Top ▲

V1B receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 367

Nomenclature: V1B receptor

Family: Vasopressin and oxytocin receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 424 1q32.1 AVPR1B arginine vasopressin receptor 1B 11,39,49
Mouse 7 421 1 E4 Avpr1b arginine vasopressin receptor 1B 62
Rat 7 425 13q13 Avpr1b arginine vasopressin receptor 1B 29,40
Previous and Unofficial Names Click here for help
Antidiuretic hormone receptor 1b | AVPR3 | V3 [39] | V1bR | Vasopressin V3 receptor | VPR3 | vasopressin V1b receptor | V3/V1b pituitary vasopressin receptor
Database Links Click here for help
Specialist databases
GPCRdb v1br_human (Hs), v1br_mouse (Mm), v1br_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
oxytocin {Sp: Human, Mouse, Rat}
vasopressin {Sp: Human, Mouse, Rat}
Comments: Vasopressin is the principal endogenous agonist
Potency order of endogenous ligands (Human)
vasopressin (AVP, P01185) > oxytocin (OXT, P01178)  [1,8,13,22,33,41,51,55]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]AVP (human, mouse, rat) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 8.6 – 9.6 pKd 13,41,50-51,55
pKd 8.6 – 9.6 (Kd 2.51x10-9 – 2.5x10-10 M) [13,41,50-51,55]
[3H]d[Cha4]AVP Peptide Ligand is labelled Ligand is radioactive Hs Full agonist 8.9 pKd 13
pKd 8.9 [13]
[3H]OT (human, mouse, rat) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 5.8 pKd 55
pKd 5.8 [55]
vasopressin {Sp: Human, Mouse, Rat} Peptide Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Rn Full agonist 9.9 pKi 41
pKi 9.9 [41]
d[Leu4]LVP Peptide Hs Full agonist 9.8 pKi 37
pKi 9.8 [37]
d[Leu4,Dap8]VP Peptide Click here for species-specific activity table Rn Full agonist 9.4 pKi 37
pKi 9.4 [37]
d[Cha4]AVP Peptide Click here for species-specific activity table Hs Full agonist 9.0 – 9.7 pKi 13,22
pKi 9.0 – 9.7 [13,22]
d[D-Phe2]AVP Peptide Click here for species-specific activity table Hs Full agonist 9.3 pKi 13
pKi 9.3 [13]
d[Leu4]AVP Peptide Click here for species-specific activity table Hs Full agonist 9.3 pKi 8
pKi 9.3 [8]
vasopressin {Sp: Human, Mouse, Rat} Peptide Approved drug Primary target of this compound Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 9.0 – 9.5 pKi 1,8,13,22,33,41,50-51,55,67
pKi 9.0 – 9.5 [1,8,13,22,33,41,50-51,55,67]
d[Cha4,Dab8]VP Peptide Click here for species-specific activity table Rn Full agonist 9.1 pKi 37
pKi 9.1 [37]
[Val4]AVP Peptide Click here for species-specific activity table Hs Full agonist 9.0 pKi 13
pKi 9.0 [13]
dAVP Peptide Click here for species-specific activity table Hs Full agonist 8.2 – 9.4 pKi 8,13,51
pKi 8.2 – 9.4 [8,13,51]
d[Cha4]LVP Peptide Click here for species-specific activity table Rn Full agonist 8.7 pKi 37
pKi 8.7 [37]
LVP {Sp: Pig} Peptide Click here for species-specific activity table Hs Full agonist 8.5 pKi 55
pKi 8.5 [55]
dVDAVP Peptide Click here for species-specific activity table Hs Full agonist 7.6 – 9.0 pKi 13,55
pKi 7.6 – 9.0 [13,55]
arginine vasotocin Peptide Click here for species-specific activity table Hs Full agonist 8.0 pKi 55
pKi 8.0 [55]
desmopressin Peptide Approved drug Click here for species-specific activity table Rn Partial agonist 8.0 pKi 41
pKi 8.0 [41]
desmopressin Peptide Approved drug Click here for species-specific activity table Hs Full agonist 7.7 – 8.2 pKi 8,33,41,55
pKi 7.7 – 8.2 [8,33,41,55]
d[D-Pal2]AVP Peptide Click here for species-specific activity table Hs Full agonist 7.3 – 7.9 pKi 13,43,55
pKi 7.3 – 7.9 (Ki 5x10-8 – 1.38x10-8 M) [13,43,55]
oxytocin {Sp: Human, Mouse, Rat} Peptide Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 5.7 – 7.0 pKi 22,41,50-51,55
pKi 5.7 – 7.0 [22,41,50-51,55]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
nelivaptan Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.4 – 9.3 pKi 22,46
pKi 8.4 – 9.3 [22,46]
OH-LVA Peptide Click here for species-specific activity table Hs Antagonist 8.7 pKi 55
pKi 8.7 [55]
d[Pen1,Tyr(Me)2]AVP Peptide Click here for species-specific activity table Hs Antagonist 8.2 pKi 51
pKi 8.2 [51]
[Phaa1,D-Tyr(Me)2,Arg6,Tyr-NH29]AVP Peptide Click here for species-specific activity table Hs Antagonist 8.0 pKi 55
pKi 8.0 [55]
[Phaa1,D-Tyr2,Val4,Arg6,Arg-NH29]AVP Peptide Click here for species-specific activity table Hs Antagonist 7.8 pKi 55
pKi 7.8 [55]
[Phaa1,D-Tyr(Et)2,Lys6,des-Gly9]AVP Peptide Click here for species-specific activity table Hs Antagonist 7.5 pKi 55
pKi 7.5 [55]
relcovaptan Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.3 – 7.3 pKi 22,51,55,57
pKi 6.3 – 7.3 [22,51,55,57]
d(CH2)5[Tyr(Me)2]AVP Peptide Click here for species-specific activity table Hs Antagonist 6.4 – 7.0 pKi 41,50-51,55
pKi 6.4 – 7.0 [41,50-51,55]
[tBaa1,D-Tyr(Et)2,Val4,Lys6,Arg-NH28,des-Gly9]AVP Peptide Click here for species-specific activity table Hs Antagonist 6.4 pKi 55
pKi 6.4 [55]
atosiban Peptide Approved drug Click here for species-specific activity table Hs Antagonist 6.2 – 6.6 pKi 9,45
pKi 6.2 – 6.6 [9,45]
d(CH2)5[D-Ile2,Ile4,Ala-NH2]AVP Peptide Click here for species-specific activity table Hs Antagonist 6.3 pKi 55
pKi 6.3 [55]
