Top ▲

Nav1.8

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 585

Nomenclature: Nav1.8

Family: Voltage-gated sodium channels (NaV)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 24 1 1956 3p22.2 SCN10A sodium voltage-gated channel alpha subunit 10 36
Mouse 24 1 1958 9 71.33 cM Scn10a sodium channel, voltage-gated, type X, alpha
Rat 24 1 1956 8q32 Scn10a sodium voltage-gated channel alpha subunit 10
Previous and Unofficial Names Click here for help
PN3 | SNS | hPN3 | peripheral nerve sodium channel 3 | sensory neuron sodium channel | sodium channel protein type 10 subunit alpha | sodium channel, voltage-gated, type X, alpha subunit | sodium channel, voltage gated, type X alpha subunit | sodium channel
Database Links Click here for help
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
Not determined
Auxiliary Subunits
Name References
β1, β2, β3 36
Other Associated Proteins
Name References
CAP-1 21
AnnexinI/p11 24
Associated Protein Comments
AnnexinI/p11 facilitates insertion of channels into the cell membrane [24] and CAP-1 regulates uptake from the cell membrane [21].
Functional Characteristics Click here for help
Activation V0.5 = -16 mV. Inactivation (6 ms)
Ion Selectivity and Conductance Comments
From the original measurements of the slow, TTX-resistant sodium current in dorsal root ganglion neurons (which we know now is due to Nav1.8), we can conclude that this channel is selective for Na over K and Ca (Na+ > K+>> Ca2+) like all other sodium channels. There are no comparable measurements on cloned channels that have been published. [16] “Selectivity measurements were made on Nav1.8 channels conducting the slow TTX-resistant sodium current of dorsal root ganglion neurons.”
Voltage Dependence Click here for help
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -15.7 0.36 – 0.54 9 DRG neurons Rat
Inactivation  -30.9 4.7 – 13.5 9
Comments  τ varies for both activation and inactivation depending on the voltage at which it is measured.
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  10.3 - 36 Xenopus laevis oocyte Rat
Inactivation  -52.9 – -30.0 - 1,36
Comments  The values above are for Nav1.8 expressed alone. V0.5,act for Nav1.8 expressed with β subunits is between 1.6 and 11.5mV and for V0.5,inact is between -46.6 and -58.4mV.

