Top ▲

V2 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 368

Nomenclature: V2 receptor

Family: Vasopressin and oxytocin receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 371 Xq28 AVPR2 arginine vasopressin receptor 2 8,72
Mouse 7 371 X 37.46 cM Avpr2 arginine vasopressin receptor 2 54
Rat 7 371 Xq37 Avpr2 arginine vasopressin receptor 2 45
Previous and Unofficial Names Click here for help
ADHR | DIR3 | antidiuretic hormone receptor | renal-type arginine vasopressin receptor
Database Links Click here for help
Specialist databases
GPCRdb v2r_human (Hs), v2r_mouse (Mm), v2r_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
oxytocin {Sp: Human, Mouse, Rat}
vasopressin {Sp: Human, Mouse, Rat}
Comments: Vasopressin is the principal endogenous agonist
Potency order of endogenous ligands (Human)
vasopressin (AVP, P01185) > oxytocin (OXT, P01178)  [1,11,13,60,74,79,89]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]AVP (human, mouse, rat) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 8.4 – 9.4 pKd 17,50,78-79,89
pKd 8.4 – 9.4 (Kd 3.98x10-9 – 3.99x10-10 M) [17,50,78-79,89]
[3H]AVP (human, mouse, rat) Peptide Ligand is labelled Ligand is radioactive Rn Full agonist 8.8 pKd 17
pKd 8.8 [17]
[3H]dDAVP Peptide Ligand is labelled Ligand is radioactive Hs Full agonist 7.2 – 9.1 pKd 46
pKd 7.2 – 9.1 (Kd 6.3x10-8 – 8x10-10 M) [46]
[3H]OT (human, mouse, rat) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 5.8 pKd
pKd 5.8
dVDAVP Peptide Click here for species-specific activity table Hs Full agonist 8.6 – 9.1 pKi 21,83
pKi 8.6 – 9.1 [21,83]
desmopressin Peptide Approved drug Click here for species-specific activity table Rn Full agonist 8.7 pKi 17
pKi 8.7 [17]
vasopressin {Sp: Human, Mouse, Rat} Peptide Approved drug Primary target of this compound Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 7.9 – 9.1 pKi 1,11,13,21,50,66,74,78-79,83,89
pKi 7.9 – 9.1 [1,11,13,21,50,66,74,78-79,83,89]
[Val4]AVP Peptide Click here for species-specific activity table Hs Full agonist 8.4 pKi 21
pKi 8.4 [21]
DAVP Peptide Click here for species-specific activity table Rn Full agonist 8.3 pKi 17
pKi 8.3 [17]
dAVP Peptide Click here for species-specific activity table Hs Full agonist 8.3 pKi 11,21
pKi 8.3 [11,21]
desmopressin Peptide Approved drug Click here for species-specific activity table Hs Full agonist 7.2 – 8.6 pKi 11,13,17,50,66,74,79,83
pKi 7.2 – 8.6 (Ki 6.3x10-8 – 2.5x10-9 M) [11,13,17,50,66,74,79,83]
arginine vasotocin Peptide Click here for species-specific activity table Hs Full agonist 7.6 – 8.2 pKi 13,83
pKi 7.6 – 8.2 [13,83]
LVP {Sp: Pig} Peptide Click here for species-specific activity table Hs Full agonist 7.0 – 8.5 pKi 74,83
pKi 7.0 – 8.5 [74,83]
DAVP Peptide Hs Full agonist 7.3 – 7.6 pKi 13,17
pKi 7.3 – 7.6 [13,17]
[Phe3]OT Peptide Click here for species-specific activity table Hs Full agonist 7.1 pKi 13
pKi 7.1 [13]
OPC-51803 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.0 pKi 50
pKi 7.0 [50]
d[Leu4]LVP Peptide Click here for species-specific activity table Rn Full agonist 7.0 pKi 60
pKi 7.0 [60]
d[D-Phe2]AVP Peptide Click here for species-specific activity table Hs Full agonist 6.6 pKi 21
pKi 6.6 [21]
d[Leu4,Dap8]VP Peptide Click here for species-specific activity table Rn Full agonist 6.6 pKi 60
pKi 6.6 [60]
d[Leu4]AVP Peptide Click here for species-specific activity table Hs Full agonist 6.6 pKi 11
pKi 6.6 [11]
d[Cha4]AVP Peptide Click here for species-specific activity table Hs Full agonist 6.5 pKi 21
pKi 6.5 [21]
d[Cha4,Dab8]VP Peptide Click here for species-specific activity table Rn Full agonist 6.3 pKi 60
pKi 6.3 [60]
d[Cha4]LVP Peptide Click here for species-specific activity table Rn Full agonist 6.2 pKi 60
pKi 6.2 [60]
oxytocin {Sp: Human, Mouse, Rat} Peptide Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 5.4 – 6.8 pKi 13,15,66,78-79,83
pKi 5.4 – 6.8 [13,15,66,78-79,83]
LIT-001 Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.8 pKi 30
pKi 5.8 (Ki 1.666x10-6 M) [30]
Description: Binding affinity determined by a TR-FRET binding assay on HEK cells expressing SNAP-tagged V2 receptors using 20 nM fluorescent DY647 and increasing concentration of competitor.
d[D-Pal2]AVP Peptide Click here for species-specific activity table Hs Agonist 5.0 – 5.2 pKi 21,69,83
pKi 5.0 – 5.2 (Ki 9.6x10-6 – 6.422x10-6 M) [21,69,83]
VNA932 Small molecule or natural product Hs Full agonist 7.1 pIC50 24
pIC50 7.1 (IC50 8x10-8 M) [24]
View species-specific agonist tables
Agonist Comments
The binding affinities at the V2 receptor found in study [60] are from native tissues.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I]d(CH2)5[D-Ile2,Ile4,Tyr-NH29]AVP Peptide Ligand is labelled Ligand is radioactive Rn Antagonist 9.5 pKd 17
pKd 9.5 [17]
[125I]d(CH2)5[D-Tyr(Et)2,Val4,Tyr-NH29]AVP Peptide Ligand is labelled Ligand is radioactive Rn Antagonist 9.4 pKd 17
pKd 9.4 [17]
[125I]d(CH2)5[D-Tyr(Et)2,Ile4,Tyr-NH29]AVP Peptide Ligand is labelled Ligand is radioactive Rn Antagonist 9.3 pKd 17
pKd 9.3 [17]
[125I]d(CH2)5[D-Ile2,Val4,Tyr-NH29]AVP Peptide Ligand is labelled Ligand is radioactive Rn Antagonist 9.2 pKd 17
pKd 9.2 [17]
[125I]d(CH2)5[D-Tyr(Et)2,Ile4,Tyr-NH29]AVP Peptide Ligand is labelled Ligand is radioactive Hs Antagonist 9.1 pKd 17
pKd 9.1 [17]
[125I]d(CH2)5[D-Tyr(Et)2,Val4,Tyr-NH29]AVP Peptide Ligand is labelled Ligand is radioactive Hs Antagonist 9.1 pKd 17
pKd 9.1 [17]
[3H]SR 121463A Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Inverse agonist 8.4 – 9.3 pKd 17,73
pKd 8.4 – 9.3 (Kd 4.1x10-9 – 5x10-10 M) [17,73]
balovaptan Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.0 pKd 68
pKd 5.0 (Kd 9.953x10-6 M) [68]
conivaptan Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.4 pKi 19
pKi 9.4 (Ki 3.6x10-10 M) [19]
tolvaptan Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.4 pKi 89
pKi 9.4 (Ki 4.3x10-10 M) [89]