d(CH2)5[D-Ile2,Ile4,Ala-NH29]AVP Peptide Click here for species-specific activity table Hs Antagonist 6.2 pKi 55
pKi 6.2 [55]
[Phaa1,D-Tyr(Et)2,Val4,Lys6,Tyr-NH28,des-Gly9]AVP Peptide Click here for species-specific activity table Hs Antagonist 6.1 pKi 55
pKi 6.1 [55]
d(CH2)5[Tyr(Et)2,Val4,des-Gly9]AVP Peptide Click here for species-specific activity table Hs Antagonist 5.7 pKi 51
pKi 5.7 [51]
d(CH2)5[Tyr(Me)2,Thr4,Phe(3I,4N3)-NH29]OVT Peptide Click here for species-specific activity table Hs Antagonist 5.2 pKi 6
pKi 5.2 [6]
d(CH2)5[Tyr(Me)2,Thr4,Tyr-NH29]OVT Peptide Click here for species-specific activity table Hs Antagonist 5.0 pKi 55
pKi 5.0 [55]
mozavaptan Small molecule or natural product Click here for species-specific activity table Hs Antagonist 4.8 pKi 55
pKi 4.8 [55]
YM 471 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 4.8 pKi 57
pKi 4.8 [57]
YM 218 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 4.6 pKi 53
pKi 4.6 [53]
d(CH2)5[Tyr(Me)2,Thr4]OVT Peptide Click here for species-specific activity table Hs Antagonist 4.5 pKi 55
pKi 4.5 [55]
satavaptan Small molecule or natural product Click here for species-specific activity table Hs Antagonist 4.3 pKi 57
pKi 4.3 [57]
[3H]nelivaptan Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist - -
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  44
Tissue Distribution Click here for help
Pancreas: islets of Langerhans (α-glucagon, β-insulin and δ-somatostatin cells).
Species:  Human
Technique:  Immunohistochemistry.
References:  15
Pancreas.
Species:  Human
Technique:  RT-PCR.
References:  15
Brain: CA2 region of the hippocampus
Species:  Human
Technique:  In situ hybridisation and RT-PCR.
References:  69
Adrenal medulla.
Species:  Human
Technique:  RT-PCR.
References:  19
Pituitary
Species:  Human
Technique:  Northern blotting.
References:  49
Pituitary, kidney.
Species:  Human
Technique:  RT-PCR.
References:  11
Pituitary, brain (fibre projections mainly in CA2 and other hippocampal strata)
Species:  Mouse
Technique:  Receptor autoradiography
References:  30
Pancreatic islet cells.
Species:  Mouse
Technique:  RT-PCR.
References:  35
Pituitary > hypothalamus, brain, adrenal, pancreas, colon.
Species:  Mouse
Technique:  RT-PCR.
References:  62
Brain: CA2 region of the hippocampus
Species:  Mouse
Technique:  In situ hybridisation and RT-PCR.
References:  69
Brain: olfactory bulb (mitral cell layer), suprachiasmatic nucleus, piriform cortex, CA2, dorsomedial hypothalamic nucleus (compact region), tenia tecta, dorsal raphe, supraoptic nucleus, CA3, pontine nucleus, tuberomammillary nucleus > lateral reticular nucleus, substantia nigra pars compacta, CA1, dorsal motor nucleus of vagus, entorhinal cortex, agranular insular cortex, red nucleus (magnocellular), trigeminal nucleus (oral), ventral tegmental area, posteromedial cortical amgydala nucleus, amgydala-piriform transition, facial nucleus > inferior olivary nucleus, lateral hypothalamus, ventrolateral orbital cortex, periventricular hypothalamic area, lateral orbital cortex, locus coeruleus, trigeminal nucleus (interpola), olfactory bulb (external plexiform layer), dorsal premammillary nucleus, posterolateral cortical amgydala nucleus, gigantocellular reticular nucleus.
Species:  Rat
Technique:  in situ hybridisation.
References:  58
Pituitary, brain (fibre projections mainly in CA2 and other hippocampal strata)
Species:  Rat
Technique:  Receptor autoradiography
References:  30
Brain: Olfactory system (olfactory tubercle > piriform cortex, nucleus of the lateral olfactory tract), cerebral cortex (cingulate cortex, frontal cortex > parietal cortex), basal forebrain (bed nucleus of the stria terminalis, diagonal band of Broca, fundud striati, organum vasculosum of the lamina terminalis), basal ganglia (caudate putamen > nucleus accumbens), lateral septum (taenia tecta), hippocampal formation (fields of Ammon's horn > dentate gyrus), amygdala (anterior cortical amygdaloid nucleus, posteromedial cortical amygdaloid nucleus), subfornical organ, medial habenula, habenular commissure, thalamus (ventrolateral nucleus, ventral posterolateral nucleus, ventral posteromedial nucleus, paraventricular nucleus, posterior nuclear group, periventricular nucleus), hypothalamus (mediam eminence > premammilary nuclei, mammilary nuclei > medial preoptic area, periventricular nucleus, tuber cinerum, medial forebrain bundle), pons and medulla (ventral cochlea nucleus, nucleus trapezoid body), cerebellum (granule cell layers, white matter).
Species:  Rat
Technique:  Immunohistochemistry.
References:  23
Pituitary.
Species:  Rat
Technique:  Radioligand binding.
References:  2,18,25,30
Brain, pituitary, kidney, thymus, heart, lung, spleen, uterus, breast.
Species:  Rat
Technique:  RT-PCR, Northern blotting and in situ hybridisation.
References:  29
Adrenal medulla.
Species:  Rat
Technique:  RT-PCR.
References:  20,56
Brain: predominantly CA2 region of the hippocampus; levels unaffected by restraint stress or adrenalectomy.
Species:  Rat
Technique:  In situ hybridisation and RT-PCR.
References:  69
Pituitary.
Species:  Rat
Technique:  Northern Blotting and in situ hybridisation.
