Top ▲

CXCR1

Click here for help

Immunopharmacology Ligand target has curated data in GtoImmuPdb

Target id: 68

Nomenclature: CXCR1

Family: Chemokine receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 350 2q35 CXCR1 C-X-C motif chemokine receptor 1 28,35
Mouse 7 351 1 38.44 cM Cxcr1 C-X-C motif chemokine receptor 1 19
Rat 7 349 9q33 Cxcr1 C-X-C motif chemokine receptor 1 11
Previous and Unofficial Names Click here for help
IL8RA [35] | IL-8 receptor type I | CD181 | CKR-1 | CXC-R1 | high affinity interleukin-8 receptor A | CXCR1-like [11] | IL-8 receptor α
Database Links Click here for help
Specialist databases
GPCRdb cxcr1_human (Hs), cxcr1_mouse (Mm), cxcr1_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Structure of human CXCR1 in phospholipid bilayers
PDB Id:  2LNL
Resolution:  0.0Å
Species:  Human
References:  46
Natural/Endogenous Ligands Click here for help
CXCL6 {Sp: Human}
CXCL8 {Sp: Human}
cytokine domain of tyrosyl tRNA synthetase {Sp: Human}
Comments: CXCL8 is the principal endogenous agonist

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I]CXCL8 (human) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 8.9 – 9.6 pKd 26,49
pKd 8.9 – 9.6 (Kd 1.2x10-9 – 2.51x10-10 M) [26,49]
CXCL8 {Sp: Human} Peptide Click here for species-specific activity table Immunopharmacology Ligand Hs Agonist 8.1 pKd 23
pKd 8.1 (Kd 8x10-9 M) [23]
[125I]mini-TyrRS Peptide Ligand is labelled Ligand is radioactive Hs Full agonist 7.7 pKd 54
pKd 7.7 [54]
CXCL8 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Full agonist 8.8 – 9.5 pKi 3,26,35,56,58
pKi 8.8 – 9.5 [3,26,35,56,58]
mini-TyrRS Peptide Hs Full agonist 8.1 pKi 54
pKi 8.1 [54]
CXCL6 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Full agonist 7.0 pKi 59
pKi 7.0 [59]
vCXCL1 Peptide Click here for species-specific activity table Hs Agonist 7.4 pIC50 39
pIC50 7.4 (IC50 4.4x10-8 M) [39]
Agonist Comments
Reference [48] measures agonist potency using a MAP kinase reporter gene.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
navarixin Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 8.4 pIC50 2,12
pIC50 8.4 (IC50 3.9x10-9 M) [2,12]
AZD5069 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 6.9 pIC50 43
pIC50 6.9 (IC50 1.25x10-7 M) [43]
Description: Measuring displacement of CXCL8 binding to recombinant CXCR1 in HEK cell membrane preparations.
Allosteric Modulator Comments
DF2755A and DF2726 are non-competitive negative allosteric modulators of CXCL8 signalling via CXCR1 and CXCR2 [4,38].
Immunopharmacology Comments
CXCR1 is one of more than 20 distinct chemokine receptors expressed in human leukocytes. Chemokines primarily act to promote leukocyte chemotaxis to sites of inflammation. CXCR1 is discussed in relation to immuno-oncology in [1]. It has been shown that CXCR1 receptor expression on epithelial cells is enhanced by bacterial infection (E.coli [24,27] and H. pylori[6]). This induces transepithelial neutrophil migration and clearing of the infection.
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  Antigen presentation
Immuno Process:  Cytokine production & signalling
Immuno Process:  Chemotaxis & migration
Immuno Process:  Cellular signalling
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Calcium channel
Comments:  The βγ subunit of the Gi G protein is necessary for chemotaxis [42] and calcium mobilisation [26].
References:  16,26,42
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Calcium channel
Phospholipase D stimulation
Other - See Comments
Comments:  Superoxide production is also reported [55]. Additional information on signaling pathways can be found in [33]. Agonists at high concentrations induce phosphorylation of CXCR1, leading to homologous desensitization and receptor internalization [15]. CXCR1 couples to G-protein-coupled receptor kinase 2 (GRK2, gene symbol ADRBK1) to negatively regulate receptor sensitization and trafficking [47].