satavaptan Small molecule or natural product Rn Antagonist 9.3 pKi 17
pKi 9.3 [17]
d(CH2)5[D-Tyr(Et)2,Val4,Tyr-NH29]AVP Peptide Click here for species-specific activity table Hs Antagonist 9.1 pKi 16
pKi 9.1 [16]
lixivaptan Small molecule or natural product Hs Inverse agonist 8.9 – 9.2 pKi 4,74
pKi 8.9 – 9.2 [4,74]
RWJ-351647 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.0 pKi 33
pKi 9.0 [33]
YM 471 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.9 pKi 84
pKi 8.9 [84]
tolvaptan Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 8.9 pKi 89
pKi 8.9 [89]
SKF-105494 Peptide Hs Antagonist 8.9 pKi 74
pKi 8.9 [74]
satavaptan Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.4 – 9.3 pKi 1,17,73-74,79
pKi 8.4 – 9.3 [1,17,73-74,79]
d(CH2)5[D-Ile2,Val4,Tyr-NH29]AVP Peptide Rn Antagonist 8.6 pKi 17
pKi 8.6 [17]
d(CH2)5[D-Ile2,Ile4,Tyr-NH29]AVP Peptide Rn Antagonist 8.4 pKi 17
pKi 8.4 [17]
d(CH2)5[Tyr(Et)2,Val4,des-Gly9]AVP Peptide Click here for species-specific activity table Hs Antagonist 8.0 – 8.3 pKi 74,79
pKi 8.0 – 8.3 [74,79]
mozavaptan Small molecule or natural product Click here for species-specific activity table Rn Inverse agonist 7.4 – 8.2 pKi 17,89
pKi 7.4 – 8.2 [17,89]
mozavaptan Small molecule or natural product Click here for species-specific activity table Hs Inverse agonist 7.4 – 8.1 pKi 17,74,79,83,89
pKi 7.4 – 8.1 [17,74,79,83,89]
d(CH2)5[D-Ile2,Ile4]AVP Peptide Hs Antagonist 6.9 – 8.4 pKi 17,74
pKi 6.9 – 8.4 [17,74]
d(CH2)5[D-Ile2,Ile4,Ala-NH29]AVP Peptide Click here for species-specific activity table Hs Antagonist 7.1 – 7.7 pKi 74,83
pKi 7.1 – 7.7 [74,83]
[tBaa1,D-Tyr(Et)2,Val4,Lys6,Arg-NH28,des-Gly9]AVP Peptide Click here for species-specific activity table Hs Antagonist 7.3 pKi 83
pKi 7.3 [83]
d(CH2)5[D-Ile2,Val4,Tyr-NH29]AVP Peptide Hs Antagonist 7.3 pKi 17
pKi 7.3 [17]
d(CH2)5[D-Ile2,Ile4,Ala-NH2]AVP Peptide Click here for species-specific activity table Hs Antagonist 7.1 pKi 83
pKi 7.1 [83]
d(CH2)5[D-Ile2,Ile4,Tyr-NH29]AVP Peptide Hs Antagonist 6.9 pKi 17
pKi 6.9 [17]
d(CH2)5[Tyr(Me)2]AVP Peptide Click here for species-specific activity table Hs Antagonist 6.7 – 7.1 pKi 16,66,74,78-79,83
pKi 6.7 – 7.1 [16,66,74,78-79,83]
relcovaptan Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.6 – 6.9 pKi 16,74,79,83-84
pKi 6.6 – 6.9 [16,74,79,83-84]
d(CH2)5[Tyr(Me)2,Thr4,Phe(3I,4N3)-NH29]OVT Peptide Click here for species-specific activity table Hs Antagonist 6.7 pKi 9
pKi 6.7 [9]
[Phaa1,D-Tyr2,Val4,Arg6,Arg-NH29]AVP Peptide Click here for species-specific activity table Hs Antagonist 6.6 pKi 83
pKi 6.6 [83]
[Phaa1,D-Tyr(Et)2,Lys6,des-Gly9]AVP Peptide Click here for species-specific activity table Hs Antagonist 6.5 – 6.6 pKi 74,83
pKi 6.5 – 6.6 [74,83]
d[Pen1,Tyr(Me)2]AVP Peptide Click here for species-specific activity table Hs Antagonist 6.4 – 6.7 pKi 74,79
pKi 6.4 – 6.7 [74,79]
[Phaa1,D-Tyr(Me)2,Arg6,Tyr-NH29]AVP Peptide Click here for species-specific activity table Hs Antagonist 6.5 pKi 83
pKi 6.5 [83]
OH-LVA Peptide Click here for species-specific activity table Hs Antagonist 6.4 pKi 83
pKi 6.4 [83]
YM 218 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.4 pKi 80
pKi 6.4 [80]
d(CH2)5[Tyr(Me)2,Thr4,Tyr-NH29]OVT Peptide Click here for species-specific activity table Hs Antagonist 6.0 pKi 74,83
pKi 6.0 [74,83]
nelivaptan Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.9 pKi 76
pKi 5.9 [76]
atosiban Peptide Approved drug Click here for species-specific activity table Hs Antagonist 5.5 – 6.0 pKi 15,75
pKi 5.5 – 6.0 [15,75]
[Phaa1,D-Tyr(Et)2,Val4,Lys6,Tyr-NH28,des-Gly9]AVP Peptide Click here for species-specific activity table Hs Antagonist 5.7 pKi 83
pKi 5.7 [83]
d(CH2)5[Tyr(Me)2,Thr4]OVT Peptide Click here for species-specific activity table Hs Antagonist 5.2 pKi 83
pKi 5.2 [83]
Ro5028442 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <4.5 pKi 62
pKi <4.5 (Ki >3x10-5 M) [62]
OPC-21268 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 4.5 pKi 83
pKi 4.5 [83]
View species-specific antagonist tables
Immuno Process Associations
Immuno Process:  Cellular signalling
Immuno Process:  Cytokine production & signalling
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family Adenylyl cyclase stimulation
References:  70
Tissue Distribution Click here for help
Lung.
Species:  Human
Technique:  RT-PCR and Northern Blotting.
References:  25
Adult: cerebellum (no change during development).
Newborn: cerebellum, choroid plexus, hippocampus.
Species:  Human
Technique:  RT-PCR and Immunohistochemistry.
References:  39
Kidney: collecting duct, distal convoluted tubule/connecting tubule.
Species:  Rat
Technique:  Immunohistochemistry.
References:  27
Hippocampus.
Species:  Rat
Technique:  RT-PCR.
References:  36
Adult: kidney.
Newborn: brain, kidney.
Species:  Rat
Technique:  RT-PCR.
References:  35
Kidney.
Species:  Rat
Technique:  in situ hybridisation.
References:  57
Kidney: cortical collecting duct, outer medullary collecting duct, inner medullary collecting duct > inner medullary thick limbs, medullary thick ascending limbs, initial cortical collecting duct.
Species:  Rat
Technique:  RT-PCR.
References:  82
Kidney: medullary thick ascending limb, cortical thick ascending limb, cortical collecting duct, outer medullary collecting duct, inner medullary collecting duct.
Species:  Rat
Technique:  Immunohistochemistry.
References:  52
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of cAMP levels in CHO cells transfected with the human V2 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of cAMP accumulation.
References:  79
Measurement of cAMP-sensitive reporter gene activity levels in L cells transfected with the rat V2 receptor.
Species:  Rat
Tissue:  L cells.
Response measured:  Stimulation of acitivity of cAMP-sensitive reporter gene.
References:  45
Measurement of cAMP levels in cultured hippocampal neurons endogenously expressing the putative rat V2 receptor.
Species:  Rat