References:  38
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of Ca2+ levels in CHO cells transfected with the human V1B receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of Ca2+ mobilisation.
References:  51
Measurement of IP accumulation in COS cells transfected with the human V1B receptor.
Species:  Human
Tissue:  COS cells.
Response measured:  Stimulation of IP accumulation.
References:  11
Measurement of IP accumulation in CHO cells transfected with the mouse V1B receptor.
Species:  Mouse
Tissue:  CHO cells.
Response measured:  Stimulation of IP accumulation.
References:  62
Measurement of IP accumulation in CHO cells transfected with the rat V1B receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Stimulation of IP accumulation.
References:  29
Measurement of IP accumulation in CHO cells transfected with the human V1B receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of IP accumulation.
References:  55
Measurement of MAP kinase activation in CHO cells transfected with the human V1B receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of MAP kinase activation.
References:  52
Measurement of chloride current in Xenopus oocytes transfected with the human V1B receptor.
Species:  Human
Tissue:  Xenopus oocytes.
Response measured:  Activation of Ca2+-dependent chloride current.
References:  49
Measurement of Ca2+ levels in rat adrenal glomerulosa cell primary cultures endogenously expressing the V1B receptor.
Species:  Rat
Tissue:  Adrenal glomerulosa cell primary cultures.
Response measured:  Stimulation of Ca2+ mobilisation.
References:  20
Measurement of arachidonic acid release in CHO cells transfected with the human V1B receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of arachidonic acid release.
References:  55
Measurement of [3H]thymidine incorporation in CHO cells transfected with the human V1B receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of thymidine incorporation (observed with medium density V1B expression, not with high density expression).
References:  52,55
Measurement of cAMP accumulation in CHO cells transfected with the human V1B receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of cAMP accumulation (observed only with high density V1B expression).
References:  55
Measurement of MAP kinase activation in CHO cells transfected with the rat V1B receptor.
Species:  Rat
Tissue:  CHO cells
Response measured:  Stimulation of MAP kinase activation
References:  30
Physiological Functions Click here for help
Release of adrenocorticotropin.
Species:  Rat
Tissue:  Anterior pituitary cells.
References:  42,59
Potentiation of CRF-induced secretion of adrenocorticotropin.
Species:  Rat
Tissue:  Anterior pituitary cells.
References:  3-4,59
Stimulation of insulin release.
Species:  Mouse
Tissue:  Pancreatic islet cells.
References:  35
Stimulation of insulin release.
Species:  Rat
Tissue:  Perfused pancreas.
References:  27
Stimulation of glucagon secretion.
Species:  Mouse
Tissue:  Pancreatic islets.
References:  17
Regulation of catecholamine secretion.
Species:  Rat
Tissue:  Adrenal medullary primary cultures.
References:  20
Regulation of the hypothalamic-pituitary-adrenal axis.
Species:  Mouse
Tissue:  In vivo.
References:  54
Regulation of stress-induced catecholamine release.
Species:  Mouse
Tissue:  In vivo.
References:  24
Physiological Consequences of Altering Gene Expression Click here for help
V1B receptor knockout mice exhibit reduced adrenocorticotropin secretion to acute insulin-induced hypoglycaemia and to repeated restraint stress compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  31
V1B receptor knockout mice exhibit reduced aggression compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  64
V1B receptor knockout mice exhibit reduced basal adrenocorticotropin and corticosterone levels, an impaired rise in adrenocorticotropin in response to AVP and no difference in CRF-induced adrenocorticotropin release compared to wild-type mice.
Under stressed conditions, adrenocorticotropin release is supressed in V1B receptor knockout mice compared to wild-type.
Primary cultured pituitary cells from V1B knockout mice exhibit reduced adrenocorticotropin release in response to AVP.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  54
V1B receptor knockout mice exhibit reduced levels of prepulse inhibition of the startle reflex and reduced acoustic startle response.
They also have reduced basal levels of extracellular dopamine in the medial frontal cortex.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  14
V1B receptor knockout mice exhibit altered stres-induced catecholamine release compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  24
V1B receptor knockout mice do exhibit OT- and AVP-induced glucagon secretion as seen in wild-type mice due to compensation by the OT receptor.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  17
V1B receptor knockout mice exhibit normal behavioural responses to acute, intoxicating doses of ethanol compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  7
