Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
Muscarinic acetylcholine receptors (mAChRs) (nomenclature as agreed by the NC-IUPHAR Subcommittee on Muscarinic Acetylcholine Receptors [13]) are activated by the endogenous agonist acetylcholine. All five (M1-M5) mAChRs are ubiquitously expressed in the human body and are therefore attractive targets for many disorders. Functionally, M1, M3, and M5 mAChRs preferentially couple to Gq/11 proteins, whilst M2 and M4 mAChRs predominantly couple to Gi/o proteins. Both agonists and antagonists of mAChRs are clinically approved drugs, including pilocarpine for the treatment of elevated intra-ocular pressure and glaucoma, and atropine for the treatment of bradycardia and poisoning by muscarinic agents such as organophosphates. Of note, it has been observed that mAChRs dimerise reversibly [38] and that dimerisation/oligomerisation can be affected by ligands [61,65].
M1 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M2 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M3 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M4 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M5 receptor C Show summary »« Hide summary More detailed page
|
* Key recommended reading is highlighted with an asterisk
Abrams P, Andersson KE, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, Kay G, Laties A, Nathanson NM, Pasricha PJ et al.. (2006) Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol, 148 (5): 565-78. [PMID:16751797]
Andersson KE. (2011) Muscarinic acetylcholine receptors in the urinary tract. Handb Exp Pharmacol, (202): 319-44. [PMID:21290234]
Birdsall NJ, Lazareno S. (2005) Allosterism at muscarinic receptors: ligands and mechanisms. Mini Rev Med Chem, 5 (6): 523-43. [PMID:15974931]
Brown DA. (2010) Muscarinic acetylcholine receptors (mAChRs) in the nervous system: some functions and mechanisms. J Mol Neurosci, 41 (3): 340-6. [PMID:20446119]
* Burger WAC, Sexton PM, Christopoulos A, Thal DM. (2018) Toward an understanding of the structural basis of allostery in muscarinic acetylcholine receptors. J Gen Physiol, 150 (10): 1360-1372. [PMID:30190312]
* Caulfield MP, Birdsall NJ. (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev, 50 (2): 279-90. [PMID:9647869]
Conn PJ, Christopoulos A, Lindsley CW. (2009) Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov, 8 (1): 41-54. [PMID:19116626]
Conn PJ, Jones CK, Lindsley CW. (2009) Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci, 30 (3): 148-55. [PMID:19201489]
De Amici M, Dallanoce C, Holzgrabe U, Tränkle C, Mohr K. (2010) Allosteric ligands for G protein-coupled receptors: a novel strategy with attractive therapeutic opportunities. Med Res Rev, 30 (3): 463-549. [PMID:19557759]
Eckelman WC. (2006) Imaging of muscarinic receptors in the central nervous system. Curr Pharm Des, 12 (30): 3901-13. [PMID:17073686]
Eglen RM. (2005) Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem, 43: 105-36. [PMID:15850824]
Eglen RM. (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol, 26 (3): 219-33. [PMID:16879488]
* Eglen RM. (2012) Overview of muscarinic receptor subtypes. Handb Exp Pharmacol, (208): 3-28. [PMID:22222692]
Gregory KJ, Sexton PM, Christopoulos A. (2007) Allosteric modulation of muscarinic acetylcholine receptors. Curr Neuropharmacol, 5 (3): 157-67. [PMID:19305798]
Ishii M, Kurachi Y. (2006) Muscarinic acetylcholine receptors. Curr Pharm Des, 12 (28): 3573-81. [PMID:17073660]
* Kruse AC, Kobilka BK, Gautam D, Sexton PM, Christopoulos A, Wess J. (2014) Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov, 13 (7): 549-60. [PMID:24903776]
* Leach K, Simms J, Sexton PM, Christopoulos A. (2012) Structure-function studies of muscarinic acetylcholine receptors. Handb Exp Pharmacol, (208): 29-48. [PMID:22222693]
Mohr K, Tränkle C, Kostenis E, Barocelli E, De Amici M, Holzgrabe U. (2010) Rational design of dualsteric GPCR ligands: quests and promise. Br J Pharmacol, 159 (5): 997-1008. [PMID:20136835]
Nathanson NM. (2008) Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther, 119 (1): 33-43. [PMID:18558434]
Peretto I, Petrillo P, Imbimbo BP. (2009) Medicinal chemistry and therapeutic potential of muscarinic M3 antagonists. Med Res Rev, 29 (6): 867-902. [PMID:19399831]
Potter LT, Flynn DD, Liang JS, McCollum MH. (2004) Studies of muscarinic neurotransmission with antimuscarinic toxins. Prog Brain Res, 145: 121-8. [PMID:14650911]