Tissue:  Cultured hippocampal neurons.
Response measured:  Stimulation of cAMP accumulation.
References:  22
Measurement of cAMP levels in a tubular suspension of medullary thick ascending limb of Henle's loop endogenously expressing the V2 receptor.
Species:  Rat
Tissue:  Medullary thick ascending limb of Henle's loop.
Response measured:  Stimulation of cAMP accumulation.
References:  41
Physiological Functions Click here for help
Water homeostasis (antidiuretic).
Species:  Rat
Tissue:  In vivo (kidney).
References:  40,49
Nitric oxide production (via the phosphoinositide pathway).
Species:  Rat
Tissue:  Inner medullary collecting duct.
References:  53
Stimulation of an increase in osmotic water permeability.
Species:  Rat
Tissue:  Inner medullary collecting duct.
References:  14
Potentiation of pilocarpine-induced seizures.
Species:  Rat
Tissue:  In vivo (brain).
References:  18
Modulation of nociception.
Species:  Rat
Tissue:  Periaqueductal gray.
References:  90
Regulation of aquaporin-2 (AQP2) expression.
Species:  Rat
Tissue:  In vivo (kidney).
References:  61
Stimulation of renal medullary blood flow.
Species:  Rat
Tissue:  In vivo (kidney).
References:  51
Physiological Consequences of Altering Gene Expression Click here for help
Mice with siRNA-mediated inhibition of V2 receptor expression in the kidney exhibit a reduced antidiuretic action in response to vasopressin.
Species:  Mouse
Tissue: 
Technique:  RNA interference.
References:  34
Rats with siRNA-mediated inhibition of V2 receptor expression in the periaqueductal gray exhibit a decreased pain threshold.
Species:  Rat
Tissue: 
Technique:  RNA interference.
References:  90
Gene transfer of human AVPR2 into rat myocardium in vivo results in a positive inotropic effect.
Species:  Human
Tissue: 
Technique:  Adenoviral gene transfer.
References:  87
Gene transfer of human AVPR2 into rat cardiomyocyes results in potentiation of contractile force.
Species:  Human
Tissue: 
Technique:  Adenoviral gene transfer.
References:  44
Induction of a nonsense mutation into the AVPR2 receptor gene (Glu198 -> STOP) results in an X-linked nephrogenic diabetes insipidus-like phenotype.
Species:  Mouse
Tissue: 
Technique:  Induced mutation.
References:  91
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Avpr2+|Avpr2tm1Jwe Avpr2tm1Jwe/Avpr2+
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0002136 abnormal kidney physiology PMID: 11104789 
Avpr2tm1Jwe Avpr2tm1Jwe/Y
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0001262 decreased body weight PMID: 11104789 
Avpr2tm1Jwe Avpr2tm1Jwe/Y
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0002988 decreased urine osmolality PMID: 11104789 
Avpr2+|Avpr2tm1Jwe Avpr2tm1Jwe/Avpr2+
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0002988 decreased urine osmolality PMID: 11104789 
Avpr2tm1Jwe Avpr2tm1Jwe/Y
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0003853 dry skin PMID: 11104789 
Avpr2tm1Jwe Avpr2tm1Jwe/Y
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0000519 hydronephrosis PMID: 11104789 
Avpr2tm1Jwe Avpr2tm1Jwe/Y
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0000189 hypoglycemia PMID: 11104789 
Avpr2tm1Jwe Avpr2tm1Jwe/Y
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0003019 increased circulating chloride level PMID: 11104789 
Avpr2tm1Jwe Avpr2tm1Jwe/Y
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0005633 increased circulating sodium level PMID: 11104789 
Avpr2tm1Jwe Avpr2tm1Jwe/Y
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0002608 increased hematocrit PMID: 11104789 
Avpr2+|Avpr2tm1Jwe Avpr2tm1Jwe/Avpr2+
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0001426 polydipsia PMID: 11104789 
Avpr2+|Avpr2tm1Jwe Avpr2tm1Jwe/Avpr2+
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0001762 polyuria PMID: 11104789 
Avpr2tm1Jwe Avpr2tm1Jwe/Y
involves: 129S1/Sv * 129X1/SvJ * CF-1
MGI:88123  MP:0002082 postnatal lethality PMID: 11104789 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Nephrogenic diabetes insipidus
Disease Ontology: DOID:12387
OMIM: 304800
Orphanet: ORPHA223
Comments: 
References:  2-3,5-7,10,12,20,23,31,37-38,42-43,45,47-48,55-56,58-59,63-64,67,71-72,77,81,85-86,88
Disease:  Nephrogenic syndrome of inappropriate antidiuresis
Synonyms: Inappropriate antidiuretic hormone secretion syndrome [Orphanet: ORPHA83449]
OMIM: 300539
Orphanet: ORPHA83449
Comments: 
References:  26,32,65
Biologically Significant Variants Click here for help
Type:  Splice variants
Species:  Rat
Description:  Two splice variants of the V2 receptor have been found in the rat kidney tubules. The longer most abundent form, V2(L), and the shorter form, V2(S), which lacks the 7th transmembrane domain and does not couple to the AC pathway.
References:  28
General Comments
One of the main endocrine functions of arginine vasopressin (AVP, also called ADH) is the facilitation of water re-absorption by the kidney through its action on the V2 vasopressin receptor. Vasopressin inhibits diuresis by binding to V2 vasopressin receptors present on the basolateral membrane of the renal collecting duct cells. The activation of the V2 receptor in renal collecting tubules stimulates adenylate cyclase type 6 through Gs and promotes the cyclic adenosine monophosphate- and protein kinase A-mediated incorporation of water channels (aquaporin 2) into the luminal surface of these cells. Long-term V2 receptor occupation also increases the total aquaporin-2 in the cell through a transcriptional mechanism. The AVP analog dDAVP (desmopressin) is a selective V2 agonist used for the treatment of central diabetes insipidus. It is also used to treat bleeding episodes in patients suffering from hemophilia A and Von Willebrand?s disease, the most frequent congenital bleeding disorders. The possible existence of other extra-renal V2 receptors in mammals is still an open question.

