Top ▲
Gene and Protein Information | |||||||
Species | TM | P Loops | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 6 | 1 | 793 | 3q23 | TRPC1 | transient receptor potential cation channel subfamily C member 1 | 22 |
Mouse | 6 | 1 | 793 | 9 50.2 cM | Trpc1 | transient receptor potential cation channel, subfamily C, member 1 | |
Rat | 6 | 1 | 759 | 8q31 | Trpc1 | transient receptor potential cation channel, subfamily C, member 1 | 18 |
Previous and Unofficial Names |
TRP1 | short transient receptor potential channel 1 | transient receptor potential cation channel |
Database Links | |
Alphafold | P48995 (Hs), Q61056 (Mm), Q9QX01 (Rn) |
CATH/Gene3D | 1.25.40.20 |
ChEMBL Target | CHEMBL4296083 (Hs), CHEMBL4523661 (Hs), CHEMBL4523660 (Hs) |
Ensembl Gene | ENSG00000144935 (Hs), ENSMUSG00000032839 (Mm), ENSRNOG00000054902 (Rn) |
Entrez Gene | 7220 (Hs), 22063 (Mm), 89821 (Rn) |
Human Protein Atlas | ENSG00000144935 (Hs) |
KEGG Gene | hsa:7220 (Hs), mmu:22063 (Mm), rno:89821 (Rn) |
OMIM | 602343 (Hs) |
Pharos | P48995 (Hs) |
RefSeq Nucleotide | NM_003304 (Hs), NM_011643 (Mm), NM_053558 (Rn) |
RefSeq Protein | NP_003295 (Hs), NP_035773 (Mm), NP_446010 (Rn) |
UniProtKB | P48995 (Hs), Q61056 (Mm), Q9QX01 (Rn) |
Wikipedia | TRPC1 (Hs) |
Associated Proteins | ||||||||||||||||||||||||||||||||||||||||
|
|
|
Functional Characteristics | |
It is not yet clear that TRPC1 forms a homomer. It does form heteromers with TRPC4 and TRPC5 |
Ion Selectivity and Conductance | ||||||
|
Chemical activators (Human) |
NO-mediated cysteine S-nitrosylation |
Physical activators (Human) |
membrane stretch (likely direct) |
Download all structure-activity data for this target as a CSV file
Activator Comments | ||
The precise activation pathway of TRPC1 containing channels remains controversial, as do the interaction partners. There is evidence that TRPC1 is involved in store-operated calcium entry, via interactions with STIM1 (reviewed in [2]), yet other researchers see no effect [4]. Recent work suggests TRPC1 may form a channel on endoplasmic and/or sarcoplasmic reticulum membranes [1,3]. When complexed with TRPC4 or TRPC5, TRPC1 is activated as a result of stimulation of Gq signalling pathways. The precise mechanism is unclear. Low concentrations of La3+ or Gd3+ enhance TRPC1/4 or C1/5 currents. TRPC1 does not appear to be a mechanically sensitive channel [5]. |
Channel Blockers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Tissue Distribution | ||||||||
|
||||||||
|
Functional Assays | ||||||||||
|
||||||||||
|
Physiological Functions | ||||||||
|
||||||||
|
||||||||
|
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||||||||||||||
|
1. Alfonso S, Benito O, Alicia S, Angélica Z, Patricia G, Diana K, Vaca L, Luis V. (2008) Regulation of the cellular localization and function of human transient receptor potential channel 1 by other members of the TRPC family. Cell Calcium, 43 (4): 375-87. [PMID:17850866]
2. Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Bandyopadhyay B, Cheng KT. (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium, 42 (2): 213-23. [PMID:17350680]
3. Berbey C, Weiss N, Legrand C, Allard B. (2009) Transient receptor potential canonical type 1 (TRPC1) operates as a sarcoplasmic reticulum calcium leak channel in skeletal muscle. J Biol Chem, 284 (52): 36387-94. [PMID:19875453]
4. DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney Jr JW. (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol (Lond.), 587 (Pt 10): 2275-98. [PMID:19332491]
5. Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F et al.. (2008) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch, 455 (6): 1097-103. [PMID:17957383]
6. Hannan MA, Kabbani N, Paspalas CD, Levenson R. (2008) Interaction with dopamine D2 receptor enhances expression of transient receptor potential channel 1 at the cell surface. Biochim Biophys Acta, 1778 (4): 974-82. [PMID:18261457]
7. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF. (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol, 8 (9): 1003-10. [PMID:16906149]
8. Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ. (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature, 426 (6964): 285-91. [PMID:14614461]
9. Kobori T, Smith GD, Sandford R, Edwardson JM. (2009) The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2:2 stoichiometry and an alternating subunit arrangement. J Biol Chem, 284 (51): 35507-13. [PMID:19850920]
10. Kochukov MY, Balasubramanian A, Noel RC, Marrelli SP. (2013) Role of TRPC1 and TRPC3 channels in contraction and relaxation of mouse thoracic aorta. J Vasc Res, 50 (1): 11-20. [PMID:23095462]
11. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP. (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol, 7 (2): 179-85. [PMID:15665854]
12. Sabourin J, Lamiche C, Vandebrouck A, Magaud C, Rivet J, Cognard C, Bourmeyster N, Constantin B. (2009) Regulation of TRPC1 and TRPC4 cation channels requires an alpha1-syntrophin-dependent complex in skeletal mouse myotubes. J Biol Chem, 284 (52): 36248-61. [PMID:19812031]
13. Schindl R, Fritsch R, Jardin I, Frischauf I, Kahr H, Muik M, Riedl MC, Groschner K, Romanin C. (2012) Canonical transient receptor potential (TRPC) 1 acts as a negative regulator for vanilloid TRPV6-mediated Ca2+ influx. J Biol Chem, 287 (42): 35612-20. [PMID:22932896]
14. Singh BB, Liu X, Tang J, Zhu MX, Ambudkar IS. (2002) Calmodulin regulates Ca(2+)-dependent feedback inhibition of store-operated Ca(2+) influx by interaction with a site in the C terminus of TrpC1. Mol Cell, 9 (4): 739-50. [PMID:11983166]
15. Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE. (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron, 29 (3): 645-55. [PMID:11301024]
16. Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE. (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem, 278 (40): 39014-9. [PMID:12857742]
17. Sundivakkam PC, Kwiatek AM, Sharma TT, Minshall RD, Malik AB, Tiruppathi C. (2009) Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. Am J Physiol, Cell Physiol, 296 (3): C403-13. [PMID:19052258]
18. Wang W, O'Connell B, Dykeman R, Sakai T, Delporte C, Swaim W, Zhu X, Birnbaumer L, Ambudkar IS. (1999) Cloning of Trp1beta isoform from rat brain: immunodetection and localization of the endogenous Trp1 protein. Am J Physiol, 276 (4 Pt 1): C969-79. [PMID:10199829]
19. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S et al.. (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell, 114 (6): 777-89. [PMID:14505576]
20. Zhang P, Luo Y, Chasan B, González-Perrett S, Montalbetti N, Timpanaro GA, Cantero Mdel R, Ramos AJ, Goldmann WH, Zhou J et al.. (2009) The multimeric structure of polycystin-2 (TRPP2): structural-functional correlates of homo- and hetero-multimers with TRPC1. Hum Mol Genet, 18 (7): 1238-51. [PMID:19193631]
21. Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L. (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell, 85 (5): 661-71. [PMID:8646775]
22. Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Lückhoff A, Schultz G. (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron, 16 (6): 1189-96. [PMID:8663995]