Top ▲

RXFP3

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 353

Nomenclature: RXFP3

Family: Relaxin family peptide receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 469 5p13.2 RXFP3 relaxin family peptide receptor 3 21
Mouse 7 472 15 A1 Rxfp3 relaxin family peptide receptor 3 31
Rat 7 476 2q16 Rxfp3 relaxin family peptide receptor 3
Previous and Unofficial Names Click here for help
RLN3R1 | RXFPR3 | GPCR135 | relaxin/insulin like family peptide receptor 3
Database Links Click here for help
Specialist databases
GPCRDB rl3r1_human (Hs), rl3r1_mouse (Mm), q5y986_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
INSL5 {Sp: Human}
relaxin-3 {Sp: Human}
relaxin {Sp: Human}
relaxin-3 (B chain) {Sp: Human}
Comments: Relaxin-3 is a potent endogenous agonist for RXFP3. Unlike other relaxins, the relaxin-3 (B) chain has some bioactivity. Relaxin is a biased agonist at RXFP3. Neither relaxin-3 (B) chain or relaxin are known to act on RXFP3 in vivo.
Potency order of endogenous ligands (Human)
relaxin-3 (RLN3, Q8WXF3) > relaxin-3 (B chain) (RLN3, Q8WXF3) > relaxin (RLN2, P04090)  [17]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
relaxin {Sp: Human} Peptide Click here for species-specific activity table Hs Full agonist 10.0 pKd 34
pKd 10.0 [34]
[125I]relaxin-3 (human) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 9.5 pKd 17
pKd 9.5 [17]
[125I]relaxin-3-B/INSL5 A chimera Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Agonist 9.3 pKd 16
pKd 9.3 (Kd 5x10-10 M) [16]
europium-labelled relaxin-3-B/INSL5 A chimera Peptide Click here for species-specific activity table Ligand is labelled Hs Full agonist 9.3 pKd 8,27
pKd 9.3 [8,27]
europium-labelled relaxin-3-B/INSL5 A chimera Peptide Click here for species-specific activity table Ligand is labelled Hs Agonist 8.3 pKd 8
pKd 8.3 (Kd 5x10-9 M) [8]
relaxin-3 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 7.8 – 8.9 pKi 11,27,36
pKi 7.8 – 8.9 [11,27,36]
minimised relaxin-3 analogue 2 Peptide Click here for species-specific activity table Hs Full agonist 7.9 pKi 27
pKi 7.9 [27]
relaxin-3 B chain dimer Peptide Hs Full agonist 6.6 pKi 36
pKi 6.6 [36]
B1-27 Peptide Hs Agonist 5.9 pKi 14
pKi 5.9 (Ki 1.23x10-6 M) [14]
minimised relaxin-3 analogue 2 Peptide Click here for species-specific activity table Hs Full agonist 8.4 – 10.4 pEC50 27
pEC50 8.4 – 10.4 [27]
relaxin-3 {Sp: Human} Peptide Click here for species-specific activity table Hs Full agonist 8.3 – 9.9 pEC50 11-12,27,34,36
pEC50 8.3 – 9.9 [11-12,27,34,36]
compound 4 [PMID: 30824200] Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.9 pEC50 7
pEC50 7.9 (EC50 1.28x10-8 M) [7]
relaxin {Sp: Human} Peptide Click here for species-specific activity table Hs Full agonist 7.1 – 8.4 pEC50 12,34
pEC50 7.1 – 8.4 [12,34]
relaxin-3 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 9.4 – 9.6 pIC50 6,17
pIC50 9.4 – 9.6 [6,17]
R3/I5 Peptide Click here for species-specific activity table Hs Full agonist 9.3 pIC50 16
pIC50 9.3 [16]
relaxin-3 (B chain) {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 6.9 pIC50 17
pIC50 6.9 [17]
NanoLuc R3/I5 chimera Peptide Click here for species-specific activity table Ligand is labelled Hs Agonist - - 37
[37]
Agonist Comments
Relaxin-3 activates RXFP3 but also RXFP4 and RXFP1. Relaxin-3 is highly conserved across species and is believed to be the ancestral relaxin. Affinity and pEC50 values were obtained in COS-7 cells transiently expressing RXFP3 or CHO or HEK293 cells stably expressing RXFP3. Relaxin is a biased agonist at RXFP3, compared to relaxin-3. Europium R3/I5 is used as a labelled ligand as an alternative to 125I labelled ligands in binding studies.
Antagonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
europium-labelled R3(B1-22R) Peptide Ligand is labelled Hs Antagonist 7.6 pKd 9