Some molecular biological studies suggesting the presence of extra-renal V2 receptors should be interpreted with caution since the ARHGAP4 (a member of the RhoGTPase activating protein family) gene is immediately adjacent to and orientated towards the V2 receptor gene on opposite strands - the transcriptional units of each gene overlap [29]. Molecular probes (e.g., cDNAs) or primers (e.g., for PCR) to detect V2 receptor mRNA must be carefully designed to exclude detection of ARHGAP4 mRNA. ARHGAP4 is present in specific brain regions including hippocampus, brainstem, striatum and cerebellum [29].

References

Show »

1. Akerlund M, Bossmar T, Brouard R, Kostrzewska A, Laudanski T, Lemancewicz A, Serradeil-Le Gal C, Steinwall M. (1999) Receptor binding of oxytocin and vasopressin antagonists and inhibitory effects on isolated myometrium from preterm and term pregnant women. Br J Obstet Gynaecol, 106 (10): 1047-53. [PMID:10519430]

2. Ala Y, Morin D, Mouillac B, Sabatier N, Vargas R, Cotte N, Déchaux M, Antignac C, Arthus MF, Lonergan M et al.. (1998) Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild clinical phenotype. J Am Soc Nephrol, 9 (10): 1861-72. [PMID:9773787]

3. Albertazzi E, Zanchetta D, Barbier P, Faranda S, Frattini A, Vezzoni P, Procaccio M, Bettinelli A, Guzzi F, Parenti M et al.. (2000) Nephrogenic diabetes insipidus: functional analysis of new AVPR2 mutations identified in Italian families. J Am Soc Nephrol, 11 (6): 1033-43. [PMID:10820167]

4. Albright JD, Reich MF, Delos Santos EG, Dusza JP, Sum FW, Venkatesan AM, Coupet J, Chan PS, Ru X, Mazandarani H et al.. (1998) 5-Fluoro-2-methyl-N-[4-(5H-pyrrolo[2,1-c]-[1, 4]benzodiazepin-10(11H)-ylcarbonyl)-3-chlorophenyl]benzamide (VPA-985): an orally active arginine vasopressin antagonist with selectivity for V2 receptors. J Med Chem, 41 (14): 2442-4. [PMID:9651149]

5. Bichet DG. (2006) Nephrogenic diabetes insipidus. Adv Chronic Kidney Dis, 13 (2): 96-104. [PMID:16580609]

6. Bichet DG, Turner M, Morin D. (1998) Vasopressin receptor mutations causing nephrogenic diabetes insipidus. Proc Assoc Am Physicians, 110 (5): 387-94. [PMID:9756088]

7. Birnbaumer M. (1999) Vasopressin receptor mutations and nephrogenic diabetes insipidus. Arch Med Res, 30 (6): 465-74. [PMID:10714359]

8. Birnbaumer M, Seibold A, Gilbert S, Ishido M, Barberis C, Antaramian A, Brabet P, Rosenthal W. (1992) Molecular cloning of the receptor for human antidiuretic hormone. Nature, 357 (6376): 333-5. [PMID:1534149]

9. Breton C, Chellil H, Kabbaj-Benmansour M, Carnazzi E, Seyer R, Phalipou S, Morin D, Durroux T, Zingg H, Barberis C et al.. (2001) Direct identification of human oxytocin receptor-binding domains using a photoactivatable cyclic peptide antagonist: comparison with the human V1a vasopressin receptor. J Biol Chem, 276 (29): 26931-41. [PMID:11337500]

10. Chan Seem CP, Dossetor JF, Penney MD. (1999) Nephrogenic diabetes insipidus due to a new mutation of the arginine vasopressin V2 receptor gene in a girl presenting with non-accidental injury. Ann Clin Biochem, 36 ( Pt 6): 779-82. [PMID:10586320]

11. Cheng LL, Stoev S, Manning M, Derick S, Pena A, Mimoun MB, Guillon G. (2004) Design of potent and selective agonists for the human vasopressin V1b receptor based on modifications of [deamino-cys1]arginine vasopressin at position 4. J Med Chem, 47: 2375-2388. [PMID:15084136]

