Top ▲
Target not currently curated in GtoImmuPdb
Target id: 517
Nomenclature: K2P5.1
Abbreviated Name: TASK2
Gene and Protein Information | |||||||
Species | TM | P Loops | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 4 | 2 | 499 | 6p21.2 | KCNK5 | potassium two pore domain channel subfamily K member 5 | 8 |
Mouse | 4 | 2 | 502 | 14 | Kcnk5 | potassium channel, subfamily K, member 5 | |
Rat | 4 | 2 | 503 | 15p16 | Kcnk5 | potassium two pore domain channel subfamily K member 5 |
Previous and Unofficial Names |
TASK-2 | potassium channel subfamily K member 5 | potassium channel, two pore domain subfamily K, member 5 | potassium channel |
Database Links | |
Alphafold | O95279 (Hs) |
ChEMBL Target | CHEMBL4523157 (Hs) |
Ensembl Gene | ENSG00000164626 (Hs), ENSMUSG00000023243 (Mm), ENSRNOG00000047005 (Rn) |
Entrez Gene | 8645 (Hs), 16529 (Mm), 364241 (Rn) |
Human Protein Atlas | ENSG00000164626 (Hs) |
KEGG Gene | hsa:8645 (Hs), mmu:16529 (Mm), rno:364241 (Rn) |
OMIM | 603493 (Hs) |
Pharos | O95279 (Hs) |
RefSeq Nucleotide | NM_003740 (Hs), NM_021542 (Mm), NM_001039516 (Rn) |
RefSeq Protein | NP_003731 (Hs), NP_067517 (Mm), NP_001034605 (Rn) |
UniProtKB | O95279 (Hs) |
Wikipedia | KCNK5 (Hs) |
|
|
|
||||||||||||||||||
Associated Protein Comments | ||||||||||||||||||||
Interaction with G protein β subunits 1 and 2 reported in vitro [1]. |
Functional Characteristics | |
Background current |
Download all structure-activity data for this target as a CSV file
Activators | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Activator Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volatile anesthetics appear to activate the human tandem pore domain baseline K+ channel K2P5.1 [4]. |
Channel Blockers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific channel blocker tables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Channel Blocker Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
K2P5.1 is sensitive to (blocked by) external pH is seen over a wide pHo range of 6-10. The effect of pH changes is mainly on the opening frequency [5]. |
Tissue Distribution | ||||||||||
|
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
General Comments |
A role in cell volume regulation [2,7] and sensing external basolateral pH changes associated HCO3- transport primary cultured proximal tubular cells [9]. ‘Activation’ and ‘deactivation’ with voltage steps appear instantaneous. The conductance of K2P5 is dependent on the ionic conditions. The slope conductance was reported as 15 pS with 5 mM external potassium and as high as 60 pS when external potassium is high (155 mM) 1. This may reflect a Na+ dependent inward rectification which becomes progressively less pronounced with time [6]. Like K2P16 and 17 current through K2P5 channels is diminished at physiological pH. Channel open probability increases with external pH. Formation of an inter-subunit disulfide bridge in K2P5 does not affect channel activity. Exposure to hypotonicity (change from 300 to 200 mOsm in external solution) enhanced mK2P5 currents when this channel was heterologously expressed in HEK293 cells and osmotic cell shrinkage led to inhibition (change from 300 to 400 mOsm in external solution). |
1. Añazco C, Peña-Münzenmayer G, Araya C, Cid LP, Sepúlveda FV, Niemeyer MI. (2013) G protein modulation of K2P potassium channel TASK-2 : a role of basic residues in the C terminus domain. Pflugers Arch, 465 (12): 1715-26. [PMID:23812165]
2. Barriere H, Belfodil R, Rubera I, Tauc M, Lesage F, Poujeol C, Guy N, Barhanin J, Poujeol P. (2003) Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules. J Gen Physiol, 122 (2): 177-90. [PMID:12860925]
3. Gabriel A, Abdallah M, Yost CS, Winegar BD, Kindler CH. (2002) Localization of the tandem pore domain K+ channel KCNK5 (TASK-2) in the rat central nervous system. Brain Res Mol Brain Res, 98 (1-2): 153-63. [PMID:11834308]
4. Gray AT, Zhao BB, Kindler CH, Winegar BD, Mazurek MJ, Xu J, Chavez RA, Forsayeth JR, Yost CS. (2000) Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5. Anesthesiology, 92 (6): 1722-30. [PMID:10839924]
5. Kang D, Kim D. (2004) Single-channel properties and pH sensitivity of two-pore domain K+ channels of the TALK family. Biochem Biophys Res Commun, 315 (4): 836-44. [PMID:14985088]
6. Morton MJ, Chipperfield S, Abohamed A, Sivaprasadarao A, Hunter M. (2005) Na(+)-induced inward rectification in the two-pore domain K(+) channel, TASK-2. Am J Physiol Renal Physiol, 288 (1): F162-9. [PMID:15328068]
7. Niemeyer MI, Cid LP, Barros LF, Sepúlveda FV. (2001) Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem, 276 (46): 43166-74. [PMID:11560934]
8. Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, Lazdunski M. (1998) Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J Biol Chem, 273 (47): 30863-9. [PMID:9812978]
9. Warth R, Barrière H, Meneton P, Bloch M, Thomas J, Tauc M, Heitzmann D, Romeo E, Verrey F, Mengual R et al.. (2004) Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci USA, 101 (21): 8215-20. [PMID:15141089]