pKd 7.6 [9]
R3(BΔ23-27)R/I5 chimeric peptide Peptide Click here for species-specific activity table Hs Antagonist 8.5 pKi 8
pKi 8.5 [8]
R3 B1-22R Peptide Hs Antagonist 7.7 pKi 9
pKi 7.7 (Ki 2.04x10-8 M) [9]
minimised relaxin-3 analogue 3 Peptide Click here for species-specific activity table Hs Antagonist 7.6 pKi 27
pKi 7.6 [27]
R3-B1-22R Peptide Hs Antagonist 7.4 pKi 8
pKi 7.4 (Ki 3.63x10-8 M) [8]
INSL5 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Antagonist 7.0 pKi 38
pKi 7.0 [38]
R3(BΔ23-27)R/I5 chimeric peptide Peptide Click here for species-specific activity table Hs Antagonist 8.9 – 9.0 pEC50 12
pEC50 8.9 – 9.0 [12]
R3(BΔ23-27)R/I5 chimeric peptide Peptide Click here for species-specific activity table Hs Antagonist 9.2 pIC50 13
pIC50 9.2 (IC50 6.7x10-10 M) [13]
Antagonist Comments
Affinity values were determined in COS-7 cells transiently expressing or CHO or HEK293 cells stably expressing human RXFP3 labelled using [125I]relaxin-3, [125I]R3/I5 or europium-R3/I5. Antagonists produce rightward shifts of the concentration-response curve to relaxin-3 induced inhibition of forskolin stimulated cAMP accumulation in SK-N-MC cells expressing human RXFP3. R3(BΔ23-27)R/I5 also acts as a partial agonist or biased agonist in some systems [12]. Europium labelled R3(B1-22R) is used as an alternative to radiolabelled ligands.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
135PAM1 Small molecule or natural product Hs Positive 6.1 pEC50 1
pEC50 6.1 [1]
Allosteric Modulator Comments
135PAM1 only allosterically modulates responses to the amidated form of relaxin-3 not the native form.
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Other - See Comments
Comments:  In addition to adenylyl cyclase inhibition, activation of RXFP3 also causes GTPγS binding, ERK1/2 and p38MAP kinase phosphorylation. In CHO cells Gi2 is the major G protein involved but in HEK293 cells Gi3 GOB and GOA are all involved suggesting that cellular context is important in determining the response observed.
References:  3,6,16-18
Tissue Distribution Click here for help
Brain, testis, thymus, adrenal gland.
Species:  Human
Technique:  RT-PCR.
References:  17
Hypothalamus, supraoptic nucleus, periaqueductal gray, nucleus incertus, brainstem, olfactory bulb, sensory cortex, amygdala, thalamus, paraventricular nucleus, inferior and superior colliculus.
Species:  Human
Technique:  in situ hybridisation.
References:  17,32
Brain, testis.
Species:  Mouse
Technique:  RT-PCR.
References:  6
High levels of mRNA and protein in amygdala - amygdalo-hippocampal area, basolateral nucleus and medial nucleus; medial division of the bed nucleus of the stria terminalis; oriens and hilar layers of the hippocampal formation; paraventricular hypothalamic nucleus; dorsal cortex of the inferior colliculus: medial inferior olive. High levels of mRNA in peripeduncular nucleus, anterior tegmental nucleus and dorsomedial tegmental area. High levels of protein in anterodorsal thalamic nucleus and superficial gray and zona layers of the superior colliculus
Species:  Mouse
Technique:  In situ hybridisation, [125I] R3/I5 binding
References:  30
Brain, testis.
Species:  Rat
Technique:  RT-PCR.
References:  6
Nucleus incertus, cortex, septum, hippocampus, thalamus, hypothalamus and midbrain. Highest densities in the medial septum, lateral preoptic area, lateral hypothalamus/medial forebrain bundle and ventral hippocampus; additional fibers in olfactory bulb and olfactory and frontal/cingulate cortices, bed nucleus of the stria terminalis, dorsal endopiriform, intergeniculate, and supramammillary nuclei, and the periaqueductal gray and dorsal raphe
Species:  Rat
Technique:  [125I] R3/I5 binding
References:  19