Servent D, Fruchart-Gaillard C. (2009) Muscarinic toxins: tools for the study of the pharmacological and functional properties of muscarinic receptors. J Neurochem, 109 (5): 1193-202. [PMID:19457160]
Tobin G, Giglio D, Lundgren O. (2009) Muscarinic receptor subtypes in the alimentary tract. J Physiol Pharmacol, 60 (1): 3-21. [PMID:19439804]
* Valant C, Robert Lane J, Sexton PM, Christopoulos A. (2012) The best of both worlds? Bitopic orthosteric/allosteric ligands of g protein-coupled receptors. Annu Rev Pharmacol Toxicol, 52: 153-78. [PMID:21910627]
Wess J, Eglen RM, Gautam D. (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov, 6 (9): 721-33. [PMID:17762886]
1. Abdul-Ridha A, Lane JR, Mistry SN, López L, Sexton PM, Scammells PJ, Christopoulos A, Canals M. (2014) Mechanistic insights into allosteric structure-function relationships at the M1 muscarinic acetylcholine receptor. J Biol Chem, 289 (48): 33701-11. [PMID:25326383]
2. Abdul-Ridha A, López L, Keov P, Thal DM, Mistry SN, Sexton PM, Lane JR, Canals M, Christopoulos A. (2014) Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor. J Biol Chem, 289 (9): 6067-79. [PMID:24443568]
3. Avlani VA, Gregory KJ, Morton CJ, Parker MW, Sexton PM, Christopoulos A. (2007) Critical role for the second extracellular loop in the binding of both orthosteric and allosteric G protein-coupled receptor ligands. J Biol Chem, 282 (35): 25677-86. [PMID:17591774]
4. Avlani VA, Langmead CJ, Guida E, Wood MD, Tehan BG, Herdon HJ, Watson JM, Sexton PM, Christopoulos A. (2010) Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. Mol Pharmacol, 78 (1): 94-104. [PMID:20413650]
5. Berizzi AE, Gentry PR, Rueda P, Den Hoedt S, Sexton PM, Langmead CJ, Christopoulos A. (2016) Molecular Mechanisms of Action of M5 Muscarinic Acetylcholine Receptor Allosteric Modulators. Mol Pharmacol, 90 (4): 427-36. [PMID:27461343]
6. Birdsall NJ, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M. (1999) Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: functional studies. Mol Pharmacol, 55 (4): 778-86. [PMID:10101037]
7. Bolden C, Cusack B, Richelson E. (1992) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J Pharmacol Exp Ther, 260 (2): 576-80. [PMID:1346637]
8. Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, Breininger ML, Gentry PR, Yin H, Jadhav SB et al.. (2008) Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther, 327 (3): 941-53. [PMID:18772318]
9. Buckley NJ, Bonner TI, Buckley CM, Brann MR. (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol, 35 (4): 469-76. [PMID:2704370]
10. Burger WAC, Gentry PR, Berizzi AE, Vuckovic Z, van der Westhuizen ET, Thompson G, Yeasmin M, Lindsley CW, Sexton PM, Langmead CJ et al.. (2021) Identification of a Novel Allosteric Site at the M5 Muscarinic Acetylcholine Receptor. ACS Chem Neurosci, 12 (16): 3112-3123. [PMID:34351123]
11. Canals M, Lane JR, Wen A, Scammells PJ, Sexton PM, Christopoulos A. (2012) A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation. J Biol Chem, 287 (1): 650-9. [PMID:22086918]
12. Carr BJ, Mihara K, Ramachandran R, Saifeddine M, Nathanson NM, Stell WK, Hollenberg MD. (2018) Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of Alpha2A-Adrenoceptors In Vitro. Invest Ophthalmol Vis Sci, 59 (7): 2778-2791. [PMID:29860464]
13. Caulfield MP, Birdsall NJ. (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev, 50 (2): 279-90. [PMID:9647869]
14. Cembala TM, Sherwin JD, Tidmarsh MD, Appadu BL, Lambert DG. (1998) Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 125 (5): 1088-94. [PMID:9846649]
15. Ch'ng SS, Walker AJ, McCarthy M, Le TK, Thomas N, Gibbons A, Udawela M, Kusljic S, Dean B, Gogos A. (2020) The Impact of Removal of Ovarian Hormones on Cholinergic Muscarinic Receptors: Examining Prepulse Inhibition and Receptor Binding. Brain Sci, 10 (2). [PMID:32079174]
16. Chan WY, McKinzie DL, Bose S, Mitchell SN, Witkin JM, Thompson RC, Christopoulos A, Lazareno S, Birdsall NJ, Bymaster FP et al.. (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA, 105 (31): 10978-83. [PMID:18678919]
17. Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP. (2002) Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther, 303 (1): 29-35. [PMID:12235229]
18. Christopoulos A, Pierce TL, Sorman JL, El-Fakahany EE. (1998) On the unique binding and activating properties of xanomeline at the M1 muscarinic acetylcholine receptor. Mol Pharmacol, 53 (6): 1120-30. [PMID:9614217]
