Top ▲

mGlu5 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 293

Nomenclature: mGlu5 receptor

Family: Metabotropic glutamate receptors

Gene and Protein Information Click here for help
class C G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 1212 11q14.2-q14.3 GRM5 glutamate metabotropic receptor 5 60-61
Mouse 7 1203 7 D3 Grm5 glutamate receptor, metabotropic 5
Rat 7 1203 1q32 Grm5 glutamate metabotropic receptor 5 1,41
Previous and Unofficial Names Click here for help
mGluR5 | GPRC1E | glutamate receptor
Database Links Click here for help
Specialist databases
GPCRdb grm5_human (Hs), grm5_mouse (Mm), grm5_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the human class C GPCR metabotropic glutamate receptor 5 transmembrane domain in complex with the negative allosteric modulator mavoglurant
PDB Id:  4OO9
Ligand:  mavoglurant
Resolution:  2.6Å
Species:  Human
References:  23
Natural/Endogenous Ligands Click here for help
L-glutamic acid
Comments: Other endogenous ligands include L-aspartic acid, L-serine-O-phosphate, NAAG and L-cysteine sulphinic acid

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
VU0424465 Small molecule or natural product Rn Agonist 6.8 pEC50 82
pEC50 6.8 (EC50 1.71x10-7 M) [82]
VU0092273 Small molecule or natural product Rn Agonist 5.9 pEC50 65
pEC50 5.9 (EC50 1.3x10-6 M) [65]
L-glutamic acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Agonist 5.0 – 5.5 pEC50 72
pEC50 5.0 – 5.5 [72]
(S)-(+)-CBPG Small molecule or natural product Click here for species-specific activity table Rn Partial agonist 4.3 pEC50 56
pEC50 4.3 (EC50 4.7x10-5 M) [56]
quisqualate Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Full agonist 7.5 pIC50 63
pIC50 7.5 [63]
L-glutamic acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Full agonist 6.1 pIC50 63
pIC50 6.1 [63]
L-CCG-I Small molecule or natural product Click here for species-specific activity table Rn Full agonist 5.8 pIC50 63
pIC50 5.8 [63]
(1S,3R)-ACPD Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Full agonist 5.7 pIC50 63
pIC50 5.7 [63]
ibotenic acid Small molecule or natural product Click here for species-specific activity table Rn Full agonist 5.7 pIC50 63
pIC50 5.7 [63]
3,5-DHPG Small molecule or natural product Click here for species-specific activity table Rn Partial agonist 5.4 pIC50 63
pIC50 5.4 [63]
(S)-3HPG Small molecule or natural product Click here for species-specific activity table Rn Partial agonist 5.0 pIC50 63
pIC50 5.0 [63]
CHPG Small molecule or natural product Hs Full agonist 3.4 pIC50 63
pIC50 3.4 [63]
View species-specific agonist tables
Agonist Comments
Indicated affinities were determined by displacement studies of [3H]quisqualate bound on HEK cell membranes expressing a recombinant rat mGlu5. This is the only study describing affinity values for these compounds. More information on agonist potencies determined from functional studies can be obtained from [85]. So far no differences have been reported for the agonist affinities between the rat and the human receptor.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[11C]JNJ-16567083 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Rn Antagonist 5.6 pKi 38
pKi 5.6 (Ki 2.366x10-6 M) [38]
methoxy-MPEP Small molecule or natural product Primary target of this compound Ligand has a PDB structure Hs Antagonist 8.4 pIC50 29
pIC50 8.4 (IC50 3.6x10-9 M) [29]
Description: [3H]-M-MPEP displacement assay.
ACDPP Small molecule or natural product Hs Antagonist 6.9 pIC50 6
pIC50 6.9 [6]
(S)-4C3HPG Small molecule or natural product Click here for species-specific activity table Rn Antagonist 5.6 pIC50 63
pIC50 5.6 [63]
LY341495 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.1 pIC50 44
pIC50 5.1 [44]
DCG-IV Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 4.7 pIC50 63
pIC50 4.7 [63]
(S)-4CPG Small molecule or natural product Click here for species-specific activity table Rn Antagonist 4.6 pIC50 63
pIC50 4.6 [63]
(+)-MCPG Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 3.7 pIC50 63
pIC50 3.7 [63]
View species-specific antagonist tables
Antagonist Comments
Indicated affinities were determined by displacement studies of [3H]quisqualate bound on HEK cell membranes expressing a recombinant rat mGlu5 (except for LY341495 value determined from functional studies). This is the only study describing affinity values for these compounds.

More information on agonist potencies determined from functional studies can be obtained from [85]. So far no differences have been reported for the antagonist affinities between the rat and the human receptor.