High levels of mRNA and protein in forebrain, olfactory, hippocampus, amygdala, septum, thalamus, hypothalamus, brainstem with particularly high concentrations in the bed nuclei of the stria terminalis, septohypothalamic nuclei, interpedicular nucleus and nucleus incertus
Species:  Rat
Technique:  in situ hybridisation, [125I] R3/I5 binding
References:  29
Olfactory bulb, sensory cortex, amygdala, thalamus, paraventricular nucleus, supraoptic nucleus, inferior and superior colliculus.
Species:  Rat
Technique:  Autoradiography.
References:  16,32
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Reporter gene assay in SK-N-MC/β-gal cells stably transfected with human RXFP3 receptors.
Species:  Human
Tissue:  SK-N-MC cells.
Response measured:  Increased β-galactosidase expression.
References:  16,18
Extracellular acidification rate response of CHO-K1 cells stably expressing human RXFP3 receptors in the cytosensor microphysiometer.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  Increased extracellular acidification rate.
References:  35
Inhibition of forskolin stimulated cAMP responses in CHO-K1 cells stably transfected with human RXFP3 receptors.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  cAMP accumulation.
References:  6,16-18
[35S] GTPγS incorporation in CHO-K1 cells stably transfected with human RXFP3 receptors.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  [35S] GTPγS incorporation.
References:  6,17
GTPγS binding
Species:  Human
Tissue:  CHO cells expressing RXFP3
Response measured:  Increased GTPγS binding
References:  38
ERK1/2 phosphorylation
Species:  Human
Tissue:  CHO or HEK293 cells expressing RXFP3
Response measured:  increased ERK1/2 phosphorylation
References:  12,27,34,36
p38MAPK phosphorylation
Species:  Human
Tissue:  CHO cells expressing RXFP3
Response measured:  Increased p38MAPK phosphorylation
References:  12
Adenylyl cyclase inhibition
Species:  Human
Tissue:  CHO cells expressing RXFP3
Response measured:  Inhibition of forskolin stimulated cAMP accumulation
References:  1,11,13,27,34,36
Ca2+ mobilisation assay in HEK 293 cells transiently expressing human RXFP3 receptors and G16.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Ca2+ dye Fluo-3 fluorescence.
References:  16,18
Physiological Functions Click here for help
Sensory processing particularly under stressful conditions.
Species:  Rat
Tissue:  Brain.
References:  32
Behavioural activation and arousal
Species:  Rat
Tissue:  Hippocampus
References:  20
Regulation of stress
Species:  Rat
Tissue:  Nucleus incertus, relaxin-3 neurones and their target RXFP3 in forebrain connections
References:  2,4,15,33
Increased food intake
Species:  Rat
Tissue:  Paraventricular nucleus
References:  5,13,22-23
Regulation of feeding behaviour
Species:  Mouse
Tissue:  Brain
References:  28
Anxiety-and depressive-like behaviours
Species:  Rat
Tissue:  Brain
References:  25
Alcohol self administration and stress-induced relapse
Species:  Rat
Tissue:  Brain/Bed nucleus stria terminalis
References:  26
Physiological Consequences of Altering Gene Expression Click here for help
Mice with RXFP3 knockout display dark phase hypoactivity on voluntary home-cage running wheels
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  10
Mice with RXFP3 knockout display decrease in anxiety like behaviour in elevated plus maze and dark/light box paradigms
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  10
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Hypercholesterolemia
Disease Ontology: DOID:2487
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The SNP rs7702361 is associated with hypercholesterolemia and obesity
SNP accession: 
References:  24
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The SNP rs42868 is associated with hypercholesterolemia and diabetes
SNP accession: 
References:  24