19. Christopoulos A, Sorman JL, Mitchelson F, El-Fakahany EE. (1999) Characterization of the subtype selectivity of the allosteric modulator heptane-1,7-bis-(dimethyl-3'-phthalimidopropyl) ammonium bromide (C7/3-phth) at cloned muscarinic acetylcholine receptors. Biochem Pharmacol, 57 (2): 171-9. [PMID:9890565]
20. Christopoulos A, Wilson K. (2001) Interaction of anandamide with the M(1) and M(4) muscarinic acetylcholine receptors. Brain Res, 915 (1): 70-8. [PMID:11578621]
21. Clark AL, Mitchelson F. (1976) The inhibitory effect of gallamine on muscarinic receptors. Br J Pharmacol, 58 (3): 323-31. [PMID:990587]
22. Croy CH, Chan WY, Castetter AM, Watt ML, Quets AT, Felder CC. (2016) Characterization of PCS1055, a novel muscarinic M4 receptor antagonist. Eur J Pharmacol, 782: 70-6. [PMID:27085897]
23. Croy CH, Schober DA, Xiao H, Quets A, Christopoulos A, Felder CC. (2014) Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors. Mol Pharmacol, 86 (1): 106-15. [PMID:24807965]
24. Davoren JE, Lee CW, Garnsey M, Brodney MA, Cordes J, Dlugolenski K, Edgerton JR, Harris AR, Helal CJ, Jenkinson S et al.. (2016) Discovery of the Potent and Selective M1 PAM-Agonist N-[(3R,4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-5-methyl-4-[4-(1,3-thiazol-4-yl)benzyl]pyridine-2-carboxamide (PF-06767832): Evaluation of Efficacy and Cholinergic Side Effects. J Med Chem, 59 (13): 6313-28. [PMID:27275946]
25. Del Bello F, Barocelli E, Bertoni S, Bonifazi A, Camalli M, Campi G, Giannella M, Matucci R, Nesi M, Pigini M et al.. (2012) 1,4-dioxane, a suitable scaffold for the development of novel M₃ muscarinic receptor antagonists. J Med Chem, 55 (4): 1783-7. [PMID:22243489]
26. Disse B, Reichl R, Speck G, Traunecker W, Ludwig Rominger KL, Hammer R. (1993) Ba 679 BR, a novel long-acting anticholinergic bronchodilator. Life Sci, 52 (5-6): 537-44. [PMID:8441333]
27. Dong GZ, Kameyama K, Rinken A, Haga T. (1995) Ligand binding properties of muscarinic acetylcholine receptor subtypes (m1-m5) expressed in baculovirus-infected insect cells. J Pharmacol Exp Ther, 274 (1): 378-84. [PMID:7616422]
28. Dowling MR, Charlton SJ. (2006) Quantifying the association and dissociation rates of unlabelled antagonists at the muscarinic M3 receptor. Br J Pharmacol, 148 (7): 927-37. [PMID:16847442]
29. Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther, 256 (2): 727-33. [PMID:1994002]
30. Fruchart-Gaillard C, Mourier G, Marquer C, Ménez A, Servent D. (2006) Identification of various allosteric interaction sites on M1 muscarinic receptor using 125I-Met35-oxidized muscarinic toxin 7. Mol Pharmacol, 69 (5): 1641-51. [PMID:16439611]
31. Gentry PR, Kokubo M, Bridges TM, Cho HP, Smith E, Chase P, Hodder PS, Utley TJ, Rajapakse A, Byers F et al.. (2014) Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe. ChemMedChem, 9 (8): 1677-82. [PMID:24692176]
32. Gentry PR, Kokubo M, Bridges TM, Kett NR, Harp JM, Cho HP, Smith E, Chase P, Hodder PS, Niswender CM et al.. (2013) Discovery of the first M5-selective and CNS penetrant negative allosteric modulator (NAM) of a muscarinic acetylcholine receptor: (S)-9b-(4-chlorophenyl)-1-(3,4-difluorobenzoyl)-2,3-dihydro-1H-imidazo[2,1-a]isoindol-5(9bH)-one (ML375). J Med Chem, 56 (22): 9351-5. [PMID:24164599]
33. Gentry PR, Kokubo M, Bridges TM, Noetzel MJ, Cho HP, Lamsal A, Smith E, Chase P, Hodder PS, Niswender CM et al.. (2014) Development of a highly potent, novel M5 positive allosteric modulator (PAM) demonstrating CNS exposure: 1-((1H-indazol-5-yl)sulfoneyl)-N-ethyl-N-(2-(trifluoromethyl)benzyl)piperidine-4-carboxamide (ML380). J Med Chem, 57 (18): 7804-10. [PMID:25147929]
34. Gillberg PG, Sundquist S, Nilvebrant L. (1998) Comparison of the in vitro and in vivo profiles of tolterodine with those of subtype-selective muscarinic receptor antagonists. Eur J Pharmacol, 349 (2-3): 285-92. [PMID:9671109]
35. Grant MK, El-Fakahany EE. (2005) Persistent binding and functional antagonism by xanomeline at the muscarinic M5 receptor. J Pharmacol Exp Ther, 315 (1): 313-9. [PMID:16002459]
36. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T et al.. (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature, 482 (7386): 547-51. [PMID:22278061]
37. Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM. (1997) Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol, 120 (8): 1409-18. [PMID:9113359]
38. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S, Molloy JE, Birdsall NJ. (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA, 107 (6): 2693-8. [PMID:20133736]
39. Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe M, Mitsuya M et al.. (2001) Pharmacological properties of (2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: a novel mucarinic antagonist with M(2)-sparing antagonistic activity. J Pharmacol Exp Ther, 297 (2): 790-7. [PMID:11303071]
40. Huang F, Buchwald P, Browne CE, Farag HH, Wu WM, Ji F, Hochhaus G, Bodor N. (2001) Receptor binding studies of soft anticholinergic agents. AAPS PharmSci, 3 (4): E30. [PMID:12049493]
41. Jakubík J, Bacáková L, el-Fakahany EE, Tucek S. (1995) Subtype selectivity of the positive allosteric action of alcuronium at cloned M1-M5 muscarinic acetylcholine receptors. J Pharmacol Exp Ther, 274 (3): 1077-83. [PMID:7562472]
42. Jakubík J, Bacáková L, El-Fakahany EE, Tucek S. (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol, 52 (1): 172-9. [PMID:9224827]
43. Jakubík J, El-Fakahany EE, Dolezal V. (2006) Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors. Mol Pharmacol, 70 (2): 656-66. [PMID:16675658]
44. Jeon WJ, Gibbons AS, Dean B. (2013) The use of a modified [3H]4-DAMP radioligand binding assay with increased selectivity for muscarinic M3 receptor shows that cortical CHRM3 levels are not altered in mood disorders. Prog Neuropsychopharmacol Biol Psychiatry, 47: 7-12. [PMID:23962466]
45. Jolkkonen M, van Giersbergen PL, Hellman U, Wernstedt C, Karlsson E. (1994) A toxin from the green mamba Dendroaspis angusticeps: amino acid sequence and selectivity for muscarinic m4 receptors. FEBS Lett, 352 (1): 91-4. [PMID:7925952]
46. Jones CK, Brady AE, Davis AA, Xiang Z, Bubser M, Tantawy MN, Kane AS, Bridges TM, Kennedy JP, Bradley SR et al.. (2008) Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci, 28 (41): 10422-33. [PMID:18842902]
47. Keov P, López L, Devine SM, Valant C, Lane JR, Scammells PJ, Sexton PM, Christopoulos A. (2014) Molecular mechanisms of bitopic ligand engagement with the M1 muscarinic acetylcholine receptor. J Biol Chem, 289 (34): 23817-37. [PMID:25006252]
48. Keov P, Valant C, Devine SM, Lane JR, Scammells PJ, Sexton PM, Christopoulos A. (2013) Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M₁ muscarinic acetylcholine receptor. Mol Pharmacol, 84 (3): 425-37. [PMID:23798605]
49. Khattar SK, Bora RS, Priyadarsiny P, Gupta D, Khanna A, Narayanan KL, Babu V, Chugh A, Saini KS. (2006) High level stable expression of pharmacologically active human M1-M5 muscarinic receptor subtypes in mammalian cells. Biotechnol Lett, 28 (2): 121-9. [PMID:16369696]
50. Kovacs I, Yamamura HI, Waite SL, Varga EV, Roeske WR. (1998) Pharmacological comparison of the cloned human and rat M2 muscarinic receptor genes expressed in the murine fibroblast (B82) cell line. J Pharmacol Exp Ther, 284 (2): 500-7. [PMID:9454790]
51. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hübner H, Pardon E, Valant C, Sexton PM et al.. (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 504 (7478): 101-6. [PMID:24256733]
52. Langmead CJ, Austin NE, Branch CL, Brown JT, Buchanan KA, Davies CH, Forbes IT, Fry VA, Hagan JJ, Herdon HJ et al.. (2008) Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br J Pharmacol, 154 (5): 1104-15. [PMID:18454168]
53. Langmead CJ, Fry VA, Forbes IT, Branch CL, Christopoulos A, Wood MD, Herdon HJ. (2006) Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M(1) receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol Pharmacol, 69 (1): 236-46. [PMID:16207821]
54. Lazareno S, Birdsall NJ. (1995) Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol, 48 (2): 362-78. [PMID:7651370]
55. Lazareno S, Dolezal V, Popham A, Birdsall NJ. (2004) Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol, 65 (1): 257-66. [PMID:14722259]
56. Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJ. (1998) Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies. Mol Pharmacol, 53 (3): 573-89. [PMID:9495826]
57. Lazareno S, Popham A, Birdsall NJ. (2000) Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-(3)H]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol Pharmacol, 58 (1): 194-207. [PMID:10860942]