Surprisingly, although LY367385 and AIDA displace Quisqualate binding, no antagonistic activity of these compounds have been observed in functional studies (see [85]). (S)-4C3HPG has been reported to have slight partial agonist activity at this receptor [41].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
VU0409551 Small molecule or natural product Hs Positive 7.1 pKB 83
pKB 7.1 [83]
VU0360172 Small molecule or natural product Hs Positive 6.6 – 7.0 pKB 32,77
pKB 6.6 – 7.0 [32,77]
VU0483605 Small molecule or natural product Rn Positive 6.5 pKB 36
pKB 6.5 [36]
GS39783 Small molecule or natural product Ligand has a PDB structure Rn Neutral 6.3 pKB 36
pKB 6.3 [36]
PHCCC Small molecule or natural product Click here for species-specific activity table Rn Neutral 5.6 pKB 36
pKB 5.6 [36]
AZ12216052 Small molecule or natural product Rn Positive 5.4 pKB 36
pKB 5.4 [36]
NPS 2143 Small molecule or natural product Ligand has a PDB structure Rn Positive 5.1 pKB 36
pKB 5.1 [36]
CPCCOEt Small molecule or natural product Click here for species-specific activity table Rn Neutral 4.9 pKB 36
pKB 4.9 [36]
CGP7930 Small molecule or natural product Click here for species-specific activity table Rn Positive 4.8 pKB 36
pKB 4.8 [36]
[3H]CTEP Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Negative 8.8 pKd 48
pKd 8.8 (Kd 1.5x10-9 M) [48]
[3H]CTEP Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Negative 8.8 pKd 48
pKd 8.8 (Kd 1.7x10-9 M) [48]
[3H]CTEP Small molecule or natural product Ligand is labelled Ligand is radioactive Mm Negative 8.7 pKd 48
pKd 8.7 (Kd 1.8x10-9 M) [48]
[3H]methoxy-PEPy Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Negative 8.5 pKd 20
pKd 8.5 (Kd 3.4x10-9 M) [20]
[3H]methoxymethyl-MTEP Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Negative 7.7 pKd 20
pKd 7.7 (Kd 2x10-8 M) [20]
[3H]fenobam Small molecule or natural product Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Negative 7.5 pKd 75
pKd 7.5 [75]
[3H]fenobam Small molecule or natural product Ligand is labelled Ligand is radioactive Ligand has a PDB structure Rn Negative 7.3 pKd 75
pKd 7.3 [75]
compound 20 [PMID: 16439120] Small molecule or natural product Rn Negative 9.0 pKi 13
pKi 9.0 (Ki 1x10-9 M) [13]
BOMA Small molecule or natural product Hs Negative 8.5 pKi 101
pKi 8.5 [101]
AZD9272 Small molecule or natural product Hs Negative 8.4 pKi 76
pKi 8.4 (Ki 3.8x10-9 M) [76]
GRN-529 Small molecule or natural product Rn Negative 8.3 pKi 39
pKi 8.3 (Ki 5.4x10-9 M) [39]
CTEP Small molecule or natural product Mm Negative 8.0 pKi 48
pKi 8.0 (Ki 9.5x10-9 M) [48]
compound 26 [PMID: 16439120] Small molecule or natural product Rn Negative 8.0 pKi 13
pKi 8.0 (Ki 1x10-8 M) [13]
compound 30 [PMID: 21757343] Small molecule or natural product Hs Negative 7.9 pKi 102
pKi 7.9 (Ki 1.2x10-8 M) [102]
compound 10 [PMID: 15482906] Small molecule or natural product Hs Negative 7.9 pKi 37
pKi 7.9 (Ki 1.2x10-8 M) [37]
CTEP Small molecule or natural product Rn Negative 7.9 pKi 48
pKi 7.9 (Ki 1.26x10-8 M) [48]
compound 8 [PMID: 15482908] Small molecule or natural product Rn Negative 7.8 pKi 91
pKi 7.8 (Ki 1.4x10-8 M) [91]
MTEP Small molecule or natural product Hs Negative 7.8 pKi 10
pKi 7.8 (Ki 1.6x10-8 M) [10]
VU0285683 Small molecule or natural product Rn Negative 7.8 pKi 77
pKi 7.8 (Ki 1.6x10-8 M) [77]
compound 29b [PMID: 20809633] Small molecule or natural product Rn Negative 7.8 pKi 12
pKi 7.8 (Ki 1.7x10-8 M) [12]
CTEP Small molecule or natural product Hs Negative 7.7 – 7.8 pKi 40,48
pKi 7.7 – 7.8 (Ki 2x10-8 – 1.64x10-8 M) [40,48]
compound 10 [PMID: 15482908] Small molecule or natural product Rn Negative 7.7 pKi 91
pKi 7.7 (Ki 1.9x10-8 M) [91]
compound 23 [PMID: 17590335] Small molecule or natural product Rn Negative 7.7 pKi 58
pKi 7.7 (Ki 2.2x10-8 M) [58]
AZD6538 Small molecule or natural product Hs Negative 7.6 pKi 76
pKi 7.6 (Ki 2.8x10-8 M) [76]
compound 24d [PMID: 23357634] Small molecule or natural product Rn Negative 7.5 pKi 108
pKi 7.5 (Ki 3x10-8 M) [108]
basimglurant Small molecule or natural product Hs Negative 7.4 pKi 40
pKi 7.4 (Ki 3.6x10-8 M) [40]
Description: Reduction of antagonist MPEP binding to mGlu5 receptors in vitro
compound 16m [PMID: 19931453] Small molecule or natural product Hs Negative 7.4 pKi 92
pKi 7.4 (Ki 3.8x10-8 M) [92]
VU0366058 Small molecule or natural product Rn Negative 7.1 pKi 62
pKi 7.1 (Ki 8.4x10-8 M) [62]
compound 16a [PMID: 14697765] Small molecule or natural product Rn Negative 7.0 pKi 101
pKi 7.0 (Ki 9.1x10-8 M) [101]
compound 42 [PMID: 17189691] Small molecule or natural product Rn Negative 7.0 pKi 14
pKi 7.0 (Ki 9.5x10-8 M) [14]
compound 8 [PMID: 20598884] Small molecule or natural product Rn Negative 7.0 pKi 25
pKi 7.0 (Ki 1.02x10-7 M) [25]
VU-1545 Small molecule or natural product Rn Positive 6.8 pKi 22
pKi 6.8 (Ki 1.56x10-7 M) [22]
compound 11a [PMID: 14697765] Small molecule or natural product Rn Negative 6.8 pKi 101
pKi 6.8 (Ki 1.59x10-7 M) [101]
VU0360172 Small molecule or natural product Rn Positive 6.7 pKi 77
pKi 6.7 (Ki 1.95x10-7 M) [77]
compound 27 [PMID: 20598884] Small molecule or natural product Rn Negative 6.7 pKi 25
pKi 6.7 (Ki 2.06x10-7 M) [25]
VU-29 Small molecule or natural product Rn Positive 6.6 pKi 16
pKi 6.6 (Ki 2.44x10-7 M) [16]
M-5MPEP Small molecule or natural product Rn Negative 6.5 pKi 78
pKi 6.5 (Ki 3x10-7 M) [78]
Br-5MPEPy Small molecule or natural product Rn Negative 6.5 pKi 78
pKi 6.5 (Ki 3x10-7 M) [78]
LSN2463359 Small molecule or natural product Ligand has a PDB structure Rn Positive 6.4 pKi 31
pKi 6.4 (Ki 3.77x10-7 M) [31]
5-MPEP Small molecule or natural product Rn Neutral 6.4 pKi 78
pKi 6.4 [78]
compound 18 [PMID: 21927650] Small molecule or natural product Rn Negative 6.3 pKi 49
pKi 6.3 (Ki 4.77x10-7 M) [49]
LSN2814617 Small molecule or natural product Rn Positive 5.9 pKi 31
pKi 5.9 (Ki 1.34x10-6 M) [31]
5PAM523 Small molecule or natural product Rn Positive 5.7 pKi 69
pKi 5.7 (Ki 2x10-6 M) [69]
CPPZ Small molecule or natural product Rn Positive 5.5 pKi 93
pKi 5.5 (Ki 3.1x10-6 M) [93]
ADX-47273 Small molecule or natural product Rn Positive 5.4 pKi 31
pKi 5.4 (Ki 3.65x10-6 M) [31]
cinacalcet Small molecule or natural product Approved drug Ligand has a PDB structure Rn Positive 4.3 pKi 36
pKi 4.3 [36]
VU0424465 Small molecule or natural product Rn Positive 8.8 pEC50 82
pEC50 8.8 (EC50 1.5x10-9 M) [82]
VU0404251 Small molecule or natural product Rn Positive 8.1 pEC50 55
pEC50 8.1 (EC50 7.2x10-9 M) [55]
VU-29 Small molecule or natural product Rn Positive 8.1 pEC50 16
pEC50 8.1 (EC50 9x10-9 M) [16]
VU-1545 Small molecule or natural product Hs Positive 8.0 pEC50 22
pEC50 8.0 (EC50 9.6x10-9 M) [22]
VU0463841 Small molecule or natural product Rn Negative 7.9 pEC50 2
pEC50 7.9 (EC50 1.3x10-8 M) [2]
compound 41 [PMID: 23434029] Small molecule or natural product Hs Negative 7.9 pEC50 15
pEC50 7.9 (EC50 1.3x10-8 M) [15]
CDPPB Small molecule or natural product Ligand has a PDB structure Hs Positive 7.6 – 8.0 pEC50 45,50
pEC50 7.6 – 8.0 [45,50]
VU0360172 Small molecule or natural product Rn Positive 7.8 pEC50 77
pEC50 7.8 (EC50 1.6x10-8 M) [77]
CDPPB Small molecule or natural product Ligand has a PDB structure Rn Positive 7.7 pEC50 50
pEC50 7.7 [50]
LSN2463359 Small molecule or natural product Ligand has a PDB structure Rn Positive 7.6 pEC50 31
pEC50 7.6 (EC50 2.4x10-8 M) [31]
LSN2463359 Small molecule or natural product Ligand has a PDB structure Hs Positive 7.5 pEC50 31
pEC50 7.5 (EC50 3.3x10-8 M) [31]
VU0357121 Small molecule or natural product Rn Positive 7.5 pEC50 33
pEC50 7.5 (EC50 3.3x10-8 M) [33]
VU0092273 Small molecule or natural product Rn Positive 7.5 pEC50 65
pEC50 7.5 (EC50 3.5x10-8 M) [65]
VU0240382 Small molecule or natural product Rn Positive 7.4 pEC50 65
pEC50 7.4 (EC50 3.9x10-8 M) [65]
compound 47 [PMID: 21295468] Small molecule or natural product Hs Positive 7.3 pEC50 98
pEC50 7.3 (EC50 5.01x10-8 M) [98]
LSN2814617 Small molecule or natural product Hs Positive 7.3 pEC50 31
pEC50 7.3 (EC50 5.2x10-8 M) [31]
ADX-47273 Small molecule or natural product Rn Positive 7.3 pEC50 31
pEC50 7.3 (EC50 5.5x10-8 M) [31]
VU0404251 Small molecule or natural product Hs Positive 7.2 pEC50 55
pEC50 7.2 (EC50 7x10-8 M) [55]
LSN2814617 Small molecule or natural product Rn Positive 7.0 pEC50 31
pEC50 7.0 (EC50 9.3x10-8 M) [31]
VU0361747 Small molecule or natural product Rn Positive 6.9 pEC50 65
pEC50 6.9 (EC50 1.26x10-7 M) [65]
ADX-47273 Small molecule or natural product Hs Positive 6.8 pEC50 31
pEC50 6.8 (EC50 1.57x10-7 M) [31]
5PAM523 Small molecule or natural product Hs Positive 6.7 pEC50 69
pEC50 6.7 (EC50 2.01x10-7 M) [69]
5PAM523 Small molecule or natural product Rn Positive 6.5 pEC50 69
pEC50 6.5 (EC50 3.11x10-7 M) [69]
NCFP Small molecule or natural product Rn Positive 6.0 – 6.7 pEC50 64
pEC50 6.7 (EC50 2.14x10-7 M) EC50 with high mGlu5 expression [64]
pEC50 6.4 (EC50 3.7x10-7 M) EC50 with low mGlu5 expression [64]
pEC50 6.0 (EC50 9.69x10-7 M) EC50 from assay using rat astrocytes [64]
CPPZ Small molecule or natural product Hs Positive 6.3 pEC50 93
pEC50 6.3 (EC50 5x10-7 M) [93]
VU0364289 Small molecule or natural product Rn Positive 5.8 pEC50 109
pEC50 5.8 (EC50 1.6x10-6 M) [109]
SP203 Small molecule or natural product Rn Negative 10.4 pIC50 89
pIC50 10.4 (IC50 3.6x10-11 M) [89]
compound 18 [PMID: 17723296] Small molecule or natural product Rn Negative 9.1 pIC50 103
pIC50 9.1 (IC50 7.2x10-10 M) [103]
compound 23 [PMID: 17590335] Small molecule or natural product Rn Negative 9.1 pIC50 58
pIC50 9.1 (IC50 8x10-10 M) [58]
MTEB Small molecule or natural product Hs Negative 8.7 pIC50 101
pIC50 8.7 [101]
GRN-529 Small molecule or natural product Hs Negative 8.6 pIC50 39
pIC50 8.6 (IC50 2.6x10-9 M) [39]
compound 8 [PMID: 15482908] Small molecule or natural product Hs Negative 8.4 pIC50 91
pIC50 8.4 (IC50 3.9x10-9 M) [91]
[3H]M-MPEP Small molecule or natural product Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Negative 8.3 – 8.4 pIC50 29,66
pIC50 8.4 [29]
pIC50 8.3 [66]
compound 10 [PMID: 15482906] Small molecule or natural product Hs Negative 8.2 pIC50 37
pIC50 8.2 (IC50 6.7x10-9 M) [37]
AZD9272 Small molecule or natural product Hs Negative 8.1 pIC50 76
pIC50 8.1 (IC50 7.6x10-9 M) [76]
alloswitch-1 Small molecule or natural product Primary target of this compound Ligand has a PDB structure Rn Negative 8.1 pIC50 74
pIC50 8.1 (IC50 8.6x10-9 M) [74]
Description: Inhibition of agonist-induced IP accumulation.
CTEP Small molecule or natural product Hs Negative 7.9 – 8.2 pIC50 48
pIC50 7.9 – 8.2 (IC50 1.14x10-8 – 6.4x10-9 M) [48]
compound 30 [PMID: 21757343] Small molecule or natural product Rn Negative 7.9 pIC50 102
pIC50 7.9 (IC50 1.2x10-8 M) [102]
VU0463841 Small molecule or natural product Rn Negative 7.9 pIC50 2
pIC50 7.9 (IC50 1.3x10-8 M) [2]
AZD6538 Small molecule or natural product Hs Negative 7.9 pIC50 76
pIC50 7.9 (IC50 1.34x10-8 M) [76]
compound 29b [PMID: 20809633] Small molecule or natural product Hs Negative 7.8 pIC50 12
pIC50 7.8 (IC50 1.6x10-8 M) [12]
compound 30 [PMID: 21757343] Small molecule or natural product Hs Negative 7.8 pIC50 102
pIC50 7.8 (IC50 1.7x10-8 M) [102]
compound 24 [PMID: 23374867] Small molecule or natural product Hs Negative 7.7 pIC50 34
pIC50 7.7 (IC50 1.9x10-8 M) [34]
[14C]MTEP Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Negative 7.7 pIC50 3
pIC50 7.7 [3]
dipraglurant Small molecule or natural product Hs Negative 7.7 pIC50 15
pIC50 7.7 (IC50 2x10-8 M) [15]
compound 16a [PMID: 14697765] Small molecule or natural product Hs Negative 7.7 pIC50 101
pIC50 7.7 (IC50 2.2x10-8 M) [101]
compound 24d [PMID: 23357634] Small molecule or natural product Hs Negative 7.6 pIC50 108
pIC50 7.6 (IC50 2.3x10-8 M) [108]
VU0285683 Small molecule or natural product Rn Negative 7.6 pIC50 77
pIC50 7.6 (IC50 2.44x10-8 M) [77]
MPEP Small molecule or natural product Click here for species-specific activity table Hs Negative 7.4 – 7.7 pIC50 29-30
pIC50 7.4 – 7.7 [29-30]
compound 13 [PMID: 15686941] Small molecule or natural product Hs Negative 7.6 pIC50 6
pIC50 7.6 (IC50 2.8x10-8 M) [6]
methoxymethyl-MTEP Small molecule or natural product Rn Negative 7.5 pIC50 3
pIC50 7.5 (IC50 3x10-8 M) [3]
compound 16m [PMID: 19931453] Small molecule or natural product Hs Negative 7.5 pIC50 92
pIC50 7.5 (IC50 3.2x10-8 M) [92]
compound 11a [PMID: 14697765] Small molecule or natural product Hs Negative 7.4 pIC50 101
pIC50 7.4 (IC50 4.1x10-8 M) [101]
GSK2210875 Small molecule or natural product Hs Negative 7.4 pIC50 71
pIC50 7.4 (IC50 4x10-8 M) [71]
compound 53 [PMID: 23434029] Small molecule or natural product Hs Negative 7.4 pIC50 15
pIC50 7.4 (IC50 4x10-8 M) [15]
compound 27 [PMID: 20598884] Small molecule or natural product Rn Negative 7.3 pIC50 25
pIC50 7.3 (IC50 4.5x10-8 M) [25]
compound 36 [PMID: 17936624] Small molecule or natural product Rn Negative 7.3 pIC50 27
pIC50 7.3 (IC50 5.17x10-8 M) [27]
compound 8 [PMID: 20598884] Small molecule or natural product Rn Negative 7.2 pIC50 25
pIC50 7.2 (IC50 5.9x10-8 M) [25]
compound 42 [PMID: 17189691] Small molecule or natural product Rn Negative 7.2 pIC50 14
pIC50 7.2 (IC50 6x10-8 M) [14]
compound 18 [PMID: 21927650] Small molecule or natural product Hs Negative 7.2 pIC50 49
pIC50 7.2 (IC50 6.1x10-8 M) [49]
PTeB Small molecule or natural product Hs Negative 7.2 pIC50 84
pIC50 7.2 [84]
fenobam Small molecule or natural product Ligand has a PDB structure Hs Negative 7.2 pIC50 75
pIC50 7.2 [75]
compound 10 [PMID: 15482908] Small molecule or natural product Hs Negative 7.1 pIC50 91
pIC50 7.1 (IC50 7.7x10-8 M) [91]
3,3'-difluorobenzaldazine Small molecule or natural product Hs Positive 5.6 – 8.5 pIC50 66-67
pIC50 5.6 – 8.5 [66-67]
VU0366058 Small molecule or natural product Rn Negative 7.0 pIC50 62
pIC50 7.0 (IC50 9.1x10-8 M) [62]
ADX-47273 Small molecule or natural product Rn Positive 6.5 pIC50 47
pIC50 6.5 [47]
CPPHA Small molecule or natural product Hs Positive 6.3 pIC50 67
pIC50 6.3 [67]
SIB-1757 Small molecule or natural product Hs Negative 6.0 – 6.4 pIC50 29,99
pIC50 6.0 – 6.4 [29,99]
SIB-1893 Small molecule or natural product Click here for species-specific activity table Hs Negative 5.9 – 6.5 pIC50 29,99
pIC50 5.9 – 6.5 [29,99]
View species-specific allosteric modulator tables
Allosteric Modulator Comments
M-5MPEP is a partal antagonist at the rat receptor [78].