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
veratridine Small molecule or natural product Click here for species-specific activity table Rn - - - 5x10-7 - 5x10-5 -90.0 15
Conc range: 5x10-7 - 5x10-5 M [15]
Holding voltage: -90.0 mV
batrachotoxin Small molecule or natural product Click here for species-specific activity table Hs - - - 5x10-6 - 1x10-5 -90.0 7
Conc range: 5x10-6 - 1x10-5 M [7]
Holding voltage: -90.0 mV
View species-specific activator tables
Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
suzetrigine Small molecule or natural product Hs Inhibition >8.0 pIC50 - - 13
pIC50 >8.0 (IC50 <1x10-8 M) [13]
Description: Inhibition of human NaV1,8 channels expressed in HEK293 cells.
LTGO-33 Small molecule or natural product Hs Inhibition 7.5 pIC50 - - 17
pIC50 7.5 (IC50 3.3x10-8 M) [17]
Description: Determined with the channel in its closed state.
PF-04885614 Small molecule or natural product Click here for species-specific activity table Hs Inhibition 7.3 pIC50 - - 4
pIC50 7.3 (IC50 5.3x10-8 M) [4]
AM-6120 Peptide Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition <6.0 pIC50 - - 37
pIC50 <6.0 (IC50 >1x10-6 M) [37]
Description: Determined in a PatchXpress electrophysiology experiment using HEK293 cells stably expressing hNaV1.8.
funapide Small molecule or natural product Click here for species-specific activity table Hs Inhibition 5.3 pIC50 - - 22
pIC50 5.3 (IC50 4.8x10-6 M) [22]
Description: Inhibition of human Nav1.8 expressed in HEK293 cells by electrophysiology assay
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
A-803467 Small molecule or natural product Ligand has a PDB structure Rn - 8.1 pIC50 - - 20
pIC50 8.1 (IC50 8x10-9 M) [20]
PF-01247324 Small molecule or natural product Primary target of this compound Hs Pore blocker 6.7 pIC50 - - 26
pIC50 6.7 (IC50 1.96x10-7 M) [26]
ABBV-318 Small molecule or natural product Click here for species-specific activity table Hs Inhibition 5.4 pIC50 - - 25
pIC50 5.4 (IC50 3.8x10-6 M) [25]
Description: Determined in a FRET assay
lacosamide Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 4.8 pIC50 - - 31
pIC50 4.8 (IC50 1.6x10-5 M) [31]
tetrodotoxin Small molecule or natural product Click here for species-specific activity table Rn Pore blocker 4.2 pIC50 - -60.0 1
pIC50 4.2 (IC50 5.96x10-5 M) [1]
Holding voltage: -60.0 mV
lidocaine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Pore blocker 4.0 pIC50 - -100.0 19
pIC50 4.0 [19]
Holding voltage: -100.0 mV
View species-specific channel blocker tables
Channel Blocker Comments
Lignocaine produces 41% block at 1mM [1].
Tissue Distribution Click here for help
>90% of nociceptors and 40% of myelinated A-fibres including low-threshold mechanoreceptors
Species:  Mouse
Technique:  Analysis in NaV1.8-Cre mice
References:  32
Small and medium diameter DRG neurons and their axons.
Species:  Rat
Technique:  Immunohistochemistry
References:  12
Functional Assays Click here for help
Voltage clamp recording.
Species:  Rat
Tissue:  Dorsal root ganglion.
Response measured:  voltage-clamp parameters within DRG neurons.
References:  9,34
Current clamp.
Species:  Rat
Tissue:  Dorsal root ganglion.
Response measured:  Contribution to action potential electrogenesis
References:  6,27
Voltage clamp recording
Species:  Rat
Tissue:  Oocyte
Response measured:  Voltage clamp parameters in oocytes
References:  1
Physiological Functions Click here for help
Nav1.8 contributes the majority of the inward current underlying the depolarizing phase of the action potential.
Species:  Rat
Tissue:  Dorsal root ganglion (DRG) neurons
References:  6,27
Nav1.8 supports repetitive firing in depolarized neurons.
Species:  Rat
Tissue:  DRG neurons
References:  27
Physiological Consequences of Altering Gene Expression Click here for help
NaV1.8 upregulation within cerebellar Purkinje neurons produces deficits in cerebellar function
Species:  Mouse
Tissue: 
Technique:  Transgenic mouse
References: 
Nav1.8-null mice exhibit reduced pain responses.
Species:  Mouse
Tissue:  Nervous system.
Technique:  Knockout mouse
References:  2
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Scn10atm1Lex Scn10atm1Lex/Scn10atm1Lex
involves: 129S5/SvEvBrd * C57BL/6
MGI:108029  MP:0005402 abnormal action potential PMID: 16857712 
Scn10atm1Jnw Scn10atm1Jnw/Scn10atm1Jnw
B6.129P2-Scn10a
MGI:108029  MP:0002734 abnormal mechanical nociception PMID: 10448219 
Scn10a+|Scn10atm2(cre)Jnw|Scn9atm1Jnw Scn10atm2(cre)Jnw/Scn10a+,Scn9atm1Jnw/Scn9atm1Jnw
involves: 129
MGI:107636  MGI:108029  MP:0002736 abnormal nociception after inflammation PMID: 15314237 
Scn10a+|Scn10atm2(cre)Jnw|Scn9atm1Jnw Scn10atm2(cre)Jnw/Scn10a+,Scn9atm1Jnw/Scn9atm1Jnw
involves: 129
MGI:107636  MGI:108029  MP:0001970 abnormal pain threshold PMID: 15314237 
S100a10tm1Jnw|Scn10a+|Scn10atm2(cre)Jnw S100a10tm1Jnw/S100a10tm1Jnw,Scn10atm2(cre)Jnw/Scn10a+
involves: 129 * C57BL/6
MGI:108029  MGI:1339468  MP:0001970 abnormal pain threshold PMID: 17035534 
Scn10atm1Lex Scn10atm1Lex/Scn10atm1Lex
involves: 129S5/SvEvBrd * C57BL/6
MGI:108029  MP:0001970 abnormal pain threshold PMID: 19931571 
Scn10atm1Jnw Scn10atm1Jnw/Scn10atm1Jnw
B6.129P2-Scn10a
MGI:108029  MP:0002733 abnormal thermal nociception PMID: 10448219 
S100a10tm1Jnw|Scn10a+|Scn10atm2(cre)Jnw S100a10tm1Jnw/S100a10tm1Jnw,Scn10atm2(cre)Jnw/Scn10a+
involves: 129 * C57BL/6
MGI:108029  MGI:1339468  MP:0003177 allodynia PMID: 17035534 
S100a10tm1Jnw|Scn10a+|Scn10atm2(cre)Jnw S100a10tm1Jnw/S100a10tm1Jnw,Scn10atm2(cre)Jnw/Scn10a+
involves: 129 * C57BL/6
MGI:108029  MGI:1339468  MP:0003469 decreased single cell response intensity PMID: 17035534 
Scn10atm1Lex Scn10atm1Lex/Scn10atm1Lex
involves: 129S5/SvEvBrd * C57BL/6
MGI:108029  MP:0005407 hyperalgesia PMID: 19931571 
Scn10atm1Jnw Scn10atm1Jnw/Scn10atm1Jnw
B6.129P2-Scn10a
MGI:108029  MP:0003043 hypoalgesia PMID: 10448219 
Scn10atm1Lex Scn10atm1Lex/Scn10atm1Lex
involves: 129S5/SvEvBrd * C57BL/6
MGI:108029  MP:0002578 impaired ability to fire action potentials PMID: 16857712 
Scn10a+|Scn10atm2(cre)Jnw|Scn9atm1Jnw Scn10atm2(cre)Jnw/Scn10a+,Scn9atm1Jnw/Scn9atm1Jnw
involves: 129
MGI:107636  MGI:108029  MP:0001973 increased thermal nociceptive threshold PMID: 15314237 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Channelopathy-associated congenital insensitivity to pain
Orphanet: ORPHA88642
Disease:  Episodic pain syndrome, familial, 2; FEPS2
Synonyms: Sodium channelopathy-related small fiber neuropathy [Orphanet: ORPHA306577]
OMIM: 615551
Orphanet: ORPHA306577
References:  14
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human L554P 14
Missense Human A1304T 14
Disease:  Functional dyspepsia
Synonyms: Dyspepsia [Disease Ontology: DOID:2321]
Disease Ontology: DOID:2321
Role: 
References:  3
Disease:  Multiple sclerosis
Disease Ontology: DOID:2377
OMIM: 126200
Orphanet: ORPHA802
Role: 
References:  5,28-29
Clinically-Relevant Mutations and Pathophysiology Comments
Rapid recovery from inactivation is conferred by a three amino acid insert in D IV S3-S4 [11].