V1B receptor knockout mice exhibit reduced adrenocorticotropin and corticosterone levels in response to lipopolysaccharide challenge and ethanol administration compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  32
V1B receptor knockout mice exhibit increased water intake and urine volume, and decreased body temperature and oxygen consumption compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  10
V1B receptor knockout mice exhibit a reduced attack component of aggressive behaviour compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  63
V1B receptor knockout mice exhibit enhanced sensitivity to insulin compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  16
V1B receptor knockout mice exhibit an impaired Bruce effect (process by which exposure to chemosensory cues from an unfamiliar male terminates pregnancy in a recently mated female) compared to wild-type (and vasopressin V1A receptor knockout) mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  65
V1B receptor knockout mice exhibit reduced ACTH (but not necessarily corticosterone) responses to acute and repeated restraint, forced swimming and novel environment stress.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embyronic stem cells
References:  47
V1B receptor knockout mice exhibit impaired AVP-potentiated, CRF-induced insulin secretion.
Species:  Mouse
Tissue:  Isolated pancreatic β-islet cells
Technique:  Gene targeting in embryonic stem cells
References:  34
V1B receptor knockout mice have reduced ACTH and corticosterone responses to antidepressant administration.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  48
V1B receptor and V1A receptor double knockout mice exhibit altered circadian rhythm behaviour, clock gene expression, and body temperature.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  66
V1B receptor knockout mice exhibit reduced aggression; behaviour restored by intra-hippocampal CA2 injection of a lentiviral V1B receptor construct.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells; lentiviral-based V1B receptor functional rescue
References:  36
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Avpr1btm1Wsy Avpr1btm1Wsy/Avpr1btm1Wsy
involves: 129S4/SvJae * C57BL/6
MGI:1347010  MP:0001360 abnormal social investigation PMID: 12399951 
Avpr1btm1Wsy Avpr1btm1Wsy/Avpr1btm1Wsy
involves: 129S4/SvJae * C57BL/6
MGI:1347010  MP:0005656 decreased aggression PMID: 12399951 
Avpr1btm1Gzt Avpr1btm1Gzt/Avpr1btm1Gzt
involves: 129/Sv * C57BL/6J
MGI:1347010  MP:0002664 decreased circulating adrenocorticotropin level PMID: 14722621 
Avpr1btm1Gzt Avpr1btm1Gzt/Avpr1btm1Gzt
involves: 129/Sv * C57BL/6J
MGI:1347010  MP:0002665 decreased circulating corticosterone level PMID: 14722621 
Avpr1btm1Wsy Avpr1btm1Wsy/Avpr1btm1Wsy
involves: 129S4/SvJae * C57BL/6
MGI:1347010  MP:0002781 increased circulating testosterone level PMID: 12399951 
Avpr1btm1Dgen Avpr1btm1Dgen/Avpr1btm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:1347010  MP:0002906 increased susceptibility to pharmacologically induced seizures
Avpr1btm1Gzt Avpr1btm1Gzt/Avpr1btm1Gzt
involves: 129/Sv * C57BL/6J
MGI:1347010  MP:0002768 small adrenal glands PMID: 14722621 
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A SNP in the exonic region of the V1B receptor gene may contribute (with CRFR1 polymorphisms) to the susceptibility to panic disorder.
Amino acid change:  R364H
SNP accession: 
References:  26
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A SNP in the V1B receptor gene may be associated with the vulnerability to attention deficit hyperactivity disorder.
SNP accession: 
References:  61
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A SNP in the V1B receptor gene may alter susceptibility to bipolar disorder with psychotic features.
Nucleotide change:  C>T
SNP accession: 
References:  28
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A SNP in the V1B receptor gene may be associated with mood and anxiety outcomes in suicidal attempts.
Amino acid change:  G191R
SNP accession: 
References:  5
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A SNP in the V1B receptor gene may be associated with childhood-onset mood disorders.
Amino acid change:  K65N
SNP accession: 
References:  12
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A SNP in the V1B receptor gene may contribute to protection against recurrent major depression.
References:  60
General Comments
AVP released in the portal blood acts as a potent secretagogue of adrenocorticotropin (ACTH) through its action on the V1B receptor. This receptor mediates the release of ACTH and beta-endorphin from the anterior pituitary through the mobilisation of intracellular calcium by phosphatidyl inositol hydrolysis [18]. The V1B receptor heterodimerises with the corticotropin-releasing factor type 1 receptor in vitro [68]. The presence of the V1B receptor has also been reported in other organs such as the brain, the adrenals, and the pancreas [29]. A potent, selective, and orally active V1B receptor antagonist has been recently described. It has antidepressant- and anxiolytic-like properties [21].