References:  26,33
Tissue Distribution Click here for help
NK cells and lymphocytes.
Species:  Human
Technique:  FACS
References: 
Effector CD8+ T cells.
Species:  Human
Technique:  FACS
References:  52
Keratinocytes.
Species:  Human
Technique:  Radioligand binding.
References:  41
Primary adult microglia and astrocytes.
Species:  Human
Technique:  Flow cytometry.
References:  17
Polymorphonuclear neutrophils.
Species:  Human
Technique:  Flow cytometry.
References:  10
Intestinal epithelial cells.
Species:  Human
Technique:  RT-PCR and flow cytometry.
References:  51
Bronchial epithelial cells.
Species:  Human
Technique:  RT-PCR and flow cytometry.
References:  14
Urinary tract epithelial cells.
Species:  Human
Technique:  Immunohistochemistry.
References:  24
Chondrocytes.
Species:  Human
Technique:  Flow cytometry.
References:  40
D4+ FOXP3+ Tregs (regulatory T cells).
Species:  Human
Technique:  FACS
References:  13
Umbilical vein endothelial cells (HUVECs).
Species:  Human
Technique:  immunocytochemistry.
References:  36
Basophils.
Species:  Human
Technique:  Flow cytometry.
References:  30,44
Basophils.
Species:  Human
Technique:  RT-PCR.
References:  30
Glomerular podocytes.
Species:  Human
Technique:  RT-PCR.
References:  29
CX3CR1low CD14+ monocytes.
Species:  Human
Technique:  FACS
References:  20
Lung, spleen.
Species:  Mouse
Technique:  Northern blotting.
References:  19
Peripheral blood leukocytes, isolated neutrophils > thymus, peritoneal monocytes/macrophages.
Species:  Mouse
Technique:  RT-PCR.
References:  19
Lung and native macrophages.
Species:  Rat
Technique:  Northern blotting.
References:  11
Tissue Distribution Comments
CXCR1 is also expressed by many non-hematopoietic cells, including tumor cells.
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of intracellular Ca2+ levels in HEK 293 cells transfected with the human CXCR1 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Increase in intracellular Ca2+.
References:  35,59-60
Measurement of chemotaxis in of HEK 293 cells transfected with the CXCR1 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Chemotaxis.
References:  16,42,59
Measurement of Ca2+ levels in Jurkat cells transfected with the human CXCR1 receptor.
Species:  Human
Tissue:  Jurkat cells.
Response measured:  Ca2+ mobilisation.
References:  32-33,57
Measurement of elastase released by human neutrophils endogenously expressing the CXCR1 receptor.
Species:  Human
Tissue:  Neutrophils.
Response measured:  Release of elastase.
References:  32-33,57
Measurement of superoxide production (indicating respiratory burst) in human neutrophils endogenously expressing the CXCR1 receptor.
Species:  Human
Tissue:  Neutrophils.
Response measured:  Superoxide production.
References:  32-33
Measurement of phospholipase D (PLD) activity in human neutrophils endogenously expressing the CXCR1 receptor.
Species:  Human
Tissue:  Neutrophils.
Response measured:  Activation of PLD.
References:  33
Measurement of focal adhesion kinase (FAK) activity and chemotaxis of HEK 293 and RBL cells transfected with the CXCR1 receptor.
Species:  Human
Tissue:  HEK 293 and RBL cells.
Response measured:  FAK phosphorylation.
References:  16
Measurement of chemotaxis of Jurkat cells transfected with the human CXCR1 receptor.
Species:  Human
Tissue:  Jurkat cells.
Response measured:  Chemotaxis.
References:  25,57
Measurement of cAMP levels in CHO cells transfected with the human CXCR1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  26
Phosphorylation of focal adhesion kinase.
Species:  Human
Tissue:  Human CXCR1-transfected RBL 2H3 cells.
