMID:10882119]
101. Wang CS, Baker OJ. (2018) The G-Protein-Coupled Receptor ALX/Fpr2 Regulates Adaptive Immune Responses in Mouse Submandibular Glands. Am J Pathol, 188 (7): 1555-1562. [PMID:29684359]
102. Yang EM, Kim SH, Kim NH, Park HS. (2010) The genetic association of the FPRL1 promoter polymorphism with chronic urticaria in a Korean population. Ann Allergy Asthma Immunol, 105 (1): 96-7. [PMID:20642210]
103. Ying G, Iribarren P, Zhou Y, Gong W, Zhang N, Yu ZX, Le Y, Cui Y, Wang JM. (2004) Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol, 172 (11): 7078-85. [PMID:15153530]
104. Zhou C, Zhang S, Nanamori M, Zhang Y, Liu Q, Li N, Sun M, Tian J, Ye PP, Cheng N et al.. (2007) Pharmacological characterization of a novel nonpeptide antagonist for formyl peptide receptor-like 1. Mol Pharmacol, 72 (4): 976-83. [PMID:17652444]
Magnus Bäck, Nan Chiang, Sven-Erik Dahlén, Jeffrey Drazen, Jilly F. Evans, G. Enrico Rovati, Charles N. Serhan, Takao Shimizu, Takehiko Yokomizo.
Leukotriene receptors: FPR2. Last modified on 19/04/2024. Accessed on 10/10/2024. IUPHAR/BPS Guide to PHARMACOLOGY, https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=223.