12. Cheong HI, Park HW, Ha IS, Moon HN, Choi Y, Ko KW, Jun JK. (1997) Six novel mutations in the vasopressin V2 receptor gene causing nephrogenic diabetes insipidus. Nephron, 75 (4): 431-7. [PMID:9127330]

13. Chini B, Mouillac B, Ala Y, Balestre MN, Trumpp-Kallmeyer S, Hoflack J, Elands J, Hibert M, Manning M, Jard S et al.. (1995) Tyr115 is the key residue for determining agonist selectivity in the V1a vasopressin receptor. EMBO J, 14 (10): 2176-82. [PMID:7774575]

14. Chou CL, DiGiovanni SR, Luther A, Lolait SJ, Knepper MA. (1995) Oxytocin as an antidiuretic hormone. II. Role of V2 vasopressin receptor. Am J Physiol, 269: F78-F85. [PMID:7631834]

15. Cirillo R, Gillio Tos E, Schwarz MK, Quattropani A, Scheer A, Missotten M, Dorbais J, Nichols A, Borrelli F, Giachetti C et al.. (2003) Pharmacology of (2S,4Z)-N-[(2S)-2-hydroxy-2-phenylethyl]-4-(methoxyimino) -1-[(2'-methyl[1,1'-biphenyl]-4-yl)carbonyl]-2-pyrrolidinecarboxamide, a new potent and selective nonpeptide antagonist of the oxytocin receptor. J Pharmacol Exp Ther, 306 (1): 253-61. [PMID:12660315]

16. Cotte N, Balestre MN, Aumelas A, Mahé E, Phalipou S, Morin D, Hibert M, Manning M, Durroux T, Barberis C et al.. (2000) Conserved aromatic residues in the transmembrane region VI of the V1a vasopressin receptor differentiate agonist vs. antagonist ligand binding. Eur J Biochem, 267 (13): 4253-63. [PMID:10866830]

17. Cotte N, Balestre MN, Phalipou S, Hibert M, Manning M, Barberis C, Mouillac B. (1998) Identification of residues responsible for the selective binding of peptide antagonists and agonists in the V2 vasopressin receptor. J Biol Chem, 273 (45): 29462-8. [PMID:9792651]

18. Croiset G, De Wied D. (1997) Proconvulsive effect of vasopressin; mediation by a putative V2 receptor subtype in the central nervous system. Brain Res, 759 (1): 18-23. [PMID:9219858]

19. Crombie AL, Antrilli TM, Campbell BA, Crandall DL, Failli AA, He Y, Kern JC, Moore WJ, Nogle LM, Trybulski EJ. (2010) Synthesis and evaluation of azabicyclo[3.2.1]octane derivatives as potent mixed vasopressin antagonists. Bioorg Med Chem Lett, 20 (12): 3742-5. [PMID:20471258]

20. Deen PM, Knoers NV. (1998) Vasopressin type-2 receptor and aquaporin-2 water channel mutants in nephrogenic diabetes insipidus. Am J Med Sci, 316 (5): 300-9. [PMID:9822112]

21. Derick S, Cheng LL, Voirol MJ, Stoev S, Giacomini M, Wo NC, Szeto HH, Ben Mimoun M, Andres M, Gaillard RC et al.. (2002) [1-deamino-4-cyclohexylalanine] arginine vasopressin: a potent and specific agonist for vasopressin V1b receptors. Endocrinology, 143 (12): 4655-64. [PMID:12446593]

22. Diaz Brinton R, Brownson EA. (1993) Vasopressin-induction of cyclic AMP in cultured hippocampal neurons. Brain Res Dev Brain Res, 71 (1): 101-5. [PMID:8381727]

23. Dong Y, Sheng H, Chen X, Yin J, Su Q. (2006) Deletion of the V2 vasopressin receptor gene in two Chinese patients with nephrogenic diabetes insipidus. BMC Genet, 7: 53-53. [PMID:17101063]

24. Failli AA, Shumsky JS, Steffan RJ, Caggiano TJ, Williams DK, Trybulski EJ, Ning X, Lock Y, Tanikella T, Hartmann D et al.. (2006) Pyridobenzodiazepines: a novel class of orally active, vasopressin V2 receptor selective agonists. Bioorg Med Chem Lett, 16 (4): 954-9. [PMID:16297621]

25. Fay MJ, Du J, Yu X, North WG. (1996) Evidence for expression of vasopressin V2 receptor mRNA in human lung. Peptides, 17: 477-481. [PMID:8735975]

26. Feldman BJ, Rosenthal SM, Vargas GA, Fenwick RG, Huang EA, Matsuda-Abedini M, Lustig RH, Mathias RS, Portale AA, Miller WL et al.. (2005) Nephrogenic syndrome of inappropriate antidiuresis. N Engl J Med, 352 (18): 1884-90. [PMID:15872203]

27. Fenton RA, Brønd L, Nielsen S, Praetorius J. (2007) Cellular and subcellular distribution of the type-2 vasopressin receptor in the kidney. Am J Physiol Renal Physiol, 293: F748-F760. [PMID:17553938]

28. Firsov D, Mandon B, Morel A, Merot J, Le Maout S, Bellanger AC, de Rouffignac C, Elalouf JM, Buhler JM. (1994) Molecular analysis of vasopressin receptors in the rat nephron. Evidence for alternative splicing of the V2 receptor. Pflugers Arch, 429 (1): 79-89. [PMID:7708485]

29. Foletta VC, Brown FD, Young 3rd WS. (2002) Cloning of rat ARHGAP4/C1, a RhoGAP family member expressed in the nervous system that colocalizes with the Golgi complex and microtubules. Brain Res Mol Brain Res, 107 (1): 65-79. [PMID:12414125]

30. Frantz MC, Pellissier LP, Pflimlin E, Loison S, Gandía J, Marsol C, Durroux T, Mouillac B, Becker JAJ, Le Merrer J et al.. (2018) LIT-001, the First Nonpeptide Oxytocin Receptor Agonist that Improves Social Interaction in a Mouse Model of Autism. J Med Chem, 61 (19): 8670-8692. [PMID:30199637]

31. Fujiwara TM, Bichet DG. (2005) Molecular biology of hereditary diabetes insipidus. J Am Soc Nephrol, 16 (10): 2836-46. [PMID:16093448]