Allosteric regulators, either negative (non-competitive antagonists), positive (allosteric potentiators), or neutral, are usually highly selective for mGlu5, being inactive on the highly homologous mGlu1 receptor. These modulators bind in the 7TM region of the receptor [54,68], whereas the orthosteric site is located in the large extracellular domain of this receptor. A second important point is that many negative modulators possess inverse agonist activity. However, allosteric "partial antagonists" have now been discovered [78]. The concept of partial antagonist activity is novel and can only be achieved with compounds acting at an allosteric site. Although a clear interaction between DFB, CDPPB and the MPEP binding site has been described, the relationship between binding to this site and allosteric potentiation is not yet clear. CPPHA clearly binds at a site different from MPEP [67]. DCB and 5MPEP have been shown to inhibit the effect of both positive and negative allosteric modulators, and represents as such a novel type of modulator called a neutral allosteric site ligand [66,78].

M-5MPEP and Br5-MPEPy fully displace binding of [3H]methoxyPEPy but do not fully block glutamate responses [78]. VU0357121 binds to a site other than the MPEP site [33].

VU0365396 is a non-MPEP site, neutral allosteric ligand [33]. [18F]FPEB has been used in receptor occupancy in humans [96,104].
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Comments:  The main action of mGlu5 is to activate PLC via Gq/11. This can be measured via the inositol phosphate production or increase in intracelular Ca2+ both in cell lines expressing this recombinant receptor or in native tissue such as brain slices or cultured neurons or astrocytes.
References:  18,73
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Gi/Go family
Adenylyl cyclase stimulation
Potassium channel
Calcium channel
Phospholipase A2 stimulation
Phospholipase D stimulation
Other - See Comments
Comments:  Stimulation of adenylyl cyclase has been reported in transfected cell lines, and in native tissue although it is not yet known whether this effect is due to mGlu5 or mGlu1 or both [18].

Coupling of group-I mGlu receptors to PTX-sensitive G-proteins Gi and Go has also been observed in many cells including neurons. Such a coupling is at the origin of MAPK activation.

Activation of PLA2 is potentiated by co-activation of the NMDA receptor [24].

PLD activation has been reported both in brain slices [46] and in cultured astrocytes [86]. However, some studies reported this response may also be generated by an mglu receptor with specific pharmacological properties [7,18].