In a rat model, the missense mutation at molecular location S356F was demonstrated to remove TTX resistance [33].
Gene Expression and Pathophysiology Click here for help
Nav1.8 is upregulated in models of inflammatory pain and by inflammatory mediators.
Tissue or cell type:  DRG neurons.
Pathophysiology:  Inflammatory pain.
Species:  Rat
Technique:  In situ hybridization and electrophysiology.
References:  8,18,30,35
Nav1.8 protein is translocated to the axon following peripheral nerve injury.
Tissue or cell type:  DRG neurons
Pathophysiology:  Peripheral nerve injury.
Species:  Rat
Technique:  Immunohistochemistry
References:  23,38
Nav1.8 expression decreases following axotomy.
Tissue or cell type:  DRG neurons.
Pathophysiology:  Peripheral nerve injury.
Species:  Rat
Technique:  RT-PCR
References:  10
Nav1.8 mRNA and protein are upregulated within cerebellar Purkinje neurons.
Tissue or cell type:  Cerebellar Purkinje neurons.
Pathophysiology:  Chronic relapsing experimental allergic encephalomyelitis (modelling multiple sclerosis).
Species:  Mouse
Technique:  In situ hybridization and immunocytochemistry.
References:  5
Nav1.8 mRNA and protein are upregulated within cerebellar Purkinje neurons.
Tissue or cell type:  Cerebellar Purkinje neurons.
Pathophysiology:  Multiple sclerosis.
Species:  Human
Technique:  In situ hybridization and immunocytochemistry.
References:  5

References

Show »

1. Akopian AN, Sivilotti L, Wood JN. (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature, 379 (6562): 257-62. [PMID:8538791]

2. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S et al.. (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci, 2 (6): 541-8. [PMID:10448219]

3. Arisawa T, Tahara T, Shiroeda H, Minato T, Matsue Y, Saito T, Fukuyama T, Otsuka T, Fukumura A, Nakamura M et al.. (2013) Genetic polymorphisms of SCN10A are associated with functional dyspepsia in Japanese subjects. J Gastroenterol, 48 (1): 73-80. [PMID:22618805]

