Top ▲
Gene and Protein Information ![]() |
||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 1 | 492 | 21q22.3 | TMPRSS2 | transmembrane serine protease 2 | |
Mouse | 1 | 490 | 16 57.53 cM | Tmprss2 | transmembrane protease, serine 2 | |
Rat | - | 490 | 11q12 | Tmprss2 | transmembrane serine protease 2 |
Previous and Unofficial Names ![]() |
epitheliasin | plasmic transmembrane protein X | PRSS10 | transmembrane protease, serine 2 | transmembrane protease |
Database Links ![]() |
|
Specialist databases | |
MEROPS | S01.247 (Hs) |
Other databases | |
BRENDA | 3.4.21.- |
CATH/Gene3D | 3.10.250.10 |
ChEMBL Target | CHEMBL1795140 (Hs) |
Ensembl Gene | ENSG00000184012 (Hs), ENSMUSG00000000385 (Mm), ENSRNOG00000001976 (Rn) |
Entrez Gene | 7113 (Hs), 50528 (Mm), 156435 (Rn) |
Human Protein Atlas | ENSG00000184012 (Hs) |
KEGG Enzyme | 3.4.21.- |
KEGG Gene | hsa:7113 (Hs), mmu:50528 (Mm), rno:156435 (Rn) |
OMIM | 602060 (Hs) |
Pharos | O15393 (Hs) |
RefSeq Nucleotide | NM_005656 (Hs), NM_001135099 (Hs), NM_015775 (Mm), NM_130424 (Rn) |
RefSeq Protein | NP_001128571 (Hs), NP_005647 (Hs), NP_056590 (Mm), NP_569108 (Rn) |
UniProtKB | O15393 (Hs), Q9JIQ8 (Mm) |
Wikipedia | TMPRSS2 (Hs) |
Enzyme Reaction ![]() |
||||
|
Download all structure-activity data for this target as a CSV file
Inhibitors | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Immuno Process Associations | ||||||||||||
|
||||||||||||
|
Biologically Significant Variants ![]() |
||||||||||||||
|
General Comments |
TMPRSS2 is expressed on the epithelial cells of human lungs, and it is involved in the activation of viral glycoproteins/viral entry across a range of viruses, including influenza A virus, metapneumovirus, and some coronaviruses (e.g. SARS-CoV [1]). Emerging data suggest that the novel coronavirus SARS-CoV-2 (formerly referred to as 2019-nCoV) uses the same entry receptor (ACE2) that is used by SARS-CoV. Like SARS-CoV, SARS-CoV-2 exploits host TMPRSS2 for spike protein priming [3]. In this study in vitro SARS-CoV-2 entry was partially blocked by the protease inhibitor camostat (which has inhibitory action against TMPRSS2 [4]). |
1. Bertram S, Glowacka I, Müller MA, Lavender H, Gnirss K, Nehlmeier I, Niemeyer D, He Y, Simmons G, Drosten C et al.. (2011) Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol, 85 (24): 13363-72. [PMID:21994442]
2. David A, Parkinson N, Peacock TP, Pairo-Castineira E, Khanna T, Cobat A, Tenesa A, Sancho-Shimizu V, GenOMICC Investigators, ISARIC4C Investigator et al.. (2021) A common TMPRSS2 variant protects against severe COVID-19. medRxiv, Preprint. DOI: 10.1101/2021.03.04.21252931
3. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A et al.. (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181 (2): 271-280.e8. [PMID:32142651]
4. Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. (2012) Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol, 86 (12): 6537-45. [PMID:22496216]
5. Pászti-Gere E, Czimmermann E, Ujhelyi G, Balla P, Maiwald A, Steinmetzer T. (2016) In vitro characterization of TMPRSS2 inhibition in IPEC-J2 cells. J Enzyme Inhib Med Chem, 31 (sup2): 123-129. [PMID:27277342]
6. Sielaff F, Böttcher-Friebertshäuser E, Meyer D, Saupe SM, Volk IM, Garten W, Steinmetzer T. (2011) Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT. Bioorg Med Chem Lett, 21 (16): 4860-4. [PMID:21741839]
7. Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue JI, Matsuda Z. (2016) Identification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrob Agents Chemother, 60 (11): 6532-6539. [PMID:27550352]
S1: Chymotrypsin: transmembrane serine protease 2. Last modified on 15/03/2021. Accessed on 15/04/2021. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2421.