Activation of big potassium currents likely results from the increase in intracellular Ca2+. However, inhibition of various type of potassium currents lead to an increase in cell excitability [4].

Both inhibition and potentiation of voltage sensitive Ca2+ channels (N and L types) have been reported [4,18,73].
References:  4,18,73
Tissue Distribution Click here for help
Islets of Langerhans and in pancreatic alpha-cell and beta-cell lines.
Species:  Human
Technique:  RT-PCR and immunoblot.
References:  9
Testes.
Species:  Human
Technique:  immunocytochemistry.
References:  95
Melanocytes.
Species:  Human
Technique:  RT-PCR and immunocytochemistry.
References:  26
Thymus, isolated thymocytes and TC-1S thymic stromal cell line, CD4(+) CD8(+) and CD4(+)CD8(-) thymocytes.
Species:  Mouse
Technique:  RT-PCR and immunoblot.
References:  94
Retina.
Species:  Rat
Technique:  in situ hybridisation.
References:  35
Olefactory bulb, anterior olfactory nucleus, accumbens nucleus, olafactory tubercle, striatum, hippocampus, subiculum, cerebral cortex, lateral septal nucleus, inferior culliculus, cerebellar cortex, spinal trigeminal nucleus, thalamus, ventromedial hypothalamic nucleus.
Species:  Rat
Technique:  in situ hybridization.
References:  1
Olfactory bulb, anterior olfactory nuclei, olfactory tubercle, cerebral cortex, hippocampus, lateral septum, striatum, nucleus accumbens, inferior colliculus, and spinal trigeminal nuclei.
Species:  Rat
Technique:  Immunohistochemistry.
References:  88
Pinealocytes.
Species:  Rat
Technique:  RT-PCR, Northern blot.
References:  106
mGlu5 was rarely detected in pre-synaptic elements.
Species:  Rat
Technique:  immunocytochemistry.
References:  80
At the subcellular level, mGlu5 was found in post-synaptic elements on the side of the post-synaptic density.
Species:  Rat
Technique:  immunocytochemistry.
References:  52-53,80
Islets of Langerhans and pancreatic alpha-cell and beta-cell lines.
Species:  Rat
Technique:  RT-PCR and immunoblot.
References:  9
Suprachiasmatic nucleus, preoptic area, lateral hypothalamus, and mammillary region, ventromedial nucleus.
Species:  Rat
Technique:  Western and Northern blot.
References:  97
Brain.
Species:  Rat
Technique:  RT-PCR, Western blot, immunocytochemistry.
References:  81
Neostriatum, neocortex, and hippocampus.
Species:  Rat
Technique:  in situ hybridization.
References:  42
mGlu5 is found on both astrocytes and neurons, with most intense expression in the olfactory bulb (granule cells), cerebral cortex, hippocampus (dentate gyrus and pyramidal neurons of the CA1-3 area) lateral septum, striatum, nucleus accumbens and inferior colliculus. In the cerebellum, mGlu5 receptors are expressed only in a sub-population of Golgi neurons.
Species:  Rat
Technique:  immunocytochemistry.
References:  80,87
Testes.
Species:  Rat
Technique:  RT-PCR.
References:  95
mGlu5 receptors have also been detected outside the brain, especially in peripheral unmyelinated sensory afferent terminals.
Species:  Rat
Technique:  immunocytochemistry.
References:  5,90
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of IP levels in cultured rat astrocytes treated with EGF.
Species:  Rat
Tissue:  Cultured cortical astrocytes.
Response measured:  IP formation.
References:  59
Measurement of intracellular IP and Ca2+ levels in CHO cells transfected with rat mGlu5 receptors.
Species:  Rat
Tissue:  CHO cells.
Response measured:  IP formation and increase in Ca2+ levels.
References:  1
Measurement of intracellular IP and Ca2+ levels in HEK 293 cells transfected with rat mGlu5 receptor.
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  IP formation and increase in Ca2+ levels.
References:  8,21
Measurement of IP formation in an RGT cell line transfected with the human mGlu5 receptor.
Species:  Human
Tissue:  RGT cell line.
Response measured:  IP formation.
References:  43
Measurement of Ca2+ levels and ERK phosphorylation in rat cultured cortical astrocytes.
Species:  Rat
Tissue:  Cultured cortical astrocytes.
Response measured:  Increase in Ca2+ levels and ERK phosphorylation.
References:  70,107
Physiological Functions Click here for help
mGlu5 receptor activation facilitates LTP induction in the CA1 area and dentate gyrus of the hippocampus
Species:  Mouse
Tissue:  Hippocampal slices.
References:  51
Presynaptic control of neurotransmitter release in various brain areas. This is likely to be indirect, being a consequence of endogenous cannabinoid release from the post-synaptic element.
Species:  Mouse
Tissue:  Hippocampal slices
References:  79
Astrocytic mGlu5 is likely responsible for functional hyperemia - the coupling of neuronal activation to cerebral blood vessel responses
Species:  Rat
Tissue:  Cortical slices
References:  110
mGlu5 receptors in the periphery are involved in the sensation of inflammatory pain.
Species:  Rat
Tissue:  Skin.
References:  5,100
mGlu5 receptor activation facilitates LTP induction and can induce LTD in the CA1 area and dentate gyrus of the hippocampus.
Species:  Rat
Tissue:  Hippocampal slices.
References:  28
mGlu5 receptor activation acts postsynaptically to regulate ion channels and increase excitability of many neuronal populations throughout the CNS.
Species:  Rat
Tissue:  Hippocampal slices.
References:  57
Physiological Consequences of Altering Gene Expression Click here for help
mGlu5 receptor knockout mice exhibit disruption of prepulse inhibition.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  11
mGlu5 receptor knockout mice exhibit impaired acquisition and use of spatial information in both the Morris water maze and contextual information in the fear-conditioning test.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  51
mGlu5 receptor knockout mice exhibit impaired CA1 LTP.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  51
mGlu5 receptor knockout mice exhibit a loss of cocaine self administration.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  17
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Grm5tm1Fcq Grm5tm1Fcq/Grm5tm1Fcq
Not Specified
MGI:1351342  MP:0002556 abnormal cocaine consumption PMID: 11528416 
Grm5tm1Rod Grm5tm1Rod/Grm5tm1Rod
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:1351342  MP:0001469 abnormal contextual conditioning behavior PMID: 9185557 
Grm5tm1.2Jixu Grm5tm1.2Jixu/Grm5tm1.2Jixu
involves: 129S1/Sv * 129S4/SvJae * 129X1/SvJ * C57BL/6
MGI:1351342  MP:0001469 abnormal contextual conditioning behavior PMID: 19321764 
Grm5tm1.2Jixu Grm5tm1.2Jixu/Grm5tm1.2Jixu
involves: 129S1/Sv * 129S4/SvJae * 129X1/SvJ * C57BL/6
MGI:1351342  MP:0001454 abnormal cued conditioning behavior PMID: 19321764 
Grm5tm1Rod Grm5tm1Rod/Grm5tm1Rod
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:1351342  MP:0002912 abnormal excitatory postsynaptic potential PMID: 9185557 
Grm5tm1.2Jixu Grm5tm1.2Jixu/Grm5tm1.2Jixu
involves: 129S1/Sv * 129S4/SvJae * 129X1/SvJ * C57BL/6
MGI:1351342  MP:0006299 abnormal latent inhibition of conditioning behavior PMID: 19321764 
Grm5tm1.2Jixu Grm5tm1.2Jixu/Grm5tm1.2Jixu
involves: 129S1/Sv * 129S4/SvJae * 129X1/SvJ * C57BL/6
MGI:1351342  MP:0001449 abnormal learning/ memory PMID: 19321764 
Grm5tm1Rod Grm5tm1Rod/Grm5tm1Rod
B6.129-Grm5/J
MGI:1351342  MP:0003313 abnormal locomotor activation PMID: 16280580 
Grm5+|Grm5tm1Rod Grm5tm1Rod/Grm5+
involves: 129 * C57BL/6 * FVB
MGI:1351342  MP:0003477 abnormal nerve fiber response PMID: 18093519 
Grm5tm1Rod Grm5tm1Rod/Grm5tm1Rod
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:1351342  MP:0001463 abnormal spatial learning PMID: 9185557 
Fmr1tm1Cgr|Grm5+|Grm5tm1Rod Fmr1tm1Cgr/Y,Grm5tm1Rod/Grm5+
involves: 129P2/OlaHsd * C57BL/6 * FVB
MGI:1351342  MGI:95564  MP:0001496 audiogenic seizures PMID: 18093519 
Grm5tm1.1Kksz Grm5tm1.1Kksz/Grm5tm1.1Kksz
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:1351342  MP:0003546 decreased alcohol consumption PMID: 19587272 
Grm5tm1Fcq Grm5tm1Fcq/Grm5tm1Fcq
Not Specified
MGI:1351342  MP:0009758 impaired behavioral response to cocaine PMID: 11528416 
Fmr1tm1Cgr|Grm5+|Grm5tm1Rod Fmr1tm1Cgr/Y,Grm5tm1Rod/Grm5+
involves: 129P2/OlaHsd * C57BL/6 * FVB
MGI:1351342  MGI:95564  MP:0004851 increased testis weight PMID: 18093519 
Grm5tm1Rod Grm5tm1Rod/Grm5tm1Rod
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:1351342  MP:0001473 reduced long term potentiation PMID: 9185557 
Grm5tm1Fcq Grm5tm1Fcq/Grm5tm1Fcq
Not Specified
MGI:1351342  MP:0001473 reduced long term potentiation PMID: 12559117 
Biologically Significant Variants Click here for help
Type:  Splice variants
Species:  Rat
Description:  mGlu5(b) possesses an additional 32 amino acid residues inserted after L875, 49 residues after the 7th TM . No functional differences have been reported so far between these two variants. In addition two types of mGlu5 transcripts with different 5' untranslated sequences are also generated due to two distinct transcription initiation signals, allowing for different regulation of mGlu5 expression in various cell types.
References:  1,41,105
Type:  Splice variants
Species:  Human
Description:  Both mGlu5(a) and mGlu5(b) as well as the use of two distinct initiation signals have been identified in human.
References:  19,60-61