References

Show »

1. Alvarez-Jaimes L, Sutton SW, Nepomuceno D, Motley ST, Cik M, Stocking E, Shoblock J, Bonaventure P. (2012) In vitro pharmacological characterization of RXFP3 allosterism: an example of probe dependency. PLoS ONE, 7 (2): e30792. [PMID:22347403]

2. Banerjee A, Shen PJ, Ma S, Bathgate RA, Gundlach AL. (2010) Swim stress excitation of nucleus incertus and rapid induction of relaxin-3 expression via CRF1 activation. Neuropharmacology, 58 (1): 145-55. [PMID:19560474]

3. Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. (2013) Relaxin family peptides and their receptors. Physiol Rev, 93 (1): 405-80. [PMID:23303914]

4. Calvez J, de Ávila C, Matte LO, Guèvremont G, Gundlach AL, Timofeeva E. (2016) Role of relaxin-3/RXFP3 system in stress-induced binge-like eating in female rats. Neuropharmacology, 102: 207-15. [PMID:26607097]

5. Calvez J, Lenglos C, de Ávila C, Guèvremont G, Timofeeva E. (2015) Differential effects of central administration of relaxin-3 on food intake and hypothalamic neuropeptides in male and female rats. Genes Brain Behav, 14 (7): 550-63. [PMID:26234422]

6. Chen J, Kuei C, Sutton SW, Bonaventure P, Nepomuceno D, Eriste E, Sillard R, Lovenberg TW, Liu C. (2005) Pharmacological characterization of relaxin-3/INSL7 receptors GPCR135 and GPCR142 from different mammalian species. J Pharmacol Exp Ther, 312 (1): 83-95. [PMID:15367576]

7. DeChristopher B, Park SH, Vong L, Bamford D, Cho HH, Duvadie R, Fedolak A, Hogan C, Honda T, Pandey P et al.. (2019) Discovery of a small molecule RXFP3/4 agonist that increases food intake in rats upon acute central administration. Bioorg Med Chem Lett, 29 (8): 991-994. [PMID:30824200]

8. Haugaard-Kedström LM, Shabanpoor F, Hossain MA, Clark RJ, Ryan PJ, Craik DJ, Gundlach AL, Wade JD, Bathgate RA, Rosengren KJ. (2011) Design, synthesis, and characterization of a single-chain peptide antagonist for the relaxin-3 receptor RXFP3. J Am Chem Soc, 133 (13): 4965-74. [PMID:21384867]

9. Haugaard-Kedström LM, Wong LL, Bathgate RA, Rosengren KJ. (2015) Synthesis and pharmacological characterization of a europium-labelled single-chain antagonist for binding studies of the relaxin-3 receptor RXFP3. Amino Acids, 47 (6): 1267-71. [PMID:25792111]

10. Hosken IT, Sutton SW, Smith CM, Gundlach AL. (2015) Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: Implications for role of relaxin-3/RXFP3 signalling in sustained arousal. Behav Brain Res, 278: 167-75. [PMID:25257104]

11. Hossain MA, Rosengren KJ, Haugaard-Jönsson LM, Zhang S, Layfield S, Ferraro T, Daly NL, Tregear GW, Wade JD, Bathgate RA. (2008) The A-chain of human relaxin family peptides has distinct roles in the binding and activation of the different relaxin family peptide receptors. J Biol Chem, 283 (25): 17287-97. [PMID:18434306]

12. Kocan M, Sarwar M, Hossain MA, Wade JD, Summers RJ. (2014) Signalling profiles of H3 relaxin, H2 relaxin and R3(BΔ23-27)R/I5 acting at the relaxin family peptide receptor 3 (RXFP3). Br J Pharmacol, 171 (11): 2827-41. [PMID:24641548]

13. Kuei C, Sutton S, Bonaventure P, Pudiak C, Shelton J, Zhu J, Nepomuceno D, Wu J, Chen J, Kamme F et al.. (2007) R3(BDelta23 27)R/I5 chimeric peptide, a selective antagonist for GPCR135 and GPCR142 over relaxin receptor LGR7: in vitro and in vivo characterization. J Biol Chem, 282 (35): 25425-35. [PMID:17606621]