Response measured:  Elevated spreading.
References:  9
Physiological Functions Click here for help
Chemotaxis.
Species:  Human
Tissue:  Keratinocytes.
References:  41
Chemotaxis.
Species:  Human
Tissue:  Intestinal epithelial cells.
References:  51
Chemotaxis across the epithelial barrier of the urinary tract.
Species:  Human
Tissue:  Neutrophils.
References:  24
Cell proliferation and inhibition of apoptosis.
Species:  Human
Tissue:  Umbilical vein endothelial cells (HUVECs).
References:  36
Negative regulation of myeloid progenitor cells.
Species:  Mouse
Tissue:  In vivo.
References:  5
Promoting allergic disease.
Species:  Human
Tissue:  CXCR1+CD4+ T cells.
References:  18
Proliferation of endothelial cells.
Species:  Human
Tissue:  HUVEC and HMEC cells.
References:  37
Physiological Functions Comments
CXCR1 is implicated in directed intravascular leukocyte migration through platelet thrombi at sites of vascular injury [21]. CXCR1 is also implicated as a negative determinant for pancreatic islet survival after transplantation [8].
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Cxcr1tm1Dgen Cxcr1tm1Dgen/Cxcr1tm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2448715  MP:0002169 no abnormal phenotype detected
Clinically-Relevant Mutations and Pathophysiology Comments
Administration of reparixin in on-pump coronary artery bypass grafting (CABG) patients appears to be feasible and safe. It concurrently attenuated postoperative granulocytosis in peripheral blood [45].
In many malignancies, elevated CXCR1 activity has been connected to increased tumor growth and metastasis.
Biologically Significant Variants Click here for help
Type:  Missense mutation
Species:  Human
Description:  This single nucleotide polymorphism causes a missense variant which is associated with significantly increased susceptibility to acute pyelonephritis in childhood.
Amino acid change:  Ser276Thr
Nucleotide change:  827G>C
Global MAF (%):  14
Subpopulation MAF (%):  AFR|AMR|ASN|EUR: 26|9|9|4
Minor allele count:  G=0.115/250
SNP accession: 
References:  31
Type:  Missense mutation
Species:  Human
Description:  Met to Arg variant in the N terminus extracellular domain of CXCR1. This mutation reduces infection by HIV, probably acting through modulation of CD4 and CXCR4 expression.
Amino acid change:  Met31Arg
Global MAF (%):  4
SNP accession: 
References:  22,53
Type:  Single nucleotide polymorphism
Species:  Human
Description:  This single nucleotide polymorphism is associated with susceptibility to cutaneous leishmaniasis.
Nucleotide change:  C>G
Global MAF (%):  18
SNP accession: 
References:  7
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  Multiple CXCR1 single nucleotide variants are associated with cystic fibrosis.
References:  34
Type:  Single nucleotide polymorphism
Species:  Human
Amino acid change:  Ser342Leu
Global MAF (%):  1
Subpopulation MAF (%):  AFR: 5
Minor allele count:  A=0.012/26
Comment on frequency:  Low frequency (<10% in all tested populations)
SNP accession: 
Validation:  1000 Genomes, HapMap
Type:  Single nucleotide polymorphism
Species:  Human
Amino acid change:  Met268Leu
Global MAF (%):  1
Subpopulation MAF (%):  AFR: 2
Minor allele count:  G=0.006/13
Comment on frequency:  Low frequency (<10% in all tested populations)
SNP accession: 
Validation:  HapMap, Frequency, Multiple observations
Type:  Single nucleotide polymorphism
Species:  Human
Description:  This single nucleotide polymorphism may be associated with an increased risk of developing chronic obstructive pulmonary disease and asthma.
Amino acid change:  Arg335Cys
Nucleotide change:  1122C>T
Minor allele count:  A=0.0230/115
Comment on frequency:  Low frequency of expression (<10% in all tested populations)
SNP accession: 
References:  50

