Top ▲

Kir1.1

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 429

Nomenclature: Kir1.1

Family: Inwardly rectifying potassium channels (KIR)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 2 1 391 11q24.3 KCNJ1 potassium inwardly rectifying channel subfamily J member 1 23
Mouse 2 1 372 9 A4 Kcnj1 potassium inwardly-rectifying channel, subfamily J, member 1 19
Rat 2 1 391 8q21 Kcnj1 potassium inwardly-rectifying channel, subfamily J, member 1 12
Previous and Unofficial Names Click here for help
potassium inwardly rectifying channel subfamily J member 1 | ATP-regulated potassium channel ROM-K | ATP-sensitive inward rectifier potassium channel 1 | KAB-1 | potassium channel, inwardly rectifying subfamily J, member 1 | potassium inwardly-rectifying channel | potassium voltage-gated channel subfamily J member 1 | ROMK | ROMK1 | ROMK2 | ROMK3
Database Links Click here for help
Alphafold
CATH/Gene3D
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
Not determined
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
NHERF-2 32
NHERF-1 32
CFTR 18
SUR2B 26
Functional Characteristics Click here for help
Kir1.1 is weakly inwardly rectifying, as compared to classical (strong) inward rectifiers.
Ion Selectivity and Conductance Click here for help
Species:  Rat
Rank order:  K+ [39.0 pS]
References:  12
Voltage Dependence Comments
Kir1.1 is a very weak inward rectifier, with essentially ohmic conduction at potentials below +60mV in symmetric K+ [12].
Ion Selectivity and Conductance (Rat)
NH4+ [62pS] > K+ [38. pS] > Tl+ [21pS] > Rb+ [15pS]  [5,12]