References

Show »

1. Akerlund M, Bossmar T, Brouard R, Kostrzewska A, Laudanski T, Lemancewicz A, Serradeil-Le Gal C, Steinwall M. (1999) Receptor binding of oxytocin and vasopressin antagonists and inhibitory effects on isolated myometrium from preterm and term pregnant women. Br J Obstet Gynaecol, 106 (10): 1047-53. [PMID:10519430]

2. Antoni FA. (1984) Novel ligand specificity of pituitary vasopressin receptors in the rat. Neuroendocrinology, 39: 186-188. [PMID:6089020]

3. Antoni FA, Holmes MC, Makara GB, Kárteszi M, László FA. (1984) Evidence that the effects of arginine-8-vasopressin (AVP) on pituitary corticotropin (ACTH) release are mediated by a novel type of receptor. Peptides, 5: 519-522. [PMID:6089144]

4. Baertschi AJ, Friedli M. (1985) A novel type of vasopressin receptor on anterior pituitary corticotrophs?. Endocrinology, 116 (2): 499-502. [PMID:2981663]

5. Ben-Efraim YJ, Wasserman D, Wasserman J, Sokolowski M. (2013) Family-based study of AVPR1B association and interaction with stressful life events on depression and anxiety in suicide attempts. Neuropsychopharmacology, 38 (8): 1504-11. [PMID:23422793]

6. Breton C, Chellil H, Kabbaj-Benmansour M, Carnazzi E, Seyer R, Phalipou S, Morin D, Durroux T, Zingg H, Barberis C et al.. (2001) Direct identification of human oxytocin receptor-binding domains using a photoactivatable cyclic peptide antagonist: comparison with the human V1a vasopressin receptor. J Biol Chem, 276 (29): 26931-41. [PMID:11337500]

7. Caldwell HK, Stewart J, Wiedholz LM, Millstein RA, Iacangelo A, Holmes A, Young 3rd WS, Wersinger SR. (2006) The acute intoxicating effects of ethanol are not dependent on the vasopressin 1a or 1b receptors. Neuropeptides, 40 (5): 325-37. [PMID:17049983]

8. Cheng LL, Stoev S, Manning M, Derick S, Pena A, Mimoun MB, Guillon G. (2004) Design of potent and selective agonists for the human vasopressin V1b receptor based on modifications of [deamino-cys1]arginine vasopressin at position 4. J Med Chem, 47: 2375-2388. [PMID:15084136]

9. Cirillo R, Gillio Tos E, Schwarz MK, Quattropani A, Scheer A, Missotten M, Dorbais J, Nichols A, Borrelli F, Giachetti C et al.. (2003) Pharmacology of (2S,4Z)-N-[(2S)-2-hydroxy-2-phenylethyl]-4-(methoxyimino) -1-[(2'-methyl[1,1'-biphenyl]-4-yl)carbonyl]-2-pyrrolidinecarboxamide, a new potent and selective nonpeptide antagonist of the oxytocin receptor. J Pharmacol Exp Ther, 306 (1): 253-61. [PMID:12660315]

10. Daikoku R, Kunitake T, Kato K, Tanoue A, Tsujimoto G, Kannan H. (2007) Body water balance and body temperature in vasopressin V1b receptor knockout mice. Auton Neurosci, 136 (1-2): 58-62. [PMID:17512263]

11. de Keyzer Y, Auzan C, Lenne F, Beldjord C, Thibonnier M, Bertagna X, Clauser E. (1994) Cloning and characterization of the human V3 pituitary vasopressin receptor. FEBS Lett, 356 (2-3): 215-20. [PMID:7805841]

12. Dempster EL, Burcescu I, Wigg K, Kiss E, Baji I, Gadoros J, Tamás Z, Kennedy JL, Vetró A, Kovacs M et al.. (2007) Evidence of an association between the vasopressin V1b receptor gene (AVPR1B) and childhood-onset mood disorders. Arch Gen Psychiatry, 64 (10): 1189-95. [PMID:17909131]

13. Derick S, Cheng LL, Voirol MJ, Stoev S, Giacomini M, Wo NC, Szeto HH, Ben Mimoun M, Andres M, Gaillard RC et al.. (2002) [1-deamino-4-cyclohexylalanine] arginine vasopressin: a potent and specific agonist for vasopressin V1b receptors. Endocrinology, 143 (12): 4655-64. [PMID:12446593]

14. Egashira N, Tanoue A, Higashihara F, Fuchigami H, Sano K, Mishima K, Fukue Y, Nagai H, Takano Y, Tsujimoto G et al.. (2005) Disruption of the prepulse inhibition of the startle reflex in vasopressin V1b receptor knockout mice: reversal by antipsychotic drugs. Neuropsychopharmacology, 30 (11): 1996-2005. [PMID:15956991]

15. Folny V, Raufaste D, Lukovic L, Pouzet B, Rochard P, Pascal M, Serradeil-Le Gal C. (2003) Pancreatic vasopressin V1b receptors: characterization in In-R1-G9 cells and localization in human pancreas. Am J Physiol Endocrinol Metab, 285 (3): E566-76. [PMID:12736162]