4. Bagal SK, Kemp MI, Bungay PJ, Hay TL, Murata Y, Payne CE, Stevens EB, Brown A, Blakemore DC, Corbett MS et al.. (2016) Discovery and optimisation of potent and highly subtype selective Nav1.8 inhibitors with reduced cardiovascular liabilities. Med. Chem. Commun, 7: 1925-1931. DOI: 10.1039/C6MD00281A

5. Black JA, Dib-Hajj S, Baker D, Newcombe J, Cuzner ML, Waxman SG. (2000) Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proc Natl Acad Sci USA, 97 (21): 11598-602. [PMID:11027357]

6. Blair NT, Bean BP. (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci, 22 (23): 10277-90. [PMID:12451128]

7. Bosmans F, Maertens C, Verdonck F, Tytgat J. (2004) The poison Dart frog's batrachotoxin modulates Nav1.8. FEBS Lett, 577 (1-2): 245-8. [PMID:15527793]

8. Cardenas CG, Del Mar LP, Cooper BY, Scroggs RS. (1997) 5HT4 receptors couple positively to tetrodotoxin-insensitive sodium channels in a subpopulation of capsaicin-sensitive rat sensory neurons. J Neurosci, 17 (19): 7181-9. [PMID:9295364]

9. Cummins TR, Waxman SG. (1997) Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci, 17 (10): 3503-14. [PMID:9133375]

10. Dib-Hajj S, Black JA, Felts P, Waxman SG. (1996) Down-regulation of transcripts for Na channel alpha-SNS in spinal sensory neurons following axotomy. Proc Natl Acad Sci USA, 93 (25): 14950-4. [PMID:8962162]

11. Dib-Hajj SD, Ishikawa K, Cummins TR, Waxman SG. (1997) Insertion of a SNS-specific tetrapeptide in S3-S4 linker of D4 accelerates recovery from inactivation of skeletal muscle voltage-gated Na channel mu1 in HEK293 cells. FEBS Lett, 416 (1): 11-4. [PMID:9369222]

12. Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN. (2003) The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol (Lond.), 550 (Pt 3): 739-52. [PMID:12794175]

13. Durrant SJ. (2021) Substituted tetrahydrofurans as modulators of sodium channels. Patent number: WO2021113627A1. Assignee: Vertex Pharmaceuticals Incorporated. Priority date: 04/12/2020. Publication date: 10/06/2021.

14. Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JG, Gerrits MM, Pierro T et al.. (2012) Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci USA, 109 (47): 19444-9. [PMID:23115331]

15. Farrag KJ, Bhattacharjee A, Docherty RJ. (2008) A comparison of the effects of veratridine on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in isolated rat dorsal root ganglion neurons. Pflugers Arch, 455 (5): 929-38. [PMID:17962978]

16. Fedulova SA, Kostyuk PG, Veselovsky NS. (1991) Ionic mechanisms of electrical excitability in rat sensory neurons during postnatal ontogenesis. Neuroscience, 41 (1): 303-9. [PMID:1647504]

17. Gilchrist JM, Yang ND, Jiang V, Moyer BD. (2024) Pharmacologic Characterization of LTGO-33, a Selective Small Molecule Inhibitor of the Voltage-Gated Sodium Channel NaV1.8 with a Unique Mechanism of Action. Mol Pharmacol, 105 (3): 233-249. [PMID:38195157]

18. Gold MS, Levine JD, Correa AM. (1998) Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci, 18 (24): 10345-55. [PMID:9852572]

19. How SW, Cheng AL. (1992) Present status of cancer treatment in Taiwan. Gan To Kagaku Ryoho, 19 (8 Suppl): 1136-8. [PMID:1514825]

20. Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, Carroll W, Marron B, Atkinson R et al.. (2007) A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci USA, 104 (20): 8520-5. [PMID:17483457]

21. Liu C, Cummins TR, Tyrrell L, Black JA, Waxman SG, Dib-Hajj SD. (2005) CAP-1A is a novel linker that binds clathrin and the voltage-gated sodium channel Na(v)1.8. Mol Cell Neurosci, 28 (4): 636-49. [PMID:15797711]

22. Mulcahy JV, Pajouhesh H, Beckley JT, Delwig A, Du Bois J, Hunter JC. (2019) Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform NaV1.7. J Med Chem, 62 (19): 8695-8710. [PMID:31012583]