14. Lee HS, Postan M, Song A, Clark RJ, Bathgate RAD, Haugaard-Kedström LM, Rosengren KJ. (2020) Development of Relaxin-3 Agonists and Antagonists Based on Grafted Disulfide-Stabilized Scaffolds. Front Chem, 8: 87. [PMID:32133341]

15. Lenglos C, Mitra A, Guèvremont G, Timofeeva E. (2013) Sex differences in the effects of chronic stress and food restriction on body weight gain and brain expression of CRF and relaxin-3 in rats. Genes Brain Behav, 12 (4): 370-87. [PMID:23425370]

16. Liu C, Chen J, Kuei C, Sutton S, Nepomuceno D, Bonaventure P, Lovenberg TW. (2005) Relaxin-3/insulin-like peptide 5 chimeric peptide, a selective ligand for G protein-coupled receptor (GPCR)135 and GPCR142 over leucine-rich repeat-containing G protein-coupled receptor 7. Mol Pharmacol, 67 (1): 231-40. [PMID:15465925]

17. Liu C, Eriste E, Sutton S, Chen J, Roland B, Kuei C, Farmer N, Jörnvall H, Sillard R, Lovenberg TW. (2003) Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. J Biol Chem, 278 (50): 50754-64. [PMID:14522968]

18. Liu C, Kuei C, Sutton S, Chen J, Bonaventure P, Wu J, Nepomuceno D, Kamme F, Tran DT, Zhu J et al.. (2005) INSL5 is a high affinity specific agonist for GPCR142 (GPR100). J Biol Chem, 280 (1): 292-300. [PMID:15525639]

19. Ma S, Bonaventure P, Ferraro T, Shen PJ, Burazin TC, Bathgate RA, Liu C, Tregear GW, Sutton SW, Gundlach AL. (2007) Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience, 144 (1): 165-90. [PMID:17071007]

20. Ma S, Olucha-Bordonau FE, Hossain MA, Lin F, Kuei C, Liu C, Wade JD, Sutton SW, Nuñez A, Gundlach AL. (2009) Modulation of hippocampal theta oscillations and spatial memory by relaxin-3 neurons of the nucleus incertus. Learn Mem, 16 (11): 730-42. [PMID:19880588]

21. Matsumoto M, Kamohara M, Sugimoto T, Hidaka K, Takasaki J, Saito T, Okada M, Yamaguchi T, Furuichi K. (2000) The novel G-protein coupled receptor SALPR shares sequence similarity with somatostatin and angiotensin receptors. Gene, 248 (1-2): 183-9. [PMID:10806363]

22. McGowan BM, Stanley SA, Smith KL, Minnion JS, Donovan J, Thompson EL, Patterson M, Connolly MM, Abbott CR, Small CJ et al.. (2006) Effects of acute and chronic relaxin-3 on food intake and energy expenditure in rats. Regul Pept, 136 (1-3): 72-7. [PMID:16764952]

23. McGowan BM, Stanley SA, Smith KL, White NE, Connolly MM, Thompson EL, Gardiner JV, Murphy KG, Ghatei MA, Bloom SR. (2005) Central relaxin-3 administration causes hyperphagia in male Wistar rats. Endocrinology, 146 (8): 3295-300. [PMID:15845619]

24. Munro J, Skrobot O, Sanyoura M, Kay V, Susce MT, Glaser PE, de Leon J, Blakemore AI, Arranz MJ. (2012) Relaxin polymorphisms associated with metabolic disturbance in patients treated with antipsychotics. J Psychopharmacol (Oxford), 26 (3): 374-9. [PMID:21693553]

25. Ryan PJ, Büchler E, Shabanpoor F, Hossain MA, Wade JD, Lawrence AJ, Gundlach AL. (2013) Central relaxin-3 receptor (RXFP3) activation decreases anxiety- and depressive-like behaviours in the rat. Behav Brain Res, 244: 142-51. [PMID:23380674]