32. Gitelman SE, Feldman BJ, Rosenthal SM. (2006) Nephrogenic syndrome of inappropriate antidiuresis: a novel disorder in water balance in pediatric patients. Am J Med, 119: S54-S58. [PMID:16843086]

33. Gunnet JW, Matthews JM, Maryanoff BE, de Garavilla L, Andrade-Gordon P, Damiano B, Hageman W, Look R, Stahle P, Streeter AJ et al.. (2006) Characterization of RWJ-351647, a novel nonpeptide vasopressin V2 receptor antagonist. Clin Exp Pharmacol Physiol, 33 (4): 320-6. [PMID:16620295]

34. Hassan A, Tian Y, Zheng W, Ji H, Sandberg K, Verbalis JG. (2005) Small interfering RNA-mediated functional silencing of vasopressin V2 receptors in the mouse kidney. Physiol Genomics, 21 (3): 382-8. [PMID:15784697]

35. Hirasawa A, Hashimoto K, Tsujimoto G. (1994) Distribution and developmental change of vasopressin V1A and V2 receptor mRNA in rats. Eur J Pharmacol, 267 (1): 71-5. [PMID:8206132]

36. Hirasawa A, Nakayama Y, Ishiharada N, Honda K, Saito R, Tsujimoto G, Takano Y, Kamiya H. (1994) Evidence for the existence of vasopressin V2 receptor mRNA in rat hippocampus. Biochem Biophys Res Commun, 205 (3): 1702-6. [PMID:7811254]

37. Inaba S, Hatakeyama H, Taniguchi N, Miyamori I. (2001) The property of a novel v2 receptor mutant in a patient with nephrogenic diabetes insipidus. J Clin Endocrinol Metab, 86 (1): 381-5. [PMID:11232028]

38. Kamperis K, Siggaard C, Herlin T, Nathan E, Hertz JM, Rittig S. (2000) A novel splicing mutation in the V2 vasopressin receptor. Pediatr Nephrol, 15 (1-2): 43-9. [PMID:11095010]

39. Kato Y, Igarashi N, Hirasawa A, Tsujimoto G, Kobayashi M. (1995) Distribution and developmental changes in vasopressin V2 receptor mRNA in rat brain. Differentiation, 59 (3): 163-9. [PMID:7589900]

40. Kiberd B, Robertson CR, Larson T, Jamison RL. (1987) Effect of V2-receptor-mediated changes on inner medullary blood flow induced by AVP. Am J Physiol, 253 (3 Pt 2): F576-81. [PMID:2957929]

41. Klingler C, Preisser L, Barrault MB, Lluel P, Horgen L, Teillet L, Ancellin N, Corman B. (1997) Vasopressin V2 receptor mRNA expression and cAMP accumulation in aging rat kidney. Am J Physiol, 272 (6 Pt 2): R1775-82. [PMID:9227590]

42. Knoers NV, van den Ouweland AM, Verdijk M, Monnens LA, van Oost BA. (1994) Inheritance of mutations in the V2 receptor gene in thirteen families with nephrogenic diabetes insipidus. Kidney Int, 46 (1): 170-6. [PMID:7933835]

43. Kotnik P, Battelino T, Debeljak M, Podkrajsek KT, Waldhauser F, Frøkiaer J, Nielsen S, Krzisnik C. (2007) Correlation between AVPR2 mutations and urinary AQP2 excretion in patients with nephrogenic diabetes insipidus. J Pediatr Endocrinol Metab, 20: 483-489. [PMID:17550212]

44. Laugwitz KL, Ungerer M, Schöneberg T, Weig HJ, Kronsbein K, Moretti A, Hoffmann K, Seyfarth M, Schultz G, Schömig A. (1999) Adenoviral gene transfer of the human V2 vasopressin receptor improves contractile force of rat cardiomyocytes. Circulation, 99 (7): 925-33. [PMID:10027817]

45. Lolait SJ, O'Carroll AM, McBride OW, Konig M, Morel A, Brownstein MJ. (1992) Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature, 357: 336-339. [PMID:1534150]

46. Marchingo AJ, Abrahams JM, Woodcock EA, Smith AI, Mendelsohn FA, Johnston CI. (1988) Properties of [3H]1-desamino-8-D-arginine vasopressin as a radioligand for vasopressin V2-receptors in rat kidney. Endocrinology, 122 (4): 1328-36. [PMID:2964362]

47. Morin D, Ala Y, Sabatier N, Cotte N, Hendy G, Vargas R, Déchaux M, Antignac C, Hibert M, Bichet D, Barberis C. (1998) Functional study of two V2 vasopressin mutant receptors related to NDI. P322S and P322H. Adv Exp Med Biol, 449: 391-393. [PMID:10026830]

48. Moses AM, Sangani G, Miller JL. (1995) Proposed cause of marked vasopressin resistance in a female with an X-linked recessive V2 receptor abnormality. J Clin Endocrinol Metab, 80 (4): 1184-6. [PMID:7714087]

49. Nakamura S, Hirano T, Tsujimae K, Aoyama M, Kondo K, Yamamura Y, Mori T, Tominaga M. (2000) Antidiuretic effects of a nonpeptide vasopressin V(2)-receptor agonist, OPC-51803, administered orally to rats. J Pharmacol Exp Ther, 295 (3): 1005-11. [PMID:11082435]

50. Nakamura S, Yamamura Y, Itoh S, Hirano T, Tsujimae K, Aoyama M, Kondo K, Ogawa H, Shinohara T, Kan K et al.. (2000) Characterization of a novel nonpeptide vasopressin V(2)-agonist, OPC-51803, in cells transfected human vasopressin receptor subtypes. Br J Pharmacol, 129 (8): 1700-6. [PMID:10780976]

51. Nakanishi K, Mattson DL, Gross V, Roman RJ, Cowley Jr AW. (1995) Control of renal medullary blood flow by vasopressin V1 and V2 receptors. Am J Physiol, 269 (1 Pt 2): R193-200. [PMID:7631893]

52. Nonoguchi H, Owada A, Kobayashi N, Takayama M, Terada Y, Koike J, Ujiie K, Marumo F, Sakai T, Tomita K. (1995) Immunohistochemical localization of V2 vasopressin receptor along the nephron and functional role of luminal V2 receptor in terminal inner medullary collecting ducts. J Clin Invest, 96: 1768-1778. [PMID:7560068]

