Top ▲
Gene and Protein Information | |||||||
Species | TM | P Loops | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 6 | 1 | 676 | 11p15.5-p15.4 | KCNQ1 | potassium voltage-gated channel subfamily Q member 1 | 47,52 |
Mouse | 6 | 1 | 668 | 7 88.12 cM | Kcnq1 | potassium voltage-gated channel, subfamily Q, member 1 | 3 |
Rat | 6 | 1 | 669 | 1q42 | Kcnq1 | potassium voltage-gated channel subfamily Q member 1 | 20 |
Database Links | |
Alphafold | P51787 (Hs), P97414 (Mm), Q9Z0N7 (Rn) |
ChEMBL Target | CHEMBL1866 (Hs) |
DrugBank Target | P51787 (Hs) |
Ensembl Gene | ENSG00000053918 (Hs), ENSMUSG00000009545 (Mm), ENSRNOG00000020532 (Rn) |
Entrez Gene | 3784 (Hs), 16535 (Mm), 84020 (Rn) |
Human Protein Atlas | ENSG00000053918 (Hs) |
KEGG Gene | hsa:3784 (Hs), mmu:16535 (Mm), rno:84020 (Rn) |
OMIM | 607542 (Hs) |
Orphanet | ORPHA122800 (Hs) |
Pharos | P51787 (Hs) |
RefSeq Nucleotide | NM_181798 (Hs), NM_000218 (Hs), NM_008434 (Mm), NM_032073 (Rn) |
RefSeq Protein | NP_000209 (Hs), NP_861463 (Hs), NP_032460 (Mm), NP_114462 (Rn) |
UniProtKB | P51787 (Hs), P97414 (Mm), Q9Z0N7 (Rn) |
Wikipedia | KCNQ1 (Hs) |
Associated Proteins | ||||||||||||||||||||||||||||||||||||||
|
|
|
||||||||||||||||||||||||||||||||||||
Associated Protein Comments | ||||||||||||||||||||||||||||||||||||||
Yotiao – targets Protein kinase A, phosphodiesterase PDE4D3, adenylate cyclase AC9 and protein phosphatase 1 to KCNQ1 [9,24,26,43]. Calmodulin-is tethered to the KCNQ1 proximal C-terminus and is important for channel folding and gating [42]. Gating: allosteric gating, where KCNQ1 voltage sensors move independently. KCNQ1 can open after zero to four voltage sensor movements [31]; KCNE1 alters the voltage sensor movement [4,28,32]; PIP2 stabilizes the channel in the open state [8,13,25]. Modulation: The scaffolding A-kinase anchoring protein (AKAP) so-called yotiao or AKAP9 brings the IKS channel complex together with protein kinase PKA, protein phosphatase PP1, phosphodiesterase PDE4D3 and adenylate cyclase AC9 to achieve upregulation following β-adrenergic stimulation [24,26,43]. |
Functional Characteristics | |
cardiac IK5 |
Ion Selectivity and Conductance | ||||||
|
||||||
|
||||||
Ion Selectivity and Conductance Comments | ||||||
Voltage Dependence | ||||||||||||||||||||||
|
||||||||||||||||||||||
|
||||||||||||||||||||||
|
Download all structure-activity data for this target as a CSV file
Activators | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Activator Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ML277 activates KCNQ1 selectively versus KCNQ2-5, and does not activate IKS [27]. |
Inhibitors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific inhibitor tables |
Channel Blockers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific channel blocker tables | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Channel Blocker Comments | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Block is for KCNQ1+KCNE1 channels; block of KCNQ1 alone is ~10-x more potent for XE991, ~10-x less potent for 293B or azimilide |
Tissue Distribution | ||||||||
|
||||||||
|
||||||||
|
Functional Assays | ||||||||||
|
||||||||||
|
Physiological Functions | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Clinically-Relevant Mutations and Pathophysiology | ||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||
Clinically-Relevant Mutations and Pathophysiology Comments | ||||||||||||||||||||||||||||||||||||||||||
For a summary of missense mutations associated with Long QT syndrome, please see the OMIM entry for the gene and the reference Wang et al. 1996 [47]. |
Gene Expression and Pathophysiology | ||||||||||||
|
Biologically Significant Variants | ||||||||||||||
|
||||||||||||||
|
||||||||||||||