16. Fujiwara Y, Hiroyama M, Sanbe A, Aoyagi T, Birumachi J, Yamauchi J, Tsujimoto G, Tanoue A. (2007) Insulin hypersensitivity in mice lacking the V1b vasopressin receptor. J Physiol (Lond.), 584 (Pt 1): 235-44. [PMID:17673508]

17. Fujiwara Y, Hiroyama M, Sanbe A, Yamauchi J, Tsujimoto G, Tanoue A. (2007) Mutual regulation of vasopressin- and oxytocin-induced glucagon secretion in V1b vasopressin receptor knockout mice. J Endocrinol, 192 (2): 361-9. [PMID:17283236]

18. Gaillard RC, Schoenenberg P, Favrod-Coune CA, Muller AF, Marie J, Bockaert J, Jard S. (1984) Properties of rat anterior pituitary vasopressin receptors: relation to adenylate cyclase and the effect of corticotropin-releasing factor. Proc Natl Acad Sci USA, 81 (9): 2907-11. [PMID:6326152]

19. Grazzini E, Breton C, Derick S, Andres M, Raufaste D, Rickwaert F, Boccara G, Colson P, Guérineau NC, Serradeil-le Gal C et al.. (1999) Vasopressin receptors in human adrenal medulla and pheochromocytoma. J Clin Endocrinol Metab, 84 (6): 2195-203. [PMID:10372731]

20. Grazzini E, Lodboerer AM, Perez-Martin A, Joubert D, Guillon G. (1996) Molecular and functional characterization of V1b vasopressin receptor in rat adrenal medulla. Endocrinology, 137: 3906-3914. [PMID:8756565]

21. Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P. (2002) Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci USA, 99 (9): 6370-5. [PMID:11959912]

22. Griffante C, Green A, Curcuruto O, Haslam CP, Dickinson BA, Arban R. (2005) Selectivity of d[Cha4]AVP and SSR149415 at human vasopressin and oxytocin receptors: evidence that SSR149415 is a mixed vasopressin V1b/oxytocin receptor antagonist. Br J Pharmacol, 146: 744-751. [PMID:16158071]

23. Hernando F, Schoots O, Lolait SJ, Burbach JP. (2001) Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology, 142 (4): 1659-68. [PMID:11250948]

24. Itoh S, Yamada S, Mori T, Miwa T, Tottori K, Uwahodo Y, Yamamura Y, Fukuda M, Yamamoto K, Tanoue A et al.. (2006) Attenuated stress-induced catecholamine release in mice lacking the vasopressin V1b receptor. Am J Physiol Endocrinol Metab, 291 (1): E147-51. [PMID:16464910]

25. Jard S, Gaillard RC, Guillon G, Marie J, Schoenenberg P, Muller AF, Manning M, Sawyer WH. (1986) Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol, 30 (2): 171-7. [PMID:3016500]

26. Keck ME, Kern N, Erhardt A, Unschuld PG, Ising M, Salyakina D, Müller MB, Knorr CC, Lieb R, Hohoff C et al.. (2008) Combined effects of exonic polymorphisms in CRHR1 and AVPR1B genes in a case/control study for panic disorder. Am J Med Genet B Neuropsychiatr Genet, 147B (7): 1196-204. [PMID:18384079]

27. Lee B, Yang C, Chen TH, al-Azawi N, Hsu WH. (1995) Effect of AVP and oxytocin on insulin release: involvement of V1b receptors. Am J Physiol, 269 (6 Pt 1): E1095-100. [PMID:8572202]

28. Leszczyńska-Rodziewicz A, Maciukiewicz M, Szczepankiewicz A, Pogłodziński A, Hauser J. (2013) Association between OPCRIT dimensions and polymorphisms of HPA axis genes in bipolar disorder. J Affect Disord, 151 (2): 744-7. [PMID:24012103]

29. Lolait SJ, O'Carroll AM, Mahan LC, Felder CC, Button DC, Young 3rd WS, Mezey E, Brownstein MJ. (1995) Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Natl Acad Sci USA, 92 (15): 6783-7. [PMID:7624319]

30. Lolait SJ, Roper JA, Hazell GGJ, Li Y, Thomson FJ, O’Carroll AM. (2016) Neuropeptide receptors. In Molecular Neuroendocrinology: From Genome to Physiology. Edited by Murphy D, Gainer H (John Wiley & Sons, Ltd.) 195-215.