References

Show »

1. Adams JL, Smothers J, Srinivasan R, Hoos A. (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov, 14 (9): 603-22. [PMID:26228631]

2. Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD et al.. (2014) International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev, 66 (1): 1-79. [PMID:24218476]

3. Bertini R, Allegretti M, Bizzarri C, Moriconi A, Locati M, Zampella G, Cervellera MN, Di Cioccio V, Cesta MC, Galliera E et al.. (2004) Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci USA, 101 (32): 11791-6. [PMID:15282370]

4. Brandolini L, Castelli V, Aramini A, Giorgio C, Bianchini G, Russo R, De Caro C, d'Angelo M, Catanesi M, Benedetti E et al.. (2019) DF2726A, a new IL-8 signalling inhibitor, is able to counteract chemotherapy-induced neuropathic pain. Sci Rep, 9 (1): 11729. [PMID:31409858]

5. Broxmeyer HE, Cooper S, Cacalano G, Hague NL, Bailish E, Moore MW. (1996) Involvement of Interleukin (IL) 8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J Exp Med, 184 (5): 1825-32. [PMID:8920870]

6. Bäckhed F, Torstensson E, Seguin D, Richter-Dahlfors A, Rokbi B. (2003) Helicobacter pylori infection induces interleukin-8 receptor expression in the human gastric epithelium. Infect Immun, 71 (6): 3357-60. [PMID:12761119]

7. Castellucci L, Jamieson SE, Miller EN, Menezes E, Oliveira J, Magalhães A, Guimarães LH, Lessa M, de Jesus AR, Carvalho EM et al.. (2010) CXCR1 and SLC11A1 polymorphisms affect susceptibility to cutaneous leishmaniasis in Brazil: a case-control and family-based study. BMC Med Genet, 11: 10. [PMID:20089160]

8. Citro A, Cantarelli E, Maffi P, Nano R, Melzi R, Mercalli A, Dugnani E, Sordi V, Magistretti P, Daffonchio L et al.. (2012) CXCR1/2 inhibition enhances pancreatic islet survival after transplantation. J Clin Invest, 122 (10): 3647-51. [PMID:22996693]

9. Cohen-Hillel E, Yron I, Meshel T, Soria G, Attal H, Ben-Baruch A. (2006) CXCL8-induced FAK phosphorylation via CXCR1 and CXCR2: cytoskeleton- and integrin-related mechanisms converge with FAK regulatory pathways in a receptor-specific manner. Cytokine, 33 (1): 1-16. [PMID:16406804]

10. Doroshenko T, Chaly Y, Savitskiy V, Maslakova O, Portyanko A, Gorudko I, Voitenok NN. (2002) Phagocytosing neutrophils down-regulate the expression of chemokine receptors CXCR1 and CXCR2. Blood, 100 (7): 2668-71. [PMID:12239185]

11. Dunstan CA, Salafranca MN, Adhikari S, Xia Y, Feng L, Harrison JK. (1996) Identification of two rat genes orthologous to the human interleukin-8 receptors. J Biol Chem, 271: 32770-32776. [PMID:8955112]

12. Dwyer MP, Yu Y, Chao J, Aki C, Chao J, Biju P, Girijavallabhan V, Rindgen D, Bond R, Mayer-Ezel R et al.. (2006) Discovery of 2-hydroxy-N,N-dimethyl-3-{2-[[(R)-1-(5- methylfuran-2-yl)propyl]amino]-3,4-dioxocyclobut-1-enylamino}benzamide (SCH 527123): a potent, orally bioavailable CXCR2/CXCR1 receptor antagonist. J Med Chem, 49 (26): 7603-6. [PMID:17181143]

13. Eikawa S, Ohue Y, Kitaoka K, Aji T, Uenaka A, Oka M, Nakayama E. (2010) Enrichment of Foxp3+ CD4 regulatory T cells in migrated T cells to IL-6- and IL-8-expressing tumors through predominant induction of CXCR1 by IL-6. J Immunol, 185 (11): 6734-40. [PMID:21048114]

14. Farkas L, Hahn MC, Schmoczer M, Jentsch N, Krätzel K, Pfeifer M, Schulz C. (2005) Expression of CXC chemokine receptors 1 and 2 in human bronchial epithelial cells. Chest, 128 (5): 3724-34. [PMID:16304340]