53. O'Connor PM, Cowley Jr AW. (2007) Vasopressin-induced nitric oxide production in rat inner medullary collecting duct is dependent on V2 receptor activation of the phosphoinositide pathway. Am J Physiol Renal Physiol, 293 (2): F526-32. [PMID:17507604]

54. Oksche A, Leder G, Valet S, Platzer M, Hasse K, Geist S, Krause G, Rosenthal A, Rosenthal W. (2002) Variant amino acids in the extracellular loops of murine and human vasopressin V2 receptors account for differences in cell surface expression and ligand affinity. Mol Endocrinol, 16 (4): 799-813. [PMID:11923476]

55. Oksche A, Möller A, Dickson J, Rosendahl W, Rascher W, Bichet DG, Rosenthal W. (1996) Two novel mutations in the aquaporin-2 and the vasopressin V2 receptor genes in patients with congenital nephrogenic diabetes insipidus. Hum Genet, 98 (5): 587-9. [PMID:8882880]

56. Oksche A, Schülein R, Rutz C, Liebenhoff U, Dickson J, Müller H, Birnbaumer M, Rosenthal W. (1996) Vasopressin V2 receptor mutants that cause X-linked nephrogenic diabetes insipidus: analysis of expression, processing, and function. Mol Pharmacol, 50 (4): 820-8. [PMID:8863826]

57. Ostrowski NL, Young 3rd WS, Knepper MA, Lolait SJ. (1993) Expression of vasopressin V1a and V2 receptor messenger ribonucleic acid in the liver and kidney of embryonic, developing, and adult rats. Endocrinology, 133 (4): 1849-59. [PMID:8404628]

58. Pan Y, Metzenberg A, Das S, Jing B, Gitschier J. (1992) Mutations in the V2 vasopressin receptor gene are associated with X-linked nephrogenic diabetes insipidus. Nat Genet, 2 (2): 103-6. [PMID:1303257]

59. Pasel K, Schulz A, Timmermann K, Linnemann K, Hoeltzenbein M, Jääskeläinen J, Grüters A, Filler G, Schöneberg T. (2000) Functional characterization of the molecular defects causing nephrogenic diabetes insipidus in eight families. J Clin Endocrinol Metab, 85 (4): 1703-10. [PMID:10770218]

60. Pena A, Murat B, Trueba M, Ventura MA, Wo NC, Szeto HH, Cheng LL, Stoev S, Guillon G, Manning M. (2007) Design and synthesis of the first selective agonists for the rat vasopressin V(1b) receptor: based on modifications of deamino-[Cys1]arginine vasopressin at positions 4 and 8. J Med Chem, 50: 835-847. [PMID:17300166]

61. Promeneur D, Kwon TH, Frøkiaer J, Knepper MA, Nielsen S. (2000) Vasopressin V(2)-receptor-dependent regulation of AQP2 expression in Brattleboro rats. Am J Physiol Renal Physiol, 279 (2): F370-82. [PMID:10919858]

62. Ratni H, Rogers-Evans M, Bissantz C, Grundschober C, Moreau JL, Schuler F, Fischer H, Alvarez Sanchez R, Schnider P. (2015) Discovery of highly selective brain-penetrant vasopressin 1a antagonists for the potential treatment of autism via a chemogenomic and scaffold hopping approach. J Med Chem, 58 (5): 2275-89. [PMID:25654260]

63. Robben JH, Knoers NV, Deen PM. (2006) Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol, 291 (2): F257-70. [PMID:16825342]

64. Rocha JL, Friedman E, Boson W, Moreira A, Figueiredo B, Liberman B, de Lacerda L, Sandrini R, Graf H, Martins S et al.. (1999) Molecular analyses of the vasopressin type 2 receptor and aquaporin-2 genes in Brazilian kindreds with nephrogenic diabetes insipidus. Hum Mutat, 14 (3): 233-9. [PMID:10477431]

65. Rosenthal SM, Feldman BJ, Vargas GA, Gitelman SE. (2006) Nephrogenic syndrome of inappropriate antidiuresis (NSIAD): a paradigm for activating mutations causing endocrine dysfunction. Pediatr Endocrinol Rev, 4 Suppl 1: 66-70. [PMID:17261972]

66. Saito M, Tahara A, Sugimoto T. (1997) 1-desamino-8-D-arginine vasopressin (DDAVP) as an agonist on V1b vasopressin receptor. Biochem Pharmacol, 53: 1711-1717. [PMID:9264324]

67. Sato K, Fukuno H, Taniguchi T, Sawada S, Fukui T, Kinoshita M. (1999) A novel mutation in the vasopressin V2 receptor gene in a woman with congenital nephrogenic diabetes insipidus. Intern Med, 38 (10): 808-12. [PMID:10526945]

68. Schnider P, Bissantz C, Bruns A, Dolente C, Goetschi E, Jakob-Roetne R, Künnecke B, Mueggler T, Muster W, Parrott N et al.. (2020) Discovery of Balovaptan, a Vasopressin 1a Receptor Antagonist for the Treatment of Autism Spectrum Disorder. J Med Chem, 63 (4): 1511-1525. [PMID:31951127]

69. Schwartz J, Derdowska I, Sobocinska M, Kupryszewski G. (1991) A potent new synthetic analog of vasopressin with relative agonist specificity for the pituitary. Endocrinology, 129 (2): 1107-9. [PMID:1649739]

70. Schöneberg T, Kostenis E, Liu J, Gudermann T, Wess J. (1998) Molecular aspects of vasopressin receptor function. Adv Exp Med Biol, 449: 347-58. [PMID:10026824]

71. Schülein R, Zühlke K, Krause G, Rosenthal W. (2001) Functional rescue of the nephrogenic diabetes insipidus-causing vasopressin V2 receptor mutants G185C and R202C by a second site suppressor mutation. J Biol Chem, 276 (11): 8384-92. [PMID:11116139]

72. Seibold A, Brabet P, Rosenthal W, Birnbaumer M. (1992) Structure and chromosomal localization of the human antidiuretic hormone receptor gene. Am J Hum Genet, 51 (5): 1078-83. [PMID:1415251]

73. Serradeil-Le Gal C, Lacour C, Valette G, Garcia G, Foulon L, Galindo G, Bankir L, Pouzet B, Guillon G, Barberis C et al.. (1996) Characterization of SR 121463A, a highly potent and selective, orally active vasopressin V2 receptor antagonist. J Clin Invest, 98 (12): 2729-38. [PMID:8981918]