References

Show »

1. Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S. (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem, 267: 13361-13368. [PMID:1320017]

2. Amato RJ, Felts AS, Rodriguez AL, Venable DF, Morrison RD, Byers FW, Daniels JS, Niswender CM, Conn PJ, Lindsley CW et al.. (2013) Substituted 1-Phenyl-3-(pyridin-2-yl)urea negative allosteric modulators of mGlu5: discovery of a new tool compound VU0463841 with activity in rat models of cocaine addiction. ACS Chem Neurosci, 4 (8): 1217-28. [PMID:23682684]

3. Anderson JJ, Rao SP, Rowe B, Giracello DR, Holtz G, Chapman DF, Tehrani L, Bradbury MJ, Cosford ND, Varney MA. (2002) [3H]Methoxymethyl-3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine binding to metabotropic glutamate receptor subtype 5 in rodent brain: in vitro and in vivo characterization. J Pharmacol Exp Ther, 303 (3): 1044-51. [PMID:12438526]

4. Anwyl R. (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev, 29 (1): 83-120. [PMID:9974152]

5. Bhave G, Karim F, Carlton SM, Gereau 4th RW. (2001) Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci, 4 (4): 417-23. [PMID:11276233]

6. Bonnefous C, Vernier JM, Hutchinson JH, Chung J, Reyes-Manalo G, Kamenecka T. (2005) Dipyridyl amides: potent metabotropic glutamate subtype 5 (mGlu5) receptor antagonists. Bioorg Med Chem Lett, 15 (4): 1197-200. [PMID:15686941]

7. Boss V, Nutt KM, Conn PJ. (1994) L-cysteine sulfinic acid as an endogenous agonist of a novel metabotropic receptor coupled to stimulation of phospholipase D activity. Mol Pharmacol, 45: 1177-1182. [PMID:8022410]

8. Brabet I, Parmentier ML, De Colle C, Bockaert J, Acher F, Pin JP. (1998) Comparative effect of L-CCG-I, DCG-IV and gamma-carboxy-L-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology, 37 (8): 1043-51. [PMID:9833633]

9. Brice NL, Varadi A, Ashcroft SJ, Molnar E. (2002) Metabotropic glutamate and GABA(B) receptors contribute to the modulation of glucose-stimulated insulin secretion in pancreatic beta cells. Diabetologia, 45 (2): 242-52. [PMID:11935156]

10. Brodkin J, Bradbury M, Busse C, Warren N, Bristow LJ, Varney MA. (2002) Reduced stress-induced hyperthermia in mGluR5 knockout mice. Eur J Neurosci, 16 (11): 2241-4. [PMID:12473093]

11. Brody SA, Dulawa SC, Conquet F, Geyer MA. (2004) Assessment of a prepulse inhibition deficit in a mutant mouse lacking mGlu5 receptors. Mol Psychiatry, 9 (1): 35-41. [PMID:14699440]

12. Burdi DF, Hunt R, Fan L, Hu T, Wang J, Guo Z, Huang Z, Wu C, Hardy L, Detheux M et al.. (2010) Design, synthesis, and structure-activity relationships of novel bicyclic azole-amines as negative allosteric modulators of metabotropic glutamate receptor 5. J Med Chem, 53 (19): 7107-18. [PMID:20809633]

13. Büttelmann B, Peters JU, Ceccarelli S, Kolczewski S, Vieira E, Prinssen EP, Spooren W, Schuler F, Huwyler J, Porter RH et al.. (2006) Arylmethoxypyridines as novel, potent and orally active mGlu5 receptor antagonists. Bioorg Med Chem Lett, 16 (7): 1892-7. [PMID:16439120]

14. Ceccarelli SM, Jaeschke G, Buettelmann B, Huwyler J, Kolczewski S, Peters JU, Prinssen E, Porter R, Spooren W, Vieira E. (2007) Rational design, synthesis, and structure-activity relationship of benzoxazolones: new potent mglu5 receptor antagonists based on the fenobam structure. Bioorg Med Chem Lett, 17 (5): 1302-6. [PMID:17189691]

15. Chae E, Shin YJ, Ryu EJ, Ji MK, Ryune Cho N, Lee KH, Jeong HJ, Kim SJ, Choi Y, Seok Oh K et al.. (2013) Discovery of biological evaluation of pyrazole/imidazole amides as mGlu5 receptor negative allosteric modulators. Bioorg Med Chem Lett, 23 (7): 2134-9. [PMID:23434029]

16. Chen Y, Nong Y, Goudet C, Hemstapat K, de Paulis T, Pin JP, Conn PJ. (2007) Interaction of novel positive allosteric modulators of metabotropic glutamate receptor 5 with the negative allosteric antagonist site is required for potentiation of receptor responses. Mol Pharmacol, 71 (5): 1389-98. [PMID:17303702]

17. Chiamulera C, Epping-Jordan MP, Zocchi A, Marcon C, Cottiny C, Tacconi S, Corsi M, Orzi F, Conquet F. (2001) Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci, 4 (9): 873-4. [PMID:11528416]

18. Conn PJ, Pin JP. (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol, 37: 205-37. [PMID:9131252]

19. Corti C, Clarkson RW, Crepaldi L, Sala CF, Xuereb JH, Ferraguti F. (2003) Gene structure of the human metabotropic glutamate receptor 5 and functional analysis of its multiple promoters in neuroblastoma and astroglioma cells. J Biol Chem, 278 (35): 33105-19. [PMID:12783878]

20. Cosford ND, Roppe J, Tehrani L, Schweiger EJ, Seiders TJ, Chaudary A, Rao S, Varney MA. (2003) [3H]-methoxymethyl-MTEP and [3H]-methoxy-PEPy: potent and selective radioligands for the metabotropic glutamate subtype 5 (mGlu5) receptor. Bioorg Med Chem Lett, 13 (3): 351-4. [PMID:12565928]

21. De Colle C, Bessis AS, Bockaert J, Acher F, Pin JP. (2000) Pharmacological characterization of the rat metabotropic glutamate receptor type 8a revealed strong similarities and slight differences with the type 4a receptor. Eur J Pharmacol, 394 (1): 17-26. [PMID:10771029]

22. de Paulis T, Hemstapat K, Chen Y, Zhang Y, Saleh S, Alagille D, Baldwin RM, Tamagnan GD, Conn PJ. (2006) Substituent effects of N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamides on positive allosteric modulation of the metabotropic glutamate-5 receptor in rat cortical astrocytes. J Med Chem, 49 (11): 3332-44. [PMID:16722652]

23. Doré AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, Errey JC, Jazayeri A, Khan S, Tehan B et al.. (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature, 511 (7511): 557-62. [PMID:25042998]

24. Dumuis A, Pin JP, Oomagari K, Sebben M, Bockaert J. (1990) Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature, 347 (6289): 182-4. [PMID:1975645]

25. Felts AS, Lindsley SR, Lamb JP, Rodriguez AL, Menon UN, Jadhav S, Jones CK, Conn PJ, Lindsley CW, Emmitte KA. (2010) 3-Cyano-5-fluoro-N-arylbenzamides as negative allosteric modulators of mGlu(5): Identification of easily prepared tool compounds with CNS exposure in rats. Bioorg Med Chem Lett, 20 (15): 4390-4. [PMID:20598884]

26. Frati C, Marchese C, Fisichella G, Copani A, Nasca MR, Storto M, Nicoletti F. (2000) Expression of functional mGlu5 metabotropic glutamate receptors in human melanocytes. J Cell Physiol, 183 (3): 364-72. [PMID:10797311]