15. Feniger-Barish R, Ran M, Zaslaver A, Ben-Baruch A. (1999) Differential modes of regulation of cxc chemokine-induced internalization and recycling of human CXCR1 and CXCR2. Cytokine, 11 (12): 996-1009. [PMID:10623425]

16. Feniger-Barish R, Yron I, Meshel T, Matityahu E, Ben-Baruch A. (2003) IL-8-induced migratory responses through CXCR1 and CXCR2: association with phosphorylation and cellular redistribution of focal adhesion kinase. Biochemistry, 42: 2874-2886. [PMID:12627953]

17. Flynn G, Maru S, Loughlin J, Romero IA, Male D. (2003) Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol, 136 (1-2): 84-93. [PMID:12620646]

18. Francis JN, Jacobson MR, Lloyd CM, Sabroe I, Durham SR, Till SJ. (2004) CXCR1+CD4+ T cells in human allergic disease. J Immunol, 172 (1): 268-73. [PMID:14688334]

19. Fu W, Zhang Y, Zhang J, Chen WF. (2005) Cloning and characterization of mouse homolog of the CXC chemokine receptor CXCR1. Cytokine, 31 (1): 9-17. [PMID:15967374]

20. Geissmann F, Jung S, Littman DR. (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19 (1): 71-82. [PMID:12871640]

21. Ghasemzadeh M, Kaplan ZS, Alwis I, Schoenwaelder SM, Ashworth KJ, Westein E, Hosseini E, Salem HH, Slattery R, McColl SR et al.. (2013) The CXCR1/2 ligand NAP-2 promotes directed intravascular leukocyte migration through platelet thrombi. Blood, 121 (22): 4555-66. [PMID:23550035]

22. Giagulli C, Caccuri F, Cignarella F, Lougaris V, Martorelli D, Bugatti A, Rusnati M, Dolcetti R, Vitali M, Plebani A et al.. (2014) A CXCR1 haplotype hampers HIV-1 matrix protein p17 biological activity. AIDS, 28 (16): 2355-64. [PMID:25121556]

23. Giagulli C, Magiera AK, Bugatti A, Caccuri F, Marsico S, Rusnati M, Vermi W, Fiorentini S, Caruso A. (2012) HIV-1 matrix protein p17 binds to the IL-8 receptor CXCR1 and shows IL-8-like chemokine activity on monocytes through Rho/ROCK activation. Blood, 119 (10): 2274-83. [PMID:22262769]

24. Godaly G, Hang L, Frendéus B, Svanborg C. (2000) Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol, 165 (9): 5287-94. [PMID:11046063]

25. Gouwy M, Struyf S, Catusse J, Proost P, Van Damme J. (2004) Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration. J Leukoc Biol, 76 (1): 185-94. [PMID:15075362]

26. Hall DA, Beresford IJ, Browning C, Giles H. (1999) Signalling by CXC-chemokine receptors 1 and 2 expressed in CHO cells: a comparison of calcium mobilization, inhibition of adenylyl cyclase and stimulation of GTPgammaS binding induced by IL-8 and GROalpha. Br J Pharmacol, 126 (3): 810-8. [PMID:10188995]

27. Hang L, Frendéus B, Godaly G, Svanborg C. (2000) Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. J Infect Dis, 182: 1738-1748. [PMID:11069247]

28. Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI. (1991) Structure and functional expression of a human interleukin-8 receptor. Science, 253 (5025): 1278-80. [PMID:1840701]

29. Huber TB, Reinhardt HC, Exner M, Burger JA, Kerjaschki D, Saleem MA, Pavenstädt H. (2002) Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol, 168 (12): 6244-52. [PMID:12055238]

30. Iikura M, Miyamasu M, Yamaguchi M, Kawasaki H, Matsushima K, Kitaura M, Morita Y, Yoshie O, Yamamoto K, Hirai K. (2001) Chemokine receptors in human basophils: inducible expression of functional CXCR4. J Leukoc Biol, 70: 113-120. [PMID:11435493]