74. Serradeil-Le Gal C, Raufaste D, Double-Cazanave E, Guillon G, Garcia C, Pascal M, Maffrand JP. (2000) Binding properties of a selective tritiated vasopressin V2 receptor antagonist, [H]-SR 121463. Kidney Int, 58 (4): 1613-22. [PMID:11012895]

75. Serradeil-Le Gal C, Valette G, Foulon L, Germain G, Advenier C, Naline E, Bardou M, Martinolle J-P, Pouzet B, Raufaste D, Garcia C, Double-Cazenave E, Pauly M, Pascal M, Barbier A, Scatton B, Maffrand J-P, Le Fur G. (2004) SSR126768A (4-Chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)-benzamidine, hydrochloride): a new selective and orally active oxytocin receptor antagonist for the prevention of preterm labor. J Pharmacol Exp Therap, 309: 414-424. [PMID:14722330]

76. Serradeil-Le Gal C, Wagnon J, Simiand J, Griebel G, Lacour C, Guillon G, Barberis C, Brossard G, Soubrie P, Nisato D, Pascal M, Pruss R, Scatton B, Maffrand JP, Le Fur G. (2002) Characterization of (2S,4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidine carboxamide (SSR149415), a selective and orally active vasopressin V1b receptor antagonist. J Pharmacol Exp Ther, 300: 1122-1130. [PMID:11861823]

77. Szalai C, Triga D, Czinner A. (1998) C112R, W323S, N317K mutations in the vasopressin V2 receptor gene in patients with nephrogenic diabetes insipidus. Mutations in brief no. 165. Online. Hum Mutat, 12 (2): 137-8. [PMID:10694923]

78. Tahara A, Saito M, Sugimoto T, Tomura Y, Wada K, Kusayama T, Tsukada J, Ishii N, Yatsu T, Uchida W et al.. (1998) Pharmacological characterization of YM087, a potent, nonpeptide human vasopressin V1A and V2 receptor antagonist. Naunyn Schmiedebergs Arch Pharmacol, 357 (1): 63-9. [PMID:9459574]

79. Tahara A, Saito M, Sugimoto T, Tomura Y, Wada K, Kusayama T, Tsukada J, Ishii N, Yatsu T, Uchida W et al.. (1998) Pharmacological characterization of the human vasopressin receptor subtypes stably expressed in Chinese hamster ovary cells. Br J Pharmacol, 125 (7): 1463-70. [PMID:9884074]

80. Tahara A, Tsukada J, Tomura Y, Kusayama T, Wada K, Ishii N, Taniguchi N, Suzuki T, Yatsu T, Uchida W et al.. (2005) Effects of YM218, a nonpeptide vasopressin V1A receptor-selective antagonist, on human vasopressin and oxytocin receptors. Pharmacol Res, 51 (3): 275-81. [PMID:15661579]

81. Tajima T, Nakae J, Takekoshi Y, Takahashi Y, Yuri K, Nagashima T, Fujieda K. (1996) Three novel AVPR2 mutations in three Japanese families with X-linked nephrogenic diabetes insipidus. Pediatr Res, 39 (3): 522-6. [PMID:8929875]

82. Terada Y, Tomita K, Nonoguchi H, Yang T, Marumo F. (1993) Different localization and regulation of two types of vasopressin receptor messenger RNA in microdissected rat nephron segments using reverse transcription polymerase chain reaction. J Clin Invest, 92 (5): 2339-45. [PMID:8227349]

83. Thibonnier M, Preston JA, Dulin N, Wilkins PL, Berti-Mattera LN, Mattera R. (1997) The human V3 pituitary vasopressin receptor: ligand binding profile and density-dependent signaling pathways. Endocrinology, 138 (10): 4109-22. [PMID:9322919]

84. Tsukada J, Tahara A, Tomura Y, Wada Ki, Kusayama T, Ishii N, Yatsu T, Uchida W, Taniguchi N, Tanaka A. (2001) Effects of YM471, a nonpeptide AVP V(1A) and V(2) receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells. Br J Pharmacol, 133 (5): 746-54. [PMID:11429400]

85. Tsukaguchi H, Matsubara H, Aritaki S, Kimura T, Abe S, Inada M. (1993) Two novel mutations in the vasopressin V2 receptor gene in unrelated Japanese kindreds with nephrogenic diabetes insipidus. Biochem Biophys Res Commun, 197 (2): 1000-10. [PMID:8267567]

86. Tsukaguchi H, Matsubara H, Inada M. (1995) Expression studies of two vasopressin V2 receptor gene mutations, R202C and 804insG, in nephrogenic diabetes insipidus. Kidney Int, 48 (2): 554-62. [PMID:7564126]

87. Weig HJ, Laugwitz KL, Moretti A, Kronsbein K, Städele C, Brüning S, Seyfarth M, Brill T, Schömig A, Ungerer M. (2000) Enhanced cardiac contractility after gene transfer of V2 vasopressin receptors In vivo by ultrasound-guided injection or transcoronary delivery. Circulation, 101 (13): 1578-85. [PMID:10747352]

88. Wildin RS, Cogdell DE, Valadez V. (1998) AVPR2 variants and V2 vasopressin receptor function in nephrogenic diabetes insipidus. Kidney Int, 54: 1909-1922. [PMID:9853256]

89. Yamamura Y, Nakamura S, Itoh S, Hirano T, Onogawa T, Yamashita T, Yamada Y, Tsujimae K, Aoyama M, Kotosai K et al.. (1998) OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats. J Pharmacol Exp Ther, 287 (3): 860-7. [PMID:9864265]

90. Yang J, Yang Y, Chen JM, Wang G, Xu HT, Liu WY, Lin BC. (2007) Periaqueductal gray knockdown of V2, not V1a and V1b receptor influences nociception in the rat. yj6676@yahoo.com. Neurosci Res, 57 (1): 104-11. [PMID:17056144]

91. Yun J, Schöneberg T, Liu J, Schulz A, Ecelbarger CA, Promeneur D, Nielsen S, Sheng H, Grinberg A, Deng C et al.. (2000) Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gene. J Clin Invest, 106 (11): 1361-71. [PMID:11104789]

Contributors

Show »

How to cite this page