27. Galatsis P, Yamagata K, Wendt JA, Connolly CJ, Mickelson JW, Milbank JB, Bove SE, Knauer CS, Brooker RM, Augelli-Szafran CE et al.. (2007) Synthesis and SAR comparison of regioisomeric aryl naphthyridines as potent mGlu5 receptor antagonists. Bioorg Med Chem Lett, 17 (23): 6525-8. [PMID:17936624]

28. Gallagher SM, Daly CA, Bear MF, Huber KM. (2004) Extracellular signal-regulated protein kinase activation is required for metabotropic glutamate receptor-dependent long-term depression in hippocampal area CA1. J Neurosci, 24 (20): 4859-64. [PMID:15152046]

29. Gasparini F, Andres H, Flor PJ, Heinrich M, Inderbitzin W, Lingenhöhl K, Müller H, Munk VC, Omilusik K, Stierlin C et al.. (2002) [(3)H]-M-MPEP, a potent, subtype-selective radioligand for the metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett, 12 (3): 407-9. [PMID:11814808]

30. Gasparini F, Lingenhöhl K, Stoehr N, Flor PJ, Heinrich M, Vranesic I, Biollaz M, Allgeier H, Heckendorn R, Urwyler S et al.. (1999) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology, 38 (10): 1493-503. [PMID:10530811]

31. Gilmour G, Broad LM, Wafford KA, Britton T, Colvin EM, Fivush A, Gastambide F, Getman B, Heinz BA, McCarthy AP et al.. (2013) In vitro characterisation of the novel positive allosteric modulators of the mGlu₅ receptor, LSN2463359 and LSN2814617, and their effects on sleep architecture and operant responding in the rat. Neuropharmacology, 64: 224-39. [PMID:22884720]

32. Gregory KJ, Noetzel MJ, Rook JM, Vinson PN, Stauffer SR, Rodriguez AL, Emmitte KA, Zhou Y, Chun AC, Felts AS et al.. (2012) Investigating metabotropic glutamate receptor 5 allosteric modulator cooperativity, affinity, and agonism: enriching structure-function studies and structure-activity relationships. Mol Pharmacol, 82 (5): 860-75. [PMID:22863693]

33. Hammond AS, Rodriguez AL, Townsend SD, Niswender CM, Gregory KJ, Lindsley CW, Conn PJ. (2010) Discovery of a Novel Chemical Class of mGlu(5) Allosteric Ligands with Distinct Modes of Pharmacology. ACS Chem Neurosci, 1 (10): 702-716. [PMID:20981342]

34. Hao J, Dehlinger V, Fivush AM, Rudyk HC, Britton TC, Hollinshead SP, Vokits BP, Clark BP, Henry SS, Massey SM et al.. (2013) Discovery of (1R,2R)-N-(4-(6-isopropylpyridin-2-yl)-3-(2-methyl-2H-indazol-5-yl)isothiazol-5-yl)-2-methylcyclopropanecarboxamide, a potent and orally efficacious mGlu5 receptor negative allosteric modulator. Bioorg Med Chem Lett, 23 (5): 1249-52. [PMID:23374867]

35. Hartveit E, Brandstätter JH, Enz R, Wässle H. (1995) Expression of the mRNA of seven metabotropic glutamate receptors (mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue sections and isolated cells. Eur J Neurosci, 7 (7): 1472-83. [PMID:7551173]

36. Hellyer SD, Albold S, Wang T, Chen ANY, May LT, Leach K, Gregory KJ. (2018) "Selective" Class C G Protein-Coupled Receptor Modulators Are Neutral or Biased mGlu5 Allosteric Ligands. Mol Pharmacol, 93 (5): 504-514. [PMID:29514854]

37. Huang D, Poon SF, Chapman DF, Chung J, Cramer M, Reger TS, Roppe JR, Tehrani L, Cosford ND, Smith ND. (2004) 2-(2-[3-(pyridin-3-yloxy)phenyl]-2H-tetrazol-5-yl) pyridine: a highly potent, orally active, metabotropic glutamate subtype 5 (mGlu5) receptor antagonist. Bioorg Med Chem Lett, 14 (22): 5473-6. [PMID:15482906]

38. Huang Y, Narendran R, Bischoff F, Guo N, Zhu Z, Bae SA, Lesage AS, Laruelle M. (2005) A positron emission tomography radioligand for the in vivo labeling of metabotropic glutamate 1 receptor: (3-ethyl-2-[11C]methyl-6-quinolinyl)(cis- 4-methoxycyclohexyl)methanone. J Med Chem, 48 (16): 5096-9. [PMID:16078827]

39. Hughes ZA, Neal SJ, Smith DL, Sukoff Rizzo SJ, Pulicicchio CM, Lotarski S, Lu S, Dwyer JM, Brennan J, Olsen M et al.. (2013) Negative allosteric modulation of metabotropic glutamate receptor 5 results in broad spectrum activity relevant to treatment resistant depression. Neuropharmacology, 66: 202-14. [PMID:22551786]

40. Jaeschke G, Kolczewski S, Spooren W, Vieira E, Bitter-Stoll N, Boissin P, Borroni E, Büttelmann B, Ceccarelli S, Clemann N et al.. (2015) Metabotropic glutamate receptor 5 negative allosteric modulators: discovery of 2-chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]pyridine (basimglurant, RO4917523), a promising novel medicine for psychiatric diseases. J Med Chem, 58 (3): 1358-71. [PMID:25565255]

41. Joly C, Gomeza J, Brabet I, Curry K, Bockaert J, Pin JP. (1995) Molecular, functional, and pharmacological characterization of the metabotropic glutamate receptor type 5 splice variants: comparison with mGluR1. J Neurosci, 15 (5 Pt 2): 3970-81. [PMID:7751958]

42. Kerner JA, Standaert DG, Penney Jr JB, Young AB, Landwehrmeyer GB. (1997) Expression of group one metabotropic glutamate receptor subunit mRNAs in neurochemically identified neurons in the rat neostriatum, neocortex, and hippocampus. Brain Res Mol Brain Res, 48 (2): 259-69. [PMID:9332723]

43. Kingston AE, Lowndes J, Evans N, Clark B, Tomlinson R, Burnett JP, Mayne NG, Cockerham SL, Lodge D. (1998) Sulphur-containing amino acids are agonists for group 1 metabotropic receptors expressed in clonal RGT cell lines. Neuropharmacology, 37 (3): 277-87. [PMID:9681926]

44. Kingston AE, Ornstein PL, Wright RA, Johnson BG, Mayne NG, Burnett JP, Belagaje R, Wu S, Schoepp DD. (1998) LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology, 37 (1): 1-12. [PMID:9680254]

45. Kinney GG, O'Brien JA, Lemaire W, Burno M, Bickel DJ, Clements MK, Chen TB, Wisnoski DD, Lindsley CW, Tiller PR et al.. (2005) A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. J Pharmacol Exp Ther, 313 (1): 199-206. [PMID:15608073]

46. Klein J, Reymann KG, Riedel G. (1997) Activation of phospholipases C and D by the novel metabotropic glutamate receptor agonist tADA. Neuropharmacology, 36 (2): 261-3. [PMID:9144664]

47. Le Poul E, Bessis AS, Lutgens R, Bonnet B, Rocher JP, Epping-Jordan M, Mutel V. (2005) In vitro pharmacological characterisation of selective mGluR5 positive allosteric modulators. Neuropharmacology, 49 (S1): 252-.

48. Lindemann L, Jaeschke G, Michalon A, Vieira E, Honer M, Spooren W, Porter R, Hartung T, Kolczewski S, Büttelmann B et al.. (2011) CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor. J Pharmacol Exp Ther, 339 (2): 474-86. [PMID:21849627]

49. Lindsley CW, Bates BS, Menon UN, Jadhav SB, Kane AS, Jones CK, Rodriguez AL, Conn PJ, Olsen CM, Winder DG et al.. (2011) (3-Cyano-5-fluorophenyl)biaryl negative allosteric modulators of mGlu(5): Discovery of a new tool compound with activity in the OSS mouse model of addiction. ACS Chem Neurosci, 2 (8): 471-482. [PMID:21927650]

50. Lindsley CW, Wisnoski DD, Leister WH, O'brien JA, Lemaire W, Williams Jr DL, Burno M, Sur C, Kinney GG, Pettibone DJ et al.. (2004) Discovery of positive allosteric modulators for the metabotropic glutamate receptor subtype 5 from a series of N-(1,3-diphenyl-1H- pyrazol-5-yl)benzamides that potentiate receptor function in vivo. J Med Chem, 47 (24): 5825-8. [PMID:15537338]

51. Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, Roder JC. (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci, 17 (13): 5196-205. [PMID:9185557]

52. Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P. (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci, 8 (7): 1488-500. [PMID:8758956]

53. Luján R, Roberts JD, Shigemoto R, Ohishi H, Somogyi P. (1997) Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. J Chem Neuroanat, 13 (4): 219-41. [PMID:9412905]