31. Javor J, Bucova M, Cervenova O, Kralinsky K, Sadova E, Suchankova M, Liptakova A. (2012) Genetic variations of interleukin-8, CXCR1 and CXCR2 genes and risk of acute pyelonephritis in children. Int J Immunogenet, 39 (4): 338-45. [PMID:22325052]

32. Jones SA, Dewald B, Clark-Lewis I, Baggiolini M. (1997) Chemokine antagonists that discriminate between interleukin-8 receptors. Selective blockers of CXCR2. J Biol Chem, 272 (26): 16166-9. [PMID:9195914]

33. Jones SA, Wolf M, Qin S, Mackay CR, Baggiolini M. (1996) Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leukocytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Proc Natl Acad Sci USA, 93 (13): 6682-6. [PMID:8692878]

34. Kormann MS, Hector A, Marcos V, Mays LE, Kappler M, Illig T, Klopp N, Zeilinger S, Carevic M, Rieber N et al.. (2012) CXCR1 and CXCR2 haplotypes synergistically modulate cystic fibrosis lung disease. Eur Respir J, 39 (6): 1385-90. [PMID:22088968]

35. Lee J, Horuk R, Rice GC, Bennett GL, Camerato T, Wood WI. (1992) Characterization of two high affinity human interleukin-8 receptors. J Biol Chem, 267 (23): 16283-7. [PMID:1379593]

36. Li A, Dubey S, Varney ML, Singh RK. (2002) Interleukin-8-induced proliferation, survival, and MMP production in CXCR1 and CXCR2 expressing human umbilical vein endothelial cells. Microvasc Res, 64 (3): 476-81. [PMID:12453441]

37. Li A, Varney ML, Valasek J, Godfrey M, Dave BJ, Singh RK. (2005) Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis, 8 (1): 63-71. [PMID:16132619]

38. Lopes AH, Brandolini L, Aramini A, Bianchini G, Silva RL, Zaperlon AC, Verri Jr WA, Alves-Filho JC, Cunha FQ, Teixeira MM et al.. (2016) DF2755A, a novel non-competitive allosteric inhibitor of CXCR1/2, reduces inflammatory and post-operative pain. Pharmacol Res, 103: 69-79. [PMID:26592483]

39. Lüttichau HR. (2010) The cytomegalovirus UL146 gene product vCXCL1 targets both CXCR1 and CXCR2 as an agonist. J Biol Chem, 285 (12): 9137-46. [PMID:20044480]

40. Merz D, Liu R, Johnson K, Terkeltaub R. (2003) IL-8/CXCL8 and growth-related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation. J Immunol, 171 (8): 4406-15. [PMID:14530367]

41. Michel G, Kemény L, Peter RU, Beetz A, Ried C, Arenberger P, Ruzicka T. (1992) Interleukin-8 receptor-mediated chemotaxis of normal human epidermal cells. FEBS Lett, 305 (3): 241-3. [PMID:1299623]

42. Neptune ER, Iiri T, Bourne HR. (1999) Galphai is not required for chemotaxis mediated by Gi-coupled receptors. J Biol Chem, 274 (5): 2824-8. [PMID:9915816]

43. Nicholls DJ, Wiley K, Dainty I, MacIntosh F, Phillips C, Gaw A, Mårdh CK. (2015) Pharmacological characterization of AZD5069, a slowly reversible CXC chemokine receptor 2 antagonist. J Pharmacol Exp Ther, 353 (2): 340-50. [PMID:25736418]

44. Ochensberger B, Tassera L, Bifrare D, Rihs S, Dahinden CA. (1999) Regulation of cytokine expression and leukotriene formation in human basophils by growth factors, chemokines and chemotactic agonists. Eur J Immunol, 29 (1): 11-22. [PMID:9933081]