23. Novakovic SD, Tzoumaka E, McGivern JG, Haraguchi M, Sangameswaran L, Gogas KR, Eglen RM, Hunter JC. (1998) Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci, 18 (6): 2174-87. [PMID:9482802]

24. Okuse K, Malik-Hall M, Baker MD, Poon WY, Kong H, Chao MV, Wood JN. (2002) Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature, 417 (6889): 653-6. [PMID:12050667]

25. Patel MV, Peltier HM, Matulenko MA, Koenig JR, C Scanio MJ, Gum RJ, El-Kouhen OF, Fricano MM, Lundgaard GL, Neelands T et al.. (2022) Discovery of (R)-(3-fluoropyrrolidin-1-yl)(6-((5-(trifluoromethyl)pyridin-2-yl)oxy)quinolin-2-yl)methanone (ABBV-318) and analogs as small molecule Nav1.7/ Nav1.8 blockers for the treatment of pain. Bioorg Med Chem, 63: 116743. [PMID:35436748]

26. Payne CE, Brown AR, Theile JW, Loucif AJ, Alexandrou AJ, Fuller MD, Mahoney JH, Antonio BM, Gerlach AC, Printzenhoff DM et al.. (2015) A novel selective and orally bioavailable Nav 1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability. Br J Pharmacol, 172 (10): 2654-70. [PMID:25625641]

27. Renganathan M, Cummins TR, Waxman SG. (2001) Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol, 86 (2): 629-40. [PMID:11495938]

28. Renganathan M, Gelderblom M, Black JA, Waxman SG. (2003) Expression of Nav1.8 sodium channels perturbs the firing patterns of cerebellar Purkinje cells. Brain Res, 959 (2): 235-42. [PMID:12493611]

29. Saab CY, Craner MJ, Kataoka Y, Waxman SG. (2004) Abnormal Purkinje cell activity in vivo in experimental allergic encephalomyelitis. Exp Brain Res, 158 (1): 1-8. [PMID:15118796]

30. Saab CY, Cummins TR, Waxman SG. (2003) GTP gamma S increases Nav1.8 current in small-diameter dorsal root ganglia neurons. Exp Brain Res, 152 (4): 415-9. [PMID:12898089]

31. Sheets PL, Heers C, Stoehr T, Cummins TR. (2008) Differential block of sensory neuronal voltage-gated sodium channels by lacosamide [(2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide], lidocaine, and carbamazepine. J Pharmacol Exp Ther, 326 (1): 89-99. [PMID:18378801]

32. Shields SD, Ahn HS, Yang Y, Han C, Seal RP, Wood JN, Waxman SG, Dib-Hajj SD. (2012) Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain, 153 (10): 2017-30. [PMID:22703890]

33. Sivilotti LG. (2010) What single-channel analysis tells us of the activation mechanism of ligand-gated channels: the case of the glycine receptor. J Physiol (Lond.), 588 (Pt 1): 45-58. [PMID:19770192]

34. Sleeper AA, Cummins TR, Dib-Hajj SD, Hormuzdiar W, Tyrrell L, Waxman SG, Black JA. (2000) Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy. J Neurosci, 20 (19): 7279-89. [PMID:11007885]

35. Tanaka M, Cummins TR, Ishikawa K, Dib-Hajj SD, Black JA, Waxman SG. (1998) SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. Neuroreport, 9 (6): 967-72. [PMID:9601651]

36. Vijayaragavan K, Powell AJ, Kinghorn IJ, Chahine M. (2004) Role of auxiliary beta1-, beta2-, and beta3-subunits and their interaction with Na(v)1.8 voltage-gated sodium channel. Biochem Biophys Res Commun, 319 (2): 531-40. [PMID:15178439]

37. Wu B, Murray JK, Andrews KL, Sham K, Long J, Aral J, Ligutti J, Amagasu S, Liu D, Zou A et al.. (2018) Discovery of Tarantula Venom-Derived NaV1.7-Inhibitory JzTx-V Peptide 5-Br-Trp24 Analogue AM-6120 with Systemic Block of Histamine-Induced Pruritis. J Med Chem, 61 (21): 9500-9512. [PMID:30346167]

38. Yiangou Y, Birch R, Sangameswaran L, Eglen R, Anand P. (2000) SNS/PN3 and SNS2/NaN sodium channel-like immunoreactivity in human adult and neonate injured sensory nerves. FEBS Lett, 467 (2-3): 249-52. [PMID:10675548]

Contributors

Show »

How to cite this page