26. Ryan PJ, Kastman HE, Krstew EV, Rosengren KJ, Hossain MA, Churilov L, Wade JD, Gundlach AL, Lawrence AJ. (2013) Relaxin-3/RXFP3 system regulates alcohol-seeking. Proc Natl Acad Sci USA, 110 (51): 20789-94. [PMID:24297931]

27. Shabanpoor F, Akhter Hossain M, Ryan PJ, Belgi A, Layfield S, Kocan M, Zhang S, Samuel CS, Gundlach AL, Bathgate RA et al.. (2012) Minimization of human relaxin-3 leading to high-affinity analogues with increased selectivity for relaxin-family peptide 3 receptor (RXFP3) over RXFP1. J Med Chem, 55 (4): 1671-81. [PMID:22257012]

28. Smith CM, Chua BE, Zhang C, Walker AW, Haidar M, Hawkes D, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ et al.. (2014) Central injection of relaxin-3 receptor (RXFP3) antagonist peptides reduces motivated food seeking and consumption in C57BL/6J mice. Behav Brain Res, 268: 117-26. [PMID:24681162]

29. Smith CM, Ryan PJ, Hosken IT, Ma S, Gundlach AL. (2011) Relaxin-3 systems in the brain--the first 10 years. J Chem Neuroanat, 42 (4): 262-75. [PMID:21693186]

30. Smith CM, Shen PJ, Banerjee A, Bonaventure P, Ma S, Bathgate RA, Sutton SW, Gundlach AL. (2010) Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J Comp Neurol, 518 (19): 4016-45. [PMID:20737598]

31. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF et al.. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA, 99 (26): 16899-903. [PMID:12477932]

32. Sutton SW, Bonaventure P, Kuei C, Roland B, Chen J, Nepomuceno D, Lovenberg TW, Liu C. (2004) Distribution of G-protein-coupled receptor (GPCR)135 binding sites and receptor mRNA in the rat brain suggests a role for relaxin-3 in neuroendocrine and sensory processing. Neuroendocrinology, 80 (5): 298-307. [PMID:15677880]

33. Tanaka M, Iijima N, Miyamoto Y, Fukusumi S, Itoh Y, Ozawa H, Ibata Y. (2005) Neurons expressing relaxin 3/INSL 7 in the nucleus incertus respond to stress. Eur J Neurosci, 21 (6): 1659-70. [PMID:15845093]

34. van der Westhuizen ET, Christopoulos A, Sexton PM, Wade JD, Summers RJ. (2010) H2 relaxin is a biased ligand relative to H3 relaxin at the relaxin family peptide receptor 3 (RXFP3). Mol Pharmacol, 77 (5): 759-72. [PMID:20159943]

35. Van der Westhuizen ET, Sexton PM, Bathgate RA, Summers RJ. (2005) Responses of GPCR135 to human gene 3 (H3) relaxin in CHO-K1 cells determined by microphysiometry. Ann N Y Acad Sci, 1041: 332-7. [PMID:15956730]

36. van der Westhuizen ET, Werry TD, Sexton PM, Summers RJ. (2007) The relaxin family peptide receptor 3 activates extracellular signal-regulated kinase 1/2 through a protein kinase C-dependent mechanism. Mol Pharmacol, 71 (6): 1618-29. [PMID:17351017]

37. Wang JH, Hu MJ, Zhang L, Shao XX, Lv CH, Liu YL, Xu ZG, Guo ZY. (2018) Exploring receptor selectivity of the chimeric relaxin family peptide R3/I5 by incorporating unnatural amino acids. Biochimie, 154: 77-85. [PMID:30102931]

38. Zhu J, Kuei C, Sutton S, Kamme F, Yu J, Bonaventure P, Atack J, Lovenberg TW, Liu C. (2008) Identification of the domains in RXFP4 (GPCR142) responsible for the high affinity binding and agonistic activity of INSL5 at RXFP4 compared to RXFP3 (GPCR135). Eur J Pharmacol, 590 (1-3): 43-52. [PMID:18582868]

Contributors

Show »

How to cite this page