31. Lolait SJ, Stewart LQ, Jessop DS, Young 3rd WS, O'Carroll AM. (2007) The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology, 148 (2): 849-56. [PMID:17122081]

32. Lolait SJ, Stewart LQ, Roper JA, Harrison G, Jessop DS, Young 3rd WS, O'Carroll AM. (2007) Attenuated stress response to acute lipopolysaccharide challenge and ethanol administration in vasopressin V1b receptor knockout mice. J Neuroendocrinol, 19 (7): 543-51. [PMID:17561882]

33. Nakamura S, Yamamura Y, Itoh S, Hirano T, Tsujimae K, Aoyama M, Kondo K, Ogawa H, Shinohara T, Kan K et al.. (2000) Characterization of a novel nonpeptide vasopressin V(2)-agonist, OPC-51803, in cells transfected human vasopressin receptor subtypes. Br J Pharmacol, 129 (8): 1700-6. [PMID:10780976]

34. O'Carroll AM, Howell GM, Roberts EM, Lolait SJ. (2008) Vasopressin potentiates corticotropin-releasing hormone-induced insulin release from mouse pancreatic beta-cells. J Endocrinol, 197 (2): 231-9. [PMID:18434353]

35. Oshikawa S, Tanoue A, Koshimizu TA, Kitagawa Y, Tsujimoto G. (2004) Vasopressin stimulates insulin release from islet cells through V1b receptors: a combined pharmacological/knockout approach. Mol Pharmacol, 65 (3): 623-9. [PMID:14978240]

36. Pagani JH, Zhao M, Cui Z, Avram SK, Caruana DA, Dudek SM, Young WS. (2015) Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol Psychiatry, 20 (4): 490-9. [PMID:24863146]

37. Pena A, Murat B, Trueba M, Ventura MA, Wo NC, Szeto HH, Cheng LL, Stoev S, Guillon G, Manning M. (2007) Design and synthesis of the first selective agonists for the rat vasopressin V(1b) receptor: based on modifications of deamino-[Cys1]arginine vasopressin at positions 4 and 8. J Med Chem, 50: 835-847. [PMID:17300166]

38. Rabadan-Diehl C, Lolait SJ, Aguilera G. (1995) Regulation of pituitary vasopressin V1b receptor mRNA during stress in the rat. J Neuroendocrinol, 7 (12): 903-10. [PMID:8745267]

39. René P, Lenne F, Ventura MA, Bertagna X, de Keyzer Y. (2000) Nucleotide sequence and structural organization of the human vasopressin pituitary receptor (V3) gene. Gene, 241 (1): 57-64. [PMID:10607899]

40. Saito M, Sugimoto T, Tahara A, Kawashima H. (1995) Molecular cloning and characterization of rat V1b vasopressin receptor: evidence for its expression in extra-pituitary tissues. Biochem Biophys Res Commun, 212 (3): 751-7. [PMID:7626108]

41. Saito M, Tahara A, Sugimoto T. (1997) 1-desamino-8-D-arginine vasopressin (DDAVP) as an agonist on V1b vasopressin receptor. Biochem Pharmacol, 53: 1711-1717. [PMID:9264324]

42. Schlosser SF, Almeida OF, Patchev VK, Yassouridis A, Elands J. (1994) Oxytocin-stimulated release of adrenocorticotropin from the rat pituitary is mediated by arginine vasopressin receptors of the V1b type. Endocrinology, 135 (5): 2058-63. [PMID:7956927]

43. Schwartz J, Derdowska I, Sobocinska M, Kupryszewski G. (1991) A potent new synthetic analog of vasopressin with relative agonist specificity for the pituitary. Endocrinology, 129 (2): 1107-9. [PMID:1649739]

44. Schöneberg T, Kostenis E, Liu J, Gudermann T, Wess J. (1998) Molecular aspects of vasopressin receptor function. Adv Exp Med Biol, 449: 347-58. [PMID:10026824]

45. Serradeil-Le Gal C, Valette G, Foulon L, Germain G, Advenier C, Naline E, Bardou M, Martinolle J-P, Pouzet B, Raufaste D, Garcia C, Double-Cazenave E, Pauly M, Pascal M, Barbier A, Scatton B, Maffrand J-P, Le Fur G. (2004) SSR126768A (4-Chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)-benzamidine, hydrochloride): a new selective and orally active oxytocin receptor antagonist for the prevention of preterm labor. J Pharmacol Exp Therap, 309: 414-424. [PMID:14722330]

46. Serradeil-Le Gal C, Wagnon J, Simiand J, Griebel G, Lacour C, Guillon G, Barberis C, Brossard G, Soubrie P, Nisato D, Pascal M, Pruss R, Scatton B, Maffrand JP, Le Fur G. (2002) Characterization of (2S,4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidine carboxamide (SSR149415), a selective and orally active vasopressin V1b receptor antagonist. J Pharmacol Exp Ther, 300: 1122-1130. [PMID:11861823]

47. Stewart LQ, Roper JA, Young 3rd WS, O'Carroll AM, Lolait SJ. (2008) Pituitary-adrenal response to acute and repeated mild restraint, forced swim and change in environment stress in arginine vasopressin receptor 1b knockout mice. J Neuroendocrinol, 20 (5): 597-605. [PMID:18363802]

48. Stewart LQ, Roper JA, Young 3rd WS, O'Carroll AM, Lolait SJ. (2008) The role of the arginine vasopressin Avp1b receptor in the acute neuroendocrine action of antidepressants. Psychoneuroendocrinology, 33 (4): 405-15. [PMID:18243568]

49. Sugimoto T, Saito M, Mochizuki S, Watanabe Y, Hashimoto S, Kawashima H. (1994) Molecular cloning and functional expression of a cDNA encoding the human V1b vasopressin receptor. J Biol Chem, 269 (43): 27088-92. [PMID:7929452]

50. Tahara A, Saito M, Sugimoto T, Tomura Y, Wada K, Kusayama T, Tsukada J, Ishii N, Yatsu T, Uchida W et al.. (1998) Pharmacological characterization of YM087, a potent, nonpeptide human vasopressin V1A and V2 receptor antagonist. Naunyn Schmiedebergs Arch Pharmacol, 357 (1): 63-9. [PMID:9459574]