45. Opfermann P, Derhaschnig U, Felli A, Wenisch J, Santer D, Zuckermann A, Dworschak M, Jilma B, Steinlechner B. (2015) A pilot study on reparixin, a CXCR1/2 antagonist, to assess safety and efficacy in attenuating ischaemia-reperfusion injury and inflammation after on-pump coronary artery bypass graft surgery. Clin Exp Immunol, 180 (1): 131-42. [PMID:25402332]

46. Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM et al.. (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature, 491 (7426): 779-83. [PMID:23086146]

47. Raghuwanshi SK, Su Y, Singh V, Haynes K, Richmond A, Richardson RM. (2012) The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions. J Immunol, 189 (6): 2824-32. [PMID:22869904]

48. Rees S, Martin DP, Scott SV, Brown SH, Fraser N, O'Shaughnessy C, Beresford IJ. (2001) Development of a homogeneous MAP kinase reporter gene screen for the identification of agonists and antagonists at the CXCR1 chemokine receptor. J Biomol Screen, 6 (1): 19-27. [PMID:11679162]

49. Richardson RM, Marjoram RJ, Barak LS, Snyderman R. (2003) Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J Immunol, 170: 2904-2911. [PMID:12626541]

50. Stemmler S, Arinir U, Klein W, Rohde G, Hoffjan S, Wirkus N, Reinitz-Rademacher K, Bufe A, Schultze-Werninghaus G, Epplen JT. (2005) Association of interleukin-8 receptor alpha polymorphisms with chronic obstructive pulmonary disease and asthma. Genes Immun, 6: 225-230. [PMID:15772681]

51. Sturm A, Baumgart DC, d'Heureuse JH, Hotz A, Wiedenmann B, Dignass AU. (2005) CXCL8 modulates human intestinal epithelial cells through a CXCR1 dependent pathway. Cytokine, 29 (1): 42-8. [PMID:15579377]

52. Takata H, Tomiyama H, Fujiwara M, Kobayashi N, Takiguchi M. (2004) Cutting edge: expression of chemokine receptor CXCR1 on human effector CD8+ T cells. J Immunol, 173 (4): 2231-5. [PMID:15294933]

53. Vasilescu A, Terashima Y, Enomoto M, Heath S, Poonpiriya V, Gatanaga H, Do H, Diop G, Hirtzig T, Auewarakul P et al.. (2007) A haplotype of the human CXCR1 gene protective against rapid disease progression in HIV-1+ patients. Proc Natl Acad Sci USA, 104 (9): 3354-9. [PMID:17360650]

54. Wakasugi K, Schimmel P. (1999) Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science, 284 (5411): 147-51. [PMID:10102815]

55. Waugh DJ, Wilson C. (2008) The interleukin-8 pathway in cancer. Clin Cancer Res, 14 (21): 6735-41. [PMID:18980965]

56. Wilson S, Wilkinson G, Milligan G. (2005) The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J Biol Chem, 280 (31): 28663-74. [PMID:15946947]

57. Wolf M, Delgado MB, Jones SA, Dewald B, Clark-Lewis I, Baggiolini M. (1998) Granulocyte chemotactic protein 2 acts via both IL-8 receptors, CXCR1 and CXCR2. Eur J Immunol, 28 (1): 164-70. [PMID:9485196]

58. Wu L, Ruffing N, Shi X, Newman W, Soler D, Mackay CR, Qin S. (1996) Discrete steps in binding and signaling of interleukin-8 with its receptor. J Biol Chem, 271 (49): 31202-9. [PMID:8940121]

59. Wuyts A, Proost P, Lenaerts JP, Ben-Baruch A, Van Damme J, Wang JM. (1998) Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial-cell-derived neutrophil attractant-78. Eur J Biochem, 255 (1): 67-73. [PMID:9692902]

60. Wuyts A, Van Osselaer N, Haelens A, Samson I, Herdewijn P, Ben-Baruch A, Oppenheim JJ, Proost P, Van Damme J. (1997) Characterization of synthetic human granulocyte chemotactic protein 2: usage of chemokine receptors CXCR1 and CXCR2 and in vivo inflammatory properties. Biochemistry, 36 (9): 2716-23. [PMID:9054580]

Contributors

Show »

How to cite this page