58. Lazareno S, Popham A, Birdsall NJ. (2002) Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol Pharmacol, 62 (6): 1492-505. [PMID:12435818]
59. Leach K, Davey AE, Felder CC, Sexton PM, Christopoulos A. (2011) The role of transmembrane domain 3 in the actions of orthosteric, allosteric, and atypical agonists of the M4 muscarinic acetylcholine receptor. Mol Pharmacol, 79 (5): 855-65. [PMID:21300722]
60. Leach K, Loiacono RE, Felder CC, McKinzie DL, Mogg A, Shaw DB, Sexton PM, Christopoulos A. (2010) Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology, 35 (4): 855-69. [PMID:19940843]
61. Li Y, Shivnaraine RV, Huang F, Wells JW, Gradinaru CC. (2018) Ligand-Induced Coupling between Oligomers of the M2 Receptor and the Gi1 Protein in Live Cells. Biophys J, 115 (5): 881-895. [PMID:30131171]
62. Ma L, Seager MA, Seager M, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, Graufelds VK, Xu G et al.. (2009) Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci USA, 106 (37): 15950-5. [PMID:19717450]
63. Maeda S, Xu J, N Kadji FM, Clark MJ, Zhao J, Tsutsumi N, Aoki J, Sunahara RK, Inoue A, Garcia KC et al.. (2020) Structure and selectivity engineering of the M1 muscarinic receptor toxin complex. Science, 369 (6500): 161-167. [PMID:32646996]
64. Marlo JE, Niswender CM, Days EL, Bridges TM, Xiang Y, Rodriguez AL, Shirey JK, Brady AE, Nalywajko T, Luo Q et al.. (2009) Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol Pharmacol, 75 (3): 577-88. [PMID:19047481]
65. Marsango S, Ward RJ, Alvarez-Curto E, Milligan G. (2018) Muscarinic receptor oligomerization. Neuropharmacology, 136 (Pt C): 401-410. [PMID:29146505]
66. May LT, Avlani VA, Langmead CJ, Herdon HJ, Wood MD, Sexton PM, Christopoulos A. (2007) Structure-function studies of allosteric agonism at M2 muscarinic acetylcholine receptors. Mol Pharmacol, 72 (2): 463-76. [PMID:17525129]
67. McDonald JK, van der Westhuizen ET, Pham V, Thompson G, Felder CC, Paul SM, Thal DM, Christopoulos A, Valant C. (2022) Biased Profile of Xanomeline at the Recombinant Human M4 Muscarinic Acetylcholine Receptor. ACS Chem Neurosci, 13 (8): 1206-1218. [PMID:35380782]
68. Miller JH, Gibson VA, McKinney M. (1991) Binding of [3H]AF-DX 384 to cloned and native muscarinic receptors. J Pharmacol Exp Ther, 259 (2): 601-7. [PMID:1941609]
69. Mohr M, Heller E, Ataie A, Mohr K, Holzgrabe U. (2004) Development of a new type of allosteric modulator of muscarinic receptors: hybrids of the antagonist AF-DX 384 and the hexamethonio derivative W84. J Med Chem, 47 (12): 3324-7. [PMID:15163212]
70. Moo EV, Sexton PM, Christopoulos A, Valant C. (2018) Utility of an "Allosteric Site-Impaired" M2 Muscarinic Acetylcholine Receptor as a Novel Construct for Validating Mechanisms of Action of Synthetic and Putative Endogenous Allosteric Modulators. Mol Pharmacol, 94 (5): 1298-1309. [PMID:30213802]
71. Moriya H, Takagi Y, Nakanishi T, Hayashi M, Tani T, Hirotsu I. (1999) Affinity profiles of various muscarinic antagonists for cloned human muscarinic acetylcholine receptor (mAChR) subtypes and mAChRs in rat heart and submandibular gland. Life Sci, 64 (25): 2351-8. [PMID:10374898]
72. Myslivecek J. (2022) Multitargeting nature of muscarinic orthosteric agonists and antagonists. Front Physiol, 13: 974160. [PMID:36148314]
73. Nawaratne V, Leach K, Felder CC, Sexton PM, Christopoulos A. (2010) Structural determinants of allosteric agonism and modulation at the M4 muscarinic acetylcholine receptor: identification of ligand-specific and global activation mechanisms. J Biol Chem, 285 (25): 19012-21. [PMID:20406819]
74. Nawaratne V, Leach K, Suratman N, Loiacono RE, Felder CC, Armbruster BN, Roth BL, Sexton PM, Christopoulos A. (2008) New insights into the function of M4 muscarinic acetylcholine receptors gained using a novel allosteric modulator and a DREADD (designer receptor exclusively activated by a designer drug). Mol Pharmacol, 74 (4): 1119-31. [PMID:18628403]
75. Näsman J, Jolkkonen M, Ammoun S, Karlsson E, Akerman KE. (2000) Recombinant expression of a selective blocker of M(1) muscarinic receptors. Biochem Biophys Res Commun, 271 (2): 435-9. [PMID:10799315]
76. Olianas MC, Ingianni A, Maullu C, Adem A, Karlsson E, Onali P. (1999) Selectivity profile of muscarinic toxin 3 in functional assays of cloned and native receptors. J Pharmacol Exp Ther, 288 (1): 164-70. [PMID:9862767]