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
Extracellular K+ Ligand is endogenous in the given species Rn Activation 2.3 pEC50 1x10-3 - 1x10-1 50.0 6
pEC50 2.3 Conc range: 1x10-3 - 1x10-1 M [6]
Holding voltage: 50.0 mV
Activator Comments
Increases in extracellular K+ counteract the Kir1.1 inactivation caused by intracellular acidification [6,22] and reduces block by cytoplasmic Mg2+ [31].
Gating inhibitors Click here for help
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
Intracellular H+ Click here for species-specific activity table Ligand is endogenous in the given species Rn Antagonist 6.8 pIC50 - -160.0 – -40.0 6,22,28
pIC50 6.8 [6,22,28]
Holding voltage: -160.0 – -40.0 mV
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
Ba2+ Click here for species-specific activity table Hs Antagonist - - 1x10-3 -160.0 – 80.0 23
Conc range: 1x10-3 M [23]
Holding voltage: -160.0 – 80.0 mV
[125I]tertiapin Y1/K12/Q13 Peptide Ligand is labelled Ligand is radioactive Rn Antagonist 9.2 pKd - Physiological 7
pKd 9.2 [7]
Holding voltage: Physiological
tertiapin-Q Peptide Click here for species-specific activity table Rn Antagonist 8.2 – 8.9 pKi - Physiological/ -80.0 – 80.0 7,15
pKi 8.7 [15]
Holding voltage: -80.0 – 80.0 mV
pKi 8.2 – 8.9 [7,15]
Holding voltage: Physiological
VU591 Small molecule or natural product Rn Inhibition 6.6 pKi 3x10-3 - 3x10-2 -120.0 – 20.0 2
pKi 6.6 (Ki 2.4x10-7 M) Conc range: 3x10-3 - 3x10-2 M [2]
Holding voltage: -120.0 – 20.0 mV
Cytoplasmic Mg2+ Click here for species-specific activity table Rn - 2.3 pKi 2x10-4 - 5x10-3 0.0 21,31
pKi 2.3 (Ki 5x10-3 M) Conc range: 2x10-4 - 5x10-3 M [21,31]
Holding voltage: 0.0 mV
Extracellular Mg2+ Click here for species-specific activity table Rn - 2.2 pKi 1x10-3 - 3x10-3 0.0 31
pKi 2.2 (Ki 6x10-3 M) Conc range: 1x10-3 - 3x10-3 M [31]
Holding voltage: 0.0 mV
tertiapin-Q Peptide Hs Inhibition 8.9 pIC50 - - 15
pIC50 8.9 [15]
MK-8153 Small molecule or natural product Hs Inhibition 8.3 pIC50 - - 14
pIC50 8.3 (IC50 5x10-9 M) [14]
Description: hKir1.1 electrophysiology
MK-7145 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Inhibition 8.2 pIC50 - - 27
pIC50 8.2 (IC50 6x10-9 M) [27]
Description: Measured using a Tl+ flux assay.
Ba2+ Click here for species-specific activity table Rn Antagonist 2.3 – 4.2 pIC50 1x10-4 0.0 – -100.0 12,33
pIC50 2.3 – 4.2 Conc range: 1x10-4 M [12,33]
Holding voltage: 0.0 – -100.0 mV
Cs+ Click here for species-specific activity table Rn Antagonist 2.9 pIC50 - -120.0 33
pIC50 2.9 [33]
Holding voltage: -120.0 mV
View species-specific channel blocker tables
Channel Blocker Comments
Tertiapin does not effectively block human Kir1.1 channels [7]. Block by internal Mg2+, Ba2+ and Na+ depends on extracellular K+ [31]. Block by Ba2+, Mg2+ Cs+ and Na+ are voltage dependent [31].
Tissue Distribution Click here for help
Kidney > skeletal muscle > pancreas > spleen > heart = brain > liver.
Species:  Human
Technique:  RT-PCR
References:  23
Kidney.
Species:  Human
Technique:  Northern Blot
References:  23
Kidney (outer medulla) > kidney (cortex), spleen, lung, eye, thalamus, hypothalamus.
Species:  Rat
Technique:  Northern Blot
References:  12
Kidney (cortical and medullary thick ascending limb, distal tubule, cortical and outer medullary collecting duct, inner medullary collecting duct).
Species:  Rat
Technique:  In situ hybridisation
References:  17
Kidney (apical membrane of cells in thick ascending limb, macula densa, distal convoluted tubule, connecting tubule, principle cells of cortical collecting duct).
Species:  Rat
Technique:  Immunohistochemistry
References:  20,29-30
Functional Assays Click here for help
Voltage clamp recording of the cloned channel in a heterologous expression system.
Species:  Rat
Tissue:  Xenopus oocytes.
Response measured:  Current.
References:  12
Voltage clamp recording of the cloned channel in a heterologous expression system.
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  Current.