Biologically Significant Variant Comments | ||||||||||||||
Variant 1 encodes the predominant isoform 1. Variant 2 differs in the 5' UTR and CDS,compared to variant 1. Isoform 2 has a shorter and distinct N-terminus compared to isoform 1 and causes dominant-negative suppression of KCNQ1 channel function. |
1. Abbott GW, Butler MH, Bendahhou S, Dalakas MC, Ptacek LJ, Goldstein SA. (2001) MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell, 104 (2): 217-31. [PMID:11207363]
2. Angelo K, Jespersen T, Grunnet M, Nielsen MS, Klaerke DA, Olesen SP. (2002) KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current. Biophys J, 83 (4): 1997-2006. [PMID:12324418]
3. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature, 384 (6604): 78-80. [PMID:8900282]
4. Barro-Soria R, Rebolledo S, Liin SI, Perez ME, Sampson KJ, Kass RS, Larsson HP. (2014) KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps. Nat Commun, 5: 3750. [PMID:24769622]
5. Bellocq C, van Ginneken AC, Bezzina CR, Alders M, Escande D, Mannens MM, Baró I, Wilde AA. (2004) Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation, 109 (20): 2394-7. [PMID:15159330]
6. Busch AE, Busch GL, Ford E, Suessbrich H, Lang HJ, Greger R, Kunzelmann K, Attali B, Stühmer W. (1997) The role of the IsK protein in the specific pharmacological properties of the IKs channel complex. Br J Pharmacol, 122 (2): 187-9. [PMID:9313924]
7. Busch AE, Herzer T, Wagner CA, Schmidt F, Raber G, Waldegger S, Lang F. (1994) Positive regulation by chloride channel blockers of IsK channels expressed in Xenopus oocytes. Mol Pharmacol, 46 (4): 750-3. [PMID:7969055]
8. Chadha PS, Zunke F, Davis AJ, Jepps TA, Linders JT, Schwake M, Towart R, Greenwood IA. (2012) Pharmacological dissection of K(v)7.1 channels in systemic and pulmonary arteries. Br J Pharmacol, 166 (4): 1377-87. [PMID:22251082]
9. Chen L, Kurokawa J, Kass RS. (2005) Phosphorylation of the A-kinase-anchoring protein Yotiao contributes to protein kinase A regulation of a heart potassium channel. J Biol Chem, 280 (36): 31347-52. [PMID:16002409]
10. Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY, Jin HW, Sun H, Su XY, Zhuang QN et al.. (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science, 299 (5604): 251-4. [PMID:12522251]
11. Demolombe S, Franco D, de Boer P, Kuperschmidt S, Roden D, Pereon Y, Jarry A, Moorman AF, Escande D. (2001) Differential expression of KvLQT1 and its regulator IsK in mouse epithelia. Am J Physiol, Cell Physiol, 280 (2): C359-72. [PMID:11208532]
12. Dong MQ, Lau CP, Gao Z, Tseng GN, Li GR. (2006) Characterization of recombinant human cardiac KCNQ1/KCNE1 channels (I (Ks)) stably expressed in HEK 293 cells. J Membr Biol, 210 (3): 183-92. [PMID:16909339]
13. Gamper N, Shapiro MS. (2007) Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci, 8 (12): 921-34. [PMID:17971783]
14. Grunnet M, Jespersen T, Rasmussen HB, Ljungstrøm T, Jorgensen NK, Olesen SP, Klaerke DA. (2002) KCNE4 is an inhibitory subunit to the KCNQ1 channel. J Physiol (Lond.), 542 (Pt 1): 119-30. [PMID:12096056]
15. Haitin Y, Attali B. (2008) The C-terminus of Kv7 channels: a multifunctional module. J Physiol (Lond.), 586 (7): 1803-10. [PMID:18218681]
16. Heitzmann D, Grahammer F, von Hahn T, Schmitt-Gräff A, Romeo E, Nitschke R, Gerlach U, Lang HJ, Verrey F, Barhanin J et al.. (2004) Heteromeric KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal cells. J Physiol (Lond.), 561 (Pt 2): 547-57. [PMID:15579540]
17. Hong K, Piper DR, Diaz-Valdecantos A, Brugada J, Oliva A, Burashnikov E, Santos-de-Soto J, Grueso-Montero J, Diaz-Enfante E, Brugada P et al.. (2005) De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res, 68 (3): 433-40. [PMID:16109388]