77. Olianas MC, Maullu C, Adem A, Mulugeta E, Karlsson E, Onali P. (2000) Inhibition of acetylcholine muscarinic M(1) receptor function by the M(1)-selective ligand muscarinic toxin 7 (MT-7). Br J Pharmacol, 131 (3): 447-52. [PMID:11015294]
78. Olianas MC, Onali P. (1999) PD 102807, a novel muscarinic M4 receptor antagonist, discriminates between striatal and cortical muscarinic receptors coupled to cyclic AMP. Life Sci, 65 (21): 2233-40. [PMID:10576595]
79. Ozenil M, Aronow J, Millard M, Langer T, Wadsak W, Hacker M, Pichler V. (2021) Update on PET Tracer Development for Muscarinic Acetylcholine Receptors. Pharmaceuticals (Basel), 14 (6). DOI: 10.3390/ph14060530 [PMID:34199622]
80. Ozenil M, Pacher K, Balber T, Vraka C, Roller A, Holzer W, Spreitzer H, Mitterhauser M, Wadsak W, Hacker M et al.. (2020) Enhanced arecoline derivatives as muscarinic acetylcholine receptor M1 ligands for potential application as PET radiotracers. Eur J Med Chem, 204: 112623. [PMID:32717485]
81. Pei XF, Gupta TH, Badio B, Padgett WL, Daly JW. (1998) 6beta-Acetoxynortropane: a potent muscarinic agonist with apparent selectivity toward M2-receptors. J Med Chem, 41 (12): 2047-55. [PMID:9622546]
82. Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ. (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature, 334 (6181): 434-7. [PMID:2841607]
83. Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ. (1987) Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J, 6 (13): 3923-9. [PMID:3443095]
84. Powers AS, Pham V, Burger WAC, Thompson G, Laloudakis Y, Barnes NW, Sexton PM, Paul SM, Christopoulos A, Thal DM et al.. (2023) Structural basis of efficacy-driven ligand selectivity at GPCRs. Nat Chem Biol, 19 (7): 805-814. [PMID:36782010]
85. Prat M, Fernández D, Buil MA, Crespo MI, Casals G, Ferrer M, Tort L, Castro J, Monleón JM, Gavaldà A et al.. (2009) Discovery of novel quaternary ammonium derivatives of (3R)-quinuclidinol esters as potent and long-acting muscarinic antagonists with potential for minimal systemic exposure after inhaled administration: identification of (3R)-3-{[hydroxy(di-2-thienyl)acetyl]oxy}-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane bromide (aclidinium bromide). J Med Chem, 52 (16): 5076-92. [PMID:19653626]
86. Richards MH, van Giersbergen PL. (1995) Human muscarinic receptors expressed in A9L and CHO cells: activation by full and partial agonists. Br J Pharmacol, 114 (6): 1241-9. [PMID:7620715]
87. Sams AG, Hentzer M, Mikkelsen GK, Larsen K, Bundgaard C, Plath N, Christoffersen CT, Bang-Andersen B. (2010) Discovery of N-{1-[3-(3-oxo-2,3-dihydrobenzo[1,4]oxazin-4-yl)propyl]piperidin-4-yl}-2-phenylacetamide (Lu AE51090): an allosteric muscarinic M1 receptor agonist with unprecedented selectivity and procognitive potential. J Med Chem, 53 (17): 6386-97. [PMID:20684563]
88. Scarr E, Dean B. (2008) Muscarinic receptors: do they have a role in the pathology and treatment of schizophrenia?. J Neurochem, 107 (5): 1188-95. [PMID:18957051]
89. Schrage R, Holze J, Klöckner J, Balkow A, Klause AS, Schmitz AL, De Amici M, Kostenis E, Tränkle C, Holzgrabe U et al.. (2014) New insight into active muscarinic receptors with the novel radioagonist [³H]iperoxo. Biochem Pharmacol, 90 (3): 307-19. [PMID:24863257]
90. Schrage R, Seemann WK, Klöckner J, Dallanoce C, Racké K, Kostenis E, De Amici M, Holzgrabe U, Mohr K. (2013) Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor. Br J Pharmacol, 169 (2): 357-70. [PMID:23062057]
91. Shannon HE, Bymaster FP, Calligaro DO, Greenwood B, Mitch CH, Sawyer BD, Ward JS, Wong DT, Olesen PH, Sheardown MJ et al.. (1994) Xanomeline: a novel muscarinic receptor agonist with functional selectivity for M1 receptors. J Pharmacol Exp Ther, 269 (1): 271-81. [PMID:7909557]
92. Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM et al.. (2009) A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol Pharmacol, 76 (2): 356-68. [PMID:19407080]
93. Sinha S, Gupta S, Malhotra S, Krishna NS, Meru AV, Babu V, Bansal V, Garg M, Kumar N, Chugh A et al.. (2010) AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br J Pharmacol, 160 (5): 1119-27. [PMID:20590605]
94. Smith CM, Wallis RM. (1997) Characterisation of [3H]-darifenacin as a novel radioligand for the study of muscarinic M3 receptors. J Recept Signal Transduct Res, 17 (1-3): 177-84. [PMID:9029489]