51. Tahara A, Saito M, Sugimoto T, Tomura Y, Wada K, Kusayama T, Tsukada J, Ishii N, Yatsu T, Uchida W et al.. (1998) Pharmacological characterization of the human vasopressin receptor subtypes stably expressed in Chinese hamster ovary cells. Br J Pharmacol, 125 (7): 1463-70. [PMID:9884074]

52. Tahara A, Saito M, Sugimoto T, Tomura Y, Wada K, Kusayama T, Tsukada J, Ishii N, Yatsu T, Uchida W et al.. (1999) AVP-induced mitogenic responses of Chinese hamster ovary cells expressing human V1A or V1B receptors. Pflugers Arch, 437 (2): 219-26. [PMID:9929562]

53. Tahara A, Tsukada J, Tomura Y, Kusayama T, Wada K, Ishii N, Taniguchi N, Suzuki T, Yatsu T, Uchida W et al.. (2005) Effects of YM218, a nonpeptide vasopressin V1A receptor-selective antagonist, on human vasopressin and oxytocin receptors. Pharmacol Res, 51 (3): 275-81. [PMID:15661579]

54. Tanoue A, Ito S, Honda K, Oshikawa S, Kitagawa Y, Koshimizu TA, Mori T, Tsujimoto G. (2004) The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. J Clin Invest, 113 (2): 302-9. [PMID:14722621]

55. Thibonnier M, Preston JA, Dulin N, Wilkins PL, Berti-Mattera LN, Mattera R. (1997) The human V3 pituitary vasopressin receptor: ligand binding profile and density-dependent signaling pathways. Endocrinology, 138 (10): 4109-22. [PMID:9322919]

56. Trejter M, Carraro G, Rucinski M, Hochol A, Rebuffat P, Nussdorfer GG, Malendowicz LK. (2005) Arginin-vasopressin regulates proliferative activity of the regenerating rat adrenal cortex. Int J Mol Med, 15: 993-997. [PMID:15870905]

57. Tsukada J, Tahara A, Tomura Y, Wada Ki, Kusayama T, Ishii N, Yatsu T, Uchida W, Taniguchi N, Tanaka A. (2001) Effects of YM471, a nonpeptide AVP V(1A) and V(2) receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells. Br J Pharmacol, 133 (5): 746-54. [PMID:11429400]

58. Vaccari C, Lolait SJ, Ostrowski NL. (1998) Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology, 139 (12): 5015-33. [PMID:9832441]

59. Vale W, Vaughan J, Smith M, Yamamoto G, Rivier J, Rivier C. (1983) Effects of synthetic ovine corticotropin-releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells. Endocrinology, 113 (3): 1121-31. [PMID:6307665]

60. van West D, Del-Favero J, Aulchenko Y, Oswald P, Souery D, Forsgren T, Sluijs S, Bel-Kacem S, Adolfsson R, Mendlewicz J et al.. (2004) A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression. Mol Psychiatry, 9 (3): 287-92. [PMID:15094789]

61. van West D, Del-Favero J, Deboutte D, Van Broeckhoven C, Claes S. (2009) Arginine vasopressin receptor gene-based single-nucleotide polymorphism analysis in attention deficit hyperactivity disorder. Psychiatr Genet, 19 (2): 102-3. [PMID:19668115]

62. Ventura MA, René P, de Keyzer Y, Bertagna X, Clauser E. (1999) Gene and cDNA cloning and characterization of the mouse V3/V1b pituitary vasopressin receptor. J Mol Endocrinol, 22 (3): 251-60. [PMID:10343284]

63. Wersinger SR, Caldwell HK, Christiansen M, Young 3rd WS. (2007) Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain Behav, 6 (7): 653-60. [PMID:17284170]

64. Wersinger SR, Ginns EI, O'Carroll AM, Lolait SJ, Young 3rd WS. (2002) Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry, 7 (9): 975-84. [PMID:12399951]

65. Wersinger SR, Temple JL, Caldwell HK, Young 3rd WS. (2008) Inactivation of the oxytocin and the vasopressin (Avp) 1b receptor genes, but not the Avp 1a receptor gene, differentially impairs the Bruce effect in laboratory mice (Mus musculus). Endocrinology, 149 (1): 116-21. [PMID:17947352]

66. Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y, Fustin JM, Yamazaki F, Mizuguchi N, Zhang J et al.. (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science, 342 (6154): 85-90. [PMID:24092737]

67. Yamamura Y, Nakamura S, Itoh S, Hirano T, Onogawa T, Yamashita T, Yamada Y, Tsujimae K, Aoyama M, Kotosai K et al.. (1998) OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats. J Pharmacol Exp Ther, 287 (3): 860-7. [PMID:9864265]

68. Young SF, Griffante C, Aguilera G. (2007) Dimerization between vasopressin V1b and corticotropin releasing hormone type 1 receptors. Cell Mol Neurobiol, 27 (4): 439-61. [PMID:17318384]

69. Young WS, Li J, Wersinger SR, Palkovits M. (2006) The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience, 143 (4): 1031-9. [PMID:17027167]

Contributors

Show »

How to cite this page