18. Jiang M, Tseng-Crank J, Tseng GN. (1997) Suppression of slow delayed rectifier current by a truncated isoform of KvLQT1 cloned from normal human heart. J Biol Chem, 272 (39): 24109-12. [PMID:9305853]
19. Keating MT, Sanguinetti MC. (2001) Molecular and cellular mechanisms of cardiac arrhythmias. Cell, 104 (4): 569-80. [PMID:11239413]
20. Kunzelmann K, Hübner M, Schreiber R, Levy-Holzman R, Garty H, Bleich M, Warth R, Slavik M, von Hahn T, Greger R. (2001) Cloning and function of the rat colonic epithelial K+ channel KVLQT1. J Membr Biol, 179 (2): 155-64. [PMID:11220365]
21. Lee MP, Hu RJ, Johnson LA, Feinberg AP. (1997) Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nat Genet, 15 (2): 181-5. [PMID:9020845]
22. Lewis A, Green K, Dawson C, Redrup L, Huynh KD, Lee JT, Hemberger M, Reik W. (2006) Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Development, 133 (21): 4203-10. [PMID:17021040]
23. Li GR, Feng J, Yue L, Carrier M, Nattel S. (1996) Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res, 78 (4): 689-96. [PMID:8635226]
24. Li Y, Chen L, Kass RS, Dessauer CW. (2012) The A-kinase anchoring protein Yotiao facilitates complex formation between adenylyl cyclase type 9 and the IKs potassium channel in heart. J Biol Chem, 287 (35): 29815-24. [PMID:22778270]
25. Loussouarn G, Park KH, Bellocq C, Baró I, Charpentier F, Escande D. (2003) Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels. EMBO J, 22 (20): 5412-21. [PMID:14532114]
26. Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks AR, Kass RS. (2002) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science, 295 (5554): 496-9. [PMID:11799244]
27. Mattmann ME, Yu H, Lin Z, Xu K, Huang X, Long S, Wu M, McManus OB, Engers DW, Le UM et al.. (2012) Identification of (R)-N-(4-(4-methoxyphenyl)thiazol-2-yl)-1-tosylpiperidine-2-carboxamide, ML277, as a novel, potent and selective K(v)7.1 (KCNQ1) potassium channel activator. Bioorg Med Chem Lett, 22 (18): 5936-41. [PMID:22910039]
28. Nakajo K, Kubo Y. (2014) Steric hindrance between S4 and S5 of the KCNQ1/KCNE1 channel hampers pore opening. Nat Commun, 5: 4100. [PMID:24920132]
29. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Fauré S, Gary F, Coumel P, Petit C et al.. (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet, 15 (2): 186-9. [PMID:9020846]
30. Ohya S, Sergeant GP, Greenwood IA, Horowitz B. (2003) Molecular variants of KCNQ channels expressed in murine portal vein myocytes: a role in delayed rectifier current. Circ Res, 92 (9): 1016-23. [PMID:12690036]
31. Osteen JD, Barro-Soria R, Robey S, Sampson KJ, Kass RS, Larsson HP. (2012) Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels. Proc Natl Acad Sci USA, 109 (18): 7103-8. [PMID:22509038]
32. Osteen JD, Gonzalez C, Sampson KJ, Iyer V, Rebolledo S, Larsson HP, Kass RS. (2010) KCNE1 alters the voltage sensor movements necessary to open the KCNQ1 channel gate. Proc Natl Acad Sci USA, 107 (52): 22710-5. [PMID:21149716]
33. Pusch M. (1998) Increase of the single-channel conductance of KvLQT1 potassium channels induced by the association with minK. Pflugers Arch, 437 (1): 172-4. [PMID:9817805]
34. Rivas A, Francis HW. (2005) Inner ear abnormalities in a Kcnq1 (Kvlqt1) knockout mouse: a model of Jervell and Lange-Nielsen syndrome. Otol Neurotol, 26 (3): 415-24. [PMID:15891643]
35. Salata JJ, Jurkiewicz NK, Wang J, Evans BE, Orme HT, Sanguinetti MC. (1998) A novel benzodiazepine that activates cardiac slow delayed rectifier K+ currents. Mol Pharmacol, 54 (1): 220-30. [PMID:9658209]
36. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT. (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature, 384 (6604): 80-3. [PMID:8900283]
37. Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R, Jentsch TJ. (2000) A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature, 403 (6766): 196-9. [PMID:10646604]