54. Malherbe P, Kratochwil N, Zenner MT, Piussi J, Diener C, Kratzeisen C, Fischer C, Porter RH. (2003) Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol Pharmacol, 64 (4): 823-32. [PMID:14500738]

55. Manka JT, Vinson PN, Gregory KJ, Zhou Y, Williams R, Gogi K, Days E, Jadhav S, Herman EJ, Lavreysen H et al.. (2012) Optimization of an ether series of mGlu5 positive allosteric modulators: molecular determinants of MPEP-site interaction crossover. Bioorg Med Chem Lett, 22 (20): 6481-5. [PMID:22981332]

56. Mannaioni G, Attucci S, Missanelli A, Pellicciari R, Corradetti R, Moroni F. (1999) Biochemical and electrophysiological studies on (S)-(+)-2-(3'-carboxybicyclo(1.1.1)pentyl)-glycine (CBPG), a novel mGlu5 receptor agonist endowed with mGlu1 receptor antagonist activity. Neuropharmacology, 38 (7): 917-26. [PMID:10428410]

57. Mannaioni G, Marino MJ, Valenti O, Traynelis SF, Conn PJ. (2001) Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J Neurosci, 21 (16): 5925-34. [PMID:11487615]

58. Milbank JB, Knauer CS, Augelli-Szafran CE, Sakkab-Tan AT, Lin KK, Yamagata K, Hoffman JK, Zhuang N, Thomas J, Galatsis P et al.. (2007) Rational design of 7-arylquinolines as non-competitive metabotropic glutamate receptor subtype 5 antagonists. Bioorg Med Chem Lett, 17 (16): 4415-8. [PMID:17590335]

59. Miller S, Romano C, Cotman CW. (1995) Growth factor upregulation of a phosphoinositide-coupled metabotropic glutamate receptor in cortical astrocytes. J Neurosci, 15: 6103-6109. [PMID:7666194]

60. Minakami R, Katsuki F, Sugiyama H. (1993) A variant of metabotropic glutamate receptor subtype 5: an evolutionally conserved insertion with no termination codon. Biochem Biophys Res Commun, 194 (2): 622-7. [PMID:7688218]

61. Minakami R, Katsuki F, Yamamoto T, Nakamura K, Sugiyama H. (1994) Molecular cloning and the functional expression of two isoforms of human metabotropic glutamate receptor subtype 5. Biochem Biophys Res Commun, 199 (3): 1136-43. [PMID:7908515]

62. Mueller R, Dawson ES, Meiler J, Rodriguez AL, Chauder BA, Bates BS, Felts AS, Lamb JP, Menon UN, Jadhav SB et al.. (2012) Discovery of 2-(2-benzoxazoyl amino)-4-aryl-5-cyanopyrimidine as negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu₅): from an artificial neural network virtual screen to an in vivo tool compound. ChemMedChem, 7 (3): 406-14. [PMID:22267125]

63. Mutel V, Ellis GJ, Adam G, Chaboz S, Nilly A, Messer J, Bleuel Z, Metzler V, Malherbe P, Schlaeger EJ et al.. (2000) Characterization of [(3)H]Quisqualate binding to recombinant rat metabotropic glutamate 1a and 5a receptors and to rat and human brain sections. J Neurochem, 75 (6): 2590-601. [PMID:11080213]

64. Noetzel MJ, Gregory KJ, Vinson PN, Manka JT, Stauffer SR, Lindsley CW, Niswender CM, Xiang Z, Conn PJ. (2013) A novel metabotropic glutamate receptor 5 positive allosteric modulator acts at a unique site and confers stimulus bias to mGlu5 signaling. Mol Pharmacol, 83 (4): 835-47. [PMID:23348500]

65. Noetzel MJ, Rook JM, Vinson PN, Cho HP, Days E, Zhou Y, Rodriguez AL, Lavreysen H, Stauffer SR, Niswender CM et al.. (2012) Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function. Mol Pharmacol, 81 (2): 120-33. [PMID:22021324]

66. O'Brien JA, Lemaire W, Chen TB, Chang RS, Jacobson MA, Ha SN, Lindsley CW, Schaffhauser HJ, Sur C, Pettibone DJ et al.. (2003) A family of highly selective allosteric modulators of the metabotropic glutamate receptor subtype 5. Mol Pharmacol, 64 (3): 731-40. [PMID:12920211]

67. O'Brien JA, Lemaire W, Wittmann M, Jacobson MA, Ha SN, Wisnoski DD, Lindsley CW, Schaffhauser HJ, Rowe B, Sur C et al.. (2004) A novel selective allosteric modulator potentiates the activity of native metabotropic glutamate receptor subtype 5 in rat forebrain. J Pharmacol Exp Ther, 309 (2): 568-77. [PMID:14747613]

68. Pagano A, Ruegg D, Litschig S, Stoehr N, Stierlin C, Heinrich M, Floersheim P, Prezèau L, Carroll F, Pin JP et al.. (2000) The non-competitive antagonists 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J Biol Chem, 275 (43): 33750-8. [PMID:10934211]

69. Parmentier-Batteur S, Hutson PH, Menzel K, Uslaner JM, Mattson BA, O'Brien JA, Magliaro BC, Forest T, Stump CA, Tynebor RM et al.. (2014) Mechanism based neurotoxicity of mGlu5 positive allosteric modulators--development challenges for a promising novel antipsychotic target. Neuropharmacology, 82: 161-73. [PMID:23291536]

70. Peavy RD, Chang MS, Sanders-Bush E, Conn PJ. (2001) Metabotropic glutamate receptor 5-induced phosphorylation of extracellular signal-regulated kinase in astrocytes depends on transactivation of the epidermal growth factor receptor. J Neurosci, 21 (24): 9619-28. [PMID:11739572]

71. Pilla M, Andreoli M, Tessari M, Delle-Fratte S, Roth A, Butler S, Brown F, Shah P, Bettini E, Cavallini P et al.. (2010) The identification of novel orally active mGluR5 antagonist GSK2210875. Bioorg Med Chem Lett, 20 (24): 7521-4. [PMID:21051228]

72. Pin JP, De Colle C, Bessis AS, Acher F. (1999) New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur J Pharmacol, 375 (1-3): 277-94. [PMID:10443583]

73. Pin JP, Duvoisin R. (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology, 34 (1): 1-26. [PMID:7623957]

74. Pittolo S, Gómez-Santacana X, Eckelt K, Rovira X, Dalton J, Goudet C, Pin JP, Llobet A, Giraldo J, Llebaria A et al.. (2014) An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat Chem Biol, 10 (10): 813-5. [PMID:25173999]

75. Porter RH, Jaeschke G, Spooren W, Ballard TM, Büttelmann B, Kolczewski S, Peters JU, Prinssen E, Wichmann J, Vieira E et al.. (2005) Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther, 315 (2): 711-21. [PMID:16040814]

76. Raboisson P, Breitholtz-Emanuelsson A, Dahllöf H, Edwards L, Heaton WL, Isaac M, Jarvie K, Kers A, Minidis AB, Nordmark A et al.. (2012) Discovery and characterization of AZD9272 and AZD6538-Two novel mGluR5 negative allosteric modulators selected for clinical development. Bioorg Med Chem Lett, 22 (22): 6974-9. [PMID:23046966]

77. Rodriguez AL, Grier MD, Jones CK, Herman EJ, Kane AS, Smith RL, Williams R, Zhou Y, Marlo JE, Days EL et al.. (2010) Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity. Mol Pharmacol, 78 (6): 1105-23. [PMID:20923853]

78. Rodriguez AL, Nong Y, Sekaran NK, Alagille D, Tamagnan GD, Conn PJ. (2005) A close structural analog of 2-methyl-6-(phenylethynyl)-pyridine acts as a neutral allosteric site ligand on metabotropic glutamate receptor subtype 5 and blocks the effects of multiple allosteric modulators. Mol Pharmacol, 68 (6): 1793-802. [PMID:16155210]

79. Rodriguez-Moreno A, Sistiaga A, Lerma J, Sanchez-Prieto J. (1998) Switch from facilitation to inhibition of excitatory synaptic transmission by group I mGluR desensitization. Neuron, 21: 1477-1486. [PMID:9883739]

80. Romano C, Sesma MA, McDonald CT, O'Malley K, Van den Pol AN, Olney JW. (1995) Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J Comp Neurol, 355 (3): 455-69. [PMID:7636025]

81. Romano C, van den Pol AN, O'Malley KL. (1996) Enhanced early developmental expression of the metabotropic glutamate receptor mGluR5 in rat brain: protein, mRNA splice variants, and regional distribution. J Comp Neurol, 367 (3): 403-12. [PMID:8698900]

82. Rook JM, Noetzel MJ, Pouliot WA, Bridges TM, Vinson PN, Cho HP, Zhou Y, Gogliotti RD, Manka JT, Gregory KJ et al.. (2013) Unique signaling profiles of positive allosteric modulators of metabotropic glutamate receptor subtype 5 determine differences in in vivo activity. Biol Psychiatry, 73 (6): 501-9. [PMID:23140665]