95. Spalding TA, Ma JN, Ott TR, Friberg M, Bajpai A, Bradley SR, Davis RE, Brann MR, Burstein ES. (2006) Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation. Mol Pharmacol, 70 (6): 1974-83. [PMID:16959945]
96. Spalding TA, Trotter C, Skjaerbaek N, Messier TL, Currier EA, Burstein ES, Li D, Hacksell U, Brann MR. (2002) Discovery of an ectopic activation site on the M(1) muscarinic receptor. Mol Pharmacol, 61 (6): 1297-302. [PMID:12021390]
97. Stahl E, Ellis J. (2010) Novel allosteric effects of amiodarone at the muscarinic M5 receptor. J Pharmacol Exp Ther, 334 (1): 214-22. [PMID:20348203]
98. Staus DP, Hu H, Robertson MJ, Kleinhenz ALW, Wingler LM, Capel WD, Latorraca NR, Lefkowitz RJ, Skiniotis G. (2020) Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc. Nature, 579 (7798): 297-302. [PMID:31945772]
99. Stocks MJ, Alcaraz L, Bailey A, Bowers K, Donald D, Edwards H, Hunt F, Kindon N, Pairaudeau G, Theaker J et al.. (2010) The discovery of new spirocyclic muscarinic M3 antagonists. Bioorg Med Chem Lett, 20 (24): 7458-61. [PMID:21036043]
100. Suno R, Lee S, Maeda S, Yasuda S, Yamashita K, Hirata K, Horita S, Tawaramoto MS, Tsujimoto H, Murata T et al.. (2018) Structural insights into the subtype-selective antagonist binding to the M2 muscarinic receptor. Nat Chem Biol, 14 (12): 1150-1158. [PMID:30420692]
101. Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn PJ. (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci USA, 100 (23): 13674-9. [PMID:14595031]
102. Sykes DA, Dowling MR, Leighton-Davies J, Kent TC, Fawcett L, Renard E, Trifilieff A, Charlton SJ. (2012) The Influence of receptor kinetics on the onset and duration of action and the therapeutic index of NVA237 and tiotropium. J Pharmacol Exp Ther, 343 (2): 520-8. [PMID:22854200]
103. Tanis SP, Plewe MB, Johnson TW, Butler SL, Dalvie D, DeLisle D, Dress KR, Hu Q, Huang B, Kuehler JE et al.. (2010) Azaindole N-methyl hydroxamic acids as HIV-1 integrase inhibitors-II. The impact of physicochemical properties on ADME and PK. Bioorg Med Chem Lett, 20 (24): 7429-34. [PMID:21036042]
104. Tautermann CS, Kiechle T, Seeliger D, Diehl S, Wex E, Banholzer R, Gantner F, Pieper MP, Casarosa P. (2013) Molecular basis for the long duration of action and kinetic selectivity of tiotropium for the muscarinic M3 receptor. J Med Chem, 56 (21): 8746-56. [PMID:24088171]
105. Thal DM, Sun B, Feng D, Nawaratne V, Leach K, Felder CC, Bures MG, Evans DA, Weis WI, Bachhawat P et al.. (2016) Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature, 531 (7594): 335-40. [PMID:26958838]
106. Tränkle C, Weyand O, Voigtländer U, Mynett A, Lazareno S, Birdsall NJ, Mohr K. (2003) Interactions of orthosteric and allosteric ligands with [3H]dimethyl-W84 at the common allosteric site of muscarinic M2 receptors. Mol Pharmacol, 64 (1): 180-90. [PMID:12815174]
107. Valant C, Felder CC, Sexton PM, Christopoulos A. (2012) Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol Pharmacol, 81 (1): 41-52. [PMID:21989256]
108. Valant C, Gregory KJ, Hall NE, Scammells PJ, Lew MJ, Sexton PM, Christopoulos A. (2008) A novel mechanism of G protein-coupled receptor functional selectivity. Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J Biol Chem, 283 (43): 29312-21. [PMID:18723515]
109. Valuskova P, Farar V, Forczek S, Krizova I, Myslivecek J. (2018) Autoradiography of 3H-pirenzepine and 3H-AFDX-384 in Mouse Brain Regions: Possible Insights into M1, M2, and M4 Muscarinic Receptors Distribution. Front Pharmacol, 9: 124. [PMID:29515448]
110. Vuckovic Z, Gentry PR, Berizzi AE, Hirata K, Varghese S, Thompson G, van der Westhuizen ET, Burger WAC, Rahmani R, Valant C et al.. (2019) Crystal structure of the M5 muscarinic acetylcholine receptor. Proc Natl Acad Sci USA, 116 (51): 26001-26007. [PMID:31772027]
111. Wang J, Wu M, Chen Z, Wu L, Wang T, Cao D, Wang H, Liu S, Xu Y, Li F et al.. (2022) The unconventional activation of the muscarinic acetylcholine receptor M4R by diverse ligands. Nat Commun, 13 (1): 2855. [PMID:35606397]
112. Wang SZ, el-Fakahany EE. (1993) Application of transfected cell lines in studies of functional receptor subtype selectivity of muscarinic agonists. J Pharmacol Exp Ther, 266 (1): 237-43. [PMID:7687290]
113. Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, Jerman J, Middlemiss DN, Riley GJ, Brown AM. (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol, 125 (7): 1413-20. [PMID:9884068]