38. Seebohm G, Chen J, Strutz N, Culberson C, Lerche C, Sanguinetti MC. (2003) Molecular determinants of KCNQ1 channel block by a benzodiazepine. Mol Pharmacol, 64 (1): 70-7. [PMID:12815162]
39. Seebohm G, Lerche C, Pusch M, Steinmeyer K, Brüggemann A, Busch AE. (2001) A kinetic study on the stereospecific inhibition of KCNQ1 and I(Ks) by the chromanol 293B. Br J Pharmacol, 134 (8): 1647-54. [PMID:11739240]
40. Selnick HG, Liverton NJ, Baldwin JJ, Butcher JW, Claremon DA, Elliott JM, Freidinger RM, King SA, Libby BE, McIntyre CJ, Pribush DA, Remy DC, Smith GR, Tebben AJ, Jurkiewicz NK, Lynch JJ, Salata JJ, Sanguinetti MC, Siegl PK, Slaughter DE, Vyas K. (1997) Class III antiarrhythmic activity in vivo by selective blockade of the slowly activating cardiac delayed rectifier potassium current IKs by (R)-2-(2,4-trifluoromethyl)-N-[2-oxo-5-phenyl-1-(2,2,2-trifluoroethyl)- 2, 3-dihydro-1H-benzo[e][1,4]diazepin-3-yl]acetamide. J Med Chem, 40 (24): 3865-8. [PMID:9397166]
41. Sesti F, Goldstein SA. (1998) Single-channel characteristics of wild-type IKs channels and channels formed with two minK mutants that cause long QT syndrome. J Gen Physiol, 112 (6): 651-63. [PMID:9834138]
42. Stott JB, Jepps TA, Greenwood IA. (2014) K(V)7 potassium channels: a new therapeutic target in smooth muscle disorders. Drug Discov Today, 19 (4): 413-24. [PMID:24333708]
43. Terrenoire C, Houslay MD, Baillie GS, Kass RS. (2009) The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem, 284 (14): 9140-6. [PMID:19218243]
44. Towart R, Linders JT, Hermans AN, Rohrbacher J, van der Linde HJ, Ercken M, Cik M, Roevens P, Teisman A, Gallacher DJ. (2009) Blockade of the I(Ks) potassium channel: an overlooked cardiovascular liability in drug safety screening?. J Pharmacol Toxicol Methods, 60 (1): 1-10. [PMID:19439185]
45. Tristani-Firouzi M, Sanguinetti MC. (1998) Voltage-dependent inactivation of the human K+ channel KvLQT1 is eliminated by association with minimal K+ channel (minK) subunits. J Physiol (Lond.), 510 ( Pt 1): 37-45. [PMID:9625865]
46. Wang HS, Brown BS, McKinnon D, Cohen IS. (2000) Molecular basis for differential sensitivity of KCNQ and I(Ks) channels to the cognitive enhancer XE991. Mol Pharmacol, 57 (6): 1218-23. [PMID:10825393]
47. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T et al.. (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet, 12 (1): 17-23. [PMID:8528244]
48. Werry D, Eldstrom J, Wang Z, Fedida D. (2013) Single-channel basis for the slow activation of the repolarizing cardiac potassium current, I(Ks). Proc Natl Acad Sci USA, 110 (11): E996-1005. [PMID:23431135]
49. Wollnik B, Schroeder BC, Kubisch C, Esperer HD, Wieacker P, Jentsch TJ. (1997) Pathophysiological mechanisms of dominant and recessive KVLQT1 K+ channel mutations found in inherited cardiac arrhythmias. Hum Mol Genet, 6 (11): 1943-9. [PMID:9302275]
50. Wu DM, Jiang M, Zhang M, Liu XS, Korolkova YV, Tseng GN. (2006) KCNE2 is colocalized with KCNQ1 and KCNE1 in cardiac myocytes and may function as a negative modulator of I(Ks) current amplitude in the heart. Heart rhythm : the official journal of the Heart Rhythm Society, 3 (12): 1469-80. [PMID:17161791]
51. Xiong Q, Sun H, Li M. (2007) Zinc pyrithione-mediated activation of voltage-gated KCNQ potassium channels rescues epileptogenic mutants. Nat Chem Biol, 3 (5): 287-96. [PMID:17435769]
52. Yang WP, Levesque PC, Little WA, Conder ML, Ramakrishnan P, Neubauer MG, Blanar MA. (1998) Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy. J Biol Chem, 273 (31): 19419-23. [PMID:9677360]
53. Yang Y, Sigworth FJ. (1998) Single-channel properties of IKs potassium channels. J Gen Physiol, 112 (6): 665-78. [PMID:9834139]