83. Rook JM, Xiang Z, Lv X, Ghoshal A, Dickerson JW, Bridges TM, Johnson KA, Foster DJ, Gregory KJ, Vinson PN et al.. (2015) Biased mGlu5-Positive Allosteric Modulators Provide In Vivo Efficacy without Potentiating mGlu5 Modulation of NMDAR Currents. Neuron, 86 (4): 1029-1040. [PMID:25937172]

84. Roppe J, Smith ND, Huang D, Tehrani L, Wang B, Anderson J, Brodkin J, Chung J, Jiang X, King C et al.. (2004) Discovery of novel heteroarylazoles that are metabotropic glutamate subtype 5 receptor antagonists with anxiolytic activity. J Med Chem, 47 (19): 4645-8. [PMID:15341479]

85. Schoepp DD, Jane DE, Monn JA. (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology, 38 (10): 1431-76. [PMID:10530808]

86. Servitja JM, Masgrau R, Sarri E, Picatoste F. (1999) Group I metabotropic glutamate receptors mediate phospholipase D stimulation in rat cultured astrocytes. J Neurochem, 72 (4): 1441-7. [PMID:10098847]

87. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S et al.. (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci, 17 (19): 7503-22. [PMID:9295396]

88. Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N. (1993) Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci Lett, 163 (1): 53-7. [PMID:8295733]

89. Siméon FG, Brown AK, Zoghbi SS, Patterson VM, Innis RB, Pike VW. (2007) Synthesis and simple 18F-labeling of 3-fluoro-5-(2-(2-(fluoromethyl)thiazol-4-yl)ethynyl)benzonitrile as a high affinity radioligand for imaging monkey brain metabotropic glutamate subtype-5 receptors with positron emission tomography. J Med Chem, 50 (14): 3256-66. [PMID:17571866]

90. Skerry TM, Genever PG. (2001) Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci, 22 (4): 174-81. [PMID:11282417]

91. Smith ND, Poon SF, Huang D, Green M, King C, Tehrani L, Roppe JR, Chung J, Chapman DP, Cramer M et al.. (2004) Discovery of highly potent, selective, orally bioavailable, metabotropic glutamate subtype 5 (mGlu5) receptor antagonists devoid of cytochrome P450 1A2 inhibitory activity. Bioorg Med Chem Lett, 14 (22): 5481-4. [PMID:15482908]

92. Spanka C, Glatthar R, Desrayaud S, Fendt M, Orain D, Troxler T, Vranesic I. (2010) Piperidyl amides as novel, potent and orally active mGlu5 receptor antagonists with anxiolytic-like activity. Bioorg Med Chem Lett, 20 (1): 184-8. [PMID:19931453]

93. Spear N, Gadient RA, Wilkins DE, Do M, Smith JS, Zeller KL, Schroeder P, Zhang M, Arora J, Chhajlani V. (2011) Preclinical profile of a novel metabotropic glutamate receptor 5 positive allosteric modulator. Eur J Pharmacol, 659 (2-3): 146-54. [PMID:21335002]

94. Storto M, de Grazia U, Battaglia G, Felli MP, Maroder M, Gulino A, Ragona G, Nicoletti F, Screpanti I, Frati L et al.. (2000) Expression of metabotropic glutamate receptors in murine thymocytes and thymic stromal cells. J Neuroimmunol, 109 (2): 112-20. [PMID:10996213]

95. Storto M, Sallese M, Salvatore L, Poulet R, Condorelli DF, Dell'Albani P, Marcello MF, Romeo R, Piomboni P, Barone N, Nicoletti F, Nicoletti F, De Blasi A. (2001) Expression of metabotropic glutamate receptors in the rat and human testis. J Endocrinol, 170: 71-78. [PMID:11431139]

96. Sullivan JM, Lim K, Labaree D, Lin SF, McCarthy TJ, Seibyl JP, Tamagnan G, Huang Y, Carson RE, Ding YS et al.. (2013) Kinetic analysis of the metabotropic glutamate subtype 5 tracer [(18)F]FPEB in bolus and bolus-plus-constant-infusion studies in humans. J Cereb Blood Flow Metab, 33 (4): 532-41. [PMID:23250105]

97. van den Pol AN, Romano C, Ghosh P. (1995) Metabotropic glutamate receptor mGluR5 subcellular distribution and developmental expression in hypothalamus. J Comp Neurol, 362 (1): 134-50. [PMID:8576426]

98. Varnes JG, Marcus AP, Mauger RC, Throner SR, Hoesch V, King MM, Wang X, Sygowski LA, Spear N, Gadient R et al.. (2011) Discovery of novel positive allosteric modulators of the metabotropic glutamate receptor 5 (mGlu5). Bioorg Med Chem Lett, 21 (5): 1402-6. [PMID:21295468]

99. Varney MA, Cosford ND, Jachec C, Rao SP, Sacaan A, Lin FF, Bleicher L, Santori EM, Flor PJ, Allgeier H et al.. (1999) SIB-1757 and SIB-1893: selective, noncompetitive antagonists of metabotropic glutamate receptor type 5. J Pharmacol Exp Ther, 290 (1): 170-81. [PMID:10381773]

100. Walker K, Reeve A, Bowes M, Winter J, Wotherspoon G, Davis A, Schmid P, Gasparini F, Kuhn R, Urban L. (2001) mGlu5 receptors and nociceptive function II. mGlu5 receptors functionally expressed on peripheral sensory neurones mediate inflammatory hyperalgesia. Neuropharmacology, 40 (1): 10-9. [PMID:11077066]

101. Wang B, Vernier JM, Rao S, Chung J, Anderson JJ, Brodkin JD, Jiang X, Gardner MF, Yang X, Munoz B. (2004) Discovery of novel modulators of metabotropic glutamate receptor subtype-5. Bioorg Med Chem, 12 (1): 17-21. [PMID:14697765]

102. Weiss JM, Jimenez HN, Li G, April M, Uberti MA, Bacolod MD, Brodbeck RM, Doller D. (2011) 6-Aryl-3-pyrrolidinylpyridines as mGlu5 receptor negative allosteric modulators. Bioorg Med Chem Lett, 21 (16): 4891-9. [PMID:21757343]

103. Wendt JA, Deeter SD, Bove SE, Knauer CS, Brooker RM, Augelli-Szafran CE, Schwarz RD, Kinsora JJ, Kilgore KS. (2007) Synthesis and SAR of 2-aryl pyrido[2,3-d]pyrimidines as potent mGlu5 receptor antagonists. Bioorg Med Chem Lett, 17 (19): 5396-9. [PMID:17723296]

104. Wong DF, Waterhouse R, Kuwabara H, Kim J, Brašić JR, Chamroonrat W, Stabins M, Holt DP, Dannals RF, Hamill TG et al.. (2013) 18F-FPEB, a PET radiopharmaceutical for quantifying metabotropic glutamate 5 receptors: a first-in-human study of radiochemical safety, biokinetics, and radiation dosimetry. J Nucl Med, 54 (3): 388-96. [PMID:23404089]

105. Yamaguchi S, Nakanishi S. (1998) Regional expression and regulation of alternative forms of mRNAs derived from two distinct transcription initiation sites of the rat mGluR5 gene. J Neurochem, 71 (1): 60-8. [PMID:9648851]

106. Yatsushiro S, Yamada H, Hayashi M, Tsuboi S, Moriyama Y. (1999) Functional expression of metabotropic glutamate receptor type 5 in rat pinealocytes. Neuroreport, 10 (7): 1599-603. [PMID:10380988]

107. Zhang Y, Rodriguez AL, Conn PJ. (2005) Allosteric potentiators of metabotropic glutamate receptor subtype 5 have differential effects on different signaling pathways in cortical astrocytes. J Pharmacol Exp Ther, 315 (3): 1212-9. [PMID:16135701]

108. Zhou H, Topiol SW, Grenon M, Jimenez HN, Uberti MA, Smith DG, Brodbeck RM, Chandrasena G, Pedersen H, Madsen JC et al.. (2013) Discovery and structure-activity relationship of 1,3-cyclohexyl amide derivatives as novel mGluR5 negative allosteric modulators. Bioorg Med Chem Lett, 23 (5): 1398-406. [PMID:23357634]

109. Zhou Y, Manka JT, Rodriguez AL, Weaver CD, Days EL, Vinson PN, Jadhav S, Hermann EJ, Jones CK, Conn PJ et al.. (2010) Discovery of N-Aryl Piperazines as Selective mGlu(5) Potentiators with Efficacy in a Rodent Model Predictive of Anti-Psychotic Activity. ACS Med Chem Lett, 1 (8): 433-438. [PMID:23308336]

110. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G. (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci, 6: 43-50. [PMID:12469126]

Contributors

Show »

How to cite this page