114. Watson M, Roeske WR, Johnson PC, Yamamura HI. (1984) [3H]Pirenzepine identifies putative M1 muscarinic receptors in human stellate ganglia. Brain Res, 290 (1): 179-82. [PMID:6546354]
115. Wess J, Lambrecht G, Mutschler E, Brann MR, Dörje F. (1991) Selectivity profile of the novel muscarinic antagonist UH-AH 37 determined by the use of cloned receptors and isolated tissue preparations. Br J Pharmacol, 102 (1): 246-50. [PMID:2043926]
116. Wood MD, Murkitt KL, Ho M, Watson JM, Brown F, Hunter AJ, Middlemiss DN. (1999) Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry. Br J Pharmacol, 126 (7): 1620-4. [PMID:10323594]
117. Xu J, Wang Q, Hübner H, Hu Y, Niu X, Wang H, Maeda S, Inoue A, Tao Y, Gmeiner P et al.. (2023) Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Nat Commun, 14 (1): 376. [PMID:36690613]
118. Yao XC, Wang TX, Chen HZ, Gao WB, Fowler AG, Raussendorf R, Chen ZB, Liu NL, Lu CY, Deng YJ et al.. (2012) Experimental demonstration of topological error correction. Nature, 482 (7386): 489-94. [PMID:22358838]
119. Zhang S, Gumpper RH, Huang XP, Liu Y, Krumm BE, Cao C, Fay JF, Roth BL. (2022) Molecular basis for selective activation of DREADD-based chemogenetics. Nature, 612 (7939): 354-362. [PMID:36450989]
Subcommittee members:
Arthur Christopoulos (Chairperson)
Nigel J. M. Birdsall (Past chairperson)
Sophie Bradley
David A. Brown
Frederick Ehlert
Christian C. Felder
Chris Langmead
Fred Mitchelson
Neil M. Nathanson
Andrew B. Tobin
Celine Valant
Jurgen Wess |
Other contributors:
Noel J. Buckley
R.A. John Challiss
Richard M. Eglen
Rudolf Hammer
Heinz J. Kilbinger
Günter Lambrecht
Ernst Mutschler
Roy D. Schwarz
David Thal |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br J Pharmacol. 180 Suppl 2:S23-S144.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Atomic structures for all five mAChRs bound to antagonists have been determined [36,100,105,110,118]. Structures of agonist-bound M1, M2, M3, and M4 mAChRs [51,111,117,119] and β2-arrestin-bound M2 mAChR have been reported [98]. These structures show that the orthosteric binding site of this family of receptor is absolutely conserved and, as a consequence, explain why highly selective orthosteric ligand binding to any specific mAChR has been notoriously difficult to achieve. As such, it is common to assess the rank order of affinity for a range of antagonists with limited selectivity (e.g., 4-DAMP, darifenacin, pirenzepine, AFDX384) to identify the involvement of particular subtypes- although caution should be used in the design and interpretation of such experiments due to the lack of absolute ligand subtype selectivity [72]. Some ligands may display selectivity at the level of function (e.g., xanomeline) or binding kinetics (e.g., tiotropium) [84,91,104]. In addition, structures of the M3 and M4 mAChR DREADDS (designer receptors exclusively activated by designer drugs) have been reported providing insights into orthosteric ligand selectivity for these chemogenetic tools [119].
Structures of the M1 and M2 and M4 mAChRs in complex with allosteric modulators [51,63,111] have validated numerous pharmacological studies that indicated the presence of a common mAChR allosteric site located at the extracellular entrance to these receptors. In addition, a structure of the M1 mAChR with muscarinic toxin 7 (MT7) bound to the common allosteric site has provided insight into the extreme subtype selectivity of MT7 [63]. Allosteric ligands proposed to bind to this common allosteric site include gallamine, strychnine, C7/3-phth, brucine and LY2033298. Additionally, a second allosteric site has been proposed on the mAChRs based on pharmacological analyses of the actions of compounds such as KT 5720, WIN 62,577, WIN 51,708, staurosporine and amiodarone [10,57-58,97]. In the presence of the orthosteric ligand, allosteric modulators can exert positive, negative, or neutral cooperativity with that ligand. Direct receptor activation via an allosteric site has been reported for a number of allosteric ligands of the mAChRs [24,59-60,62,73-74]. ‘Atypical agonists’ are ligands that have been suggested to have bitopic binding modes for at least one subtype whereby the agonist occupies both the orthosteric and allosteric sites [4,47,108]. Several mAChR PET radioligands have been reported, but their utility for subtype selectivity measurements in the human brain has yet to be confirmed [79].