References:  7
Physiological Functions Click here for help
K+ recycling in the thick ascending limb of loop of Henle, allowing NaCl uptake via Na-K-2Cl transporter.
Species:  None
Tissue:  Mammalian kidney
References:  10
K+ secretion by the principal cells of distal renal tubule.
Species:  None
Tissue:  Mammalian kidney
References:  10
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Kcnj1tm1Ges Kcnj1tm1Ges/Kcnj1tm1Ges
involves: 129X1/SvJ * Black Swiss
MGI:1927248  MP:0009643 abnormal urine homeostasis PMID: 12122007 
Kcnj1tm1Ges Kcnj1tm1Ges/Kcnj1tm1Ges
involves: 129X1/SvJ * Black Swiss
MGI:1927248  MP:0003031 acidosis PMID: 12122007 
Kcnj1tm1Ges Kcnj1tm1Ges/Kcnj1tm1Ges
involves: 129X1/SvJ * Black Swiss
MGI:1927248  MP:0005528 decreased renal glomerular filtration rate PMID: 12122007 
Kcnj1tm1Ges Kcnj1tm1Ges/Kcnj1tm1Ges
involves: 129X1/SvJ * Black Swiss
MGI:1927248  MP:0003653 decreased skin turgor PMID: 12122007 
Kcnj1tm1Ges Kcnj1tm1Ges/Kcnj1tm1Ges
involves: 129X1/SvJ * Black Swiss
MGI:1927248  MP:0002843 decreased systemic arterial blood pressure PMID: 12122007 
Kcnj1tm1Ges Kcnj1tm1Ges/Kcnj1tm1Ges
involves: 129X1/SvJ * Black Swiss
MGI:1927248  MP:0000519 hydronephrosis PMID: 12122007 
Kcnj1tm1Ges Kcnj1tm1Ges/Kcnj1tm1Ges
involves: 129X1/SvJ * Black Swiss
MGI:1927248  MP:0005633 increased circulating sodium level PMID: 12122007 
Kcnj1tm1Ges Kcnj1tm1Ges/Kcnj1tm1Ges
involves: 129X1/SvJ * Black Swiss
MGI:1927248  MP:0002608 increased hematocrit PMID: 12122007 
Kcnj1tm1Ges Kcnj1tm1Ges/Kcnj1tm1Ges
involves: 129X1/SvJ * Black Swiss
MGI:1927248  MP:0001426 polydipsia PMID: 12122007 
Kcnj1tm1Ges Kcnj1tm1Ges/Kcnj1tm1Ges
involves: 129X1/SvJ * Black Swiss
MGI:1927248  MP:0001762 polyuria PMID: 12122007 
Kcnj1tm1Ges Kcnj1tm1Ges/Kcnj1tm1Ges
involves: 129X1/SvJ * Black Swiss
MGI:1927248  MP:0001732 postnatal growth retardation PMID: 12122007 
Kcnj1tm1Ges Kcnj1tm1Ges/Kcnj1tm1Ges
involves: 129X1/SvJ * Black Swiss
MGI:1927248  MP:0002082 postnatal lethality PMID: 12122007 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Bartter syndrome, antenatal, type 2
Synonyms: Antenatal Bartter syndrome [Orphanet: ORPHA93604]
Bartter disease [Disease Ontology: DOID:445]
Disease Ontology: DOID:445
OMIM: 241200
Orphanet: ORPHA93604
Role: 
References:  24
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Frameshift: Deletion Human 334fs36X 1557delAAAG 16
Frameshift: Deletion Human T313-K314X350 4-bp deletion 24
Frameshift: Insertion Human 13-14fs15 Insertion of a T-A base pair into a sequence of 6 consecutive T residues 24
Missense Human V72E 16
Missense Human D74Y 16
Missense Human W99C 16
Missense Human A103V 13
Missense Human D108H 16
Missense Human P110L 16
Missense Human V122E 16
Missense Human I142T 13
Missense Human G167E 16
Missense Human A195V 24
Missense Human A198T 16
Missense Human S200R 24
Missense Human S219R 25
Missense Human L220F 25
Missense Human V315G 16
Missense Human M338T 24
Nonsense Human W58X 24
Nonsense Human Y60X 24
Nonsense Human R338X 16
Nonsense Human 362X 13
Clinically-Relevant Mutations and Pathophysiology Comments
Locations are described relative to NP_722448.

In a genome-wide screen autosomal dominant migraine with aura has been found to link to a locus on 11q24. This region contains several candidate genes, including Kir1.1 and Kir3.4 [4].
Biologically Significant Variants Click here for help
Type:  Splice variant
Species:  Rat
Amino acids:  372
Nucleotide accession: 
Protein accession: 
References:  3,34
Type:  Splice variant
Species:  Human
Amino acids:  391
Nucleotide accession: 
Protein accession: 
References:  23
Type:  Splice variant
Species:  Human
Amino acids:  372
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Rat
Amino acids:  398
Nucleotide accession: 
References:  3
Biologically Significant Variant Comments
Six different splice variants have been identified (Kir1.1a-f) which produce 3 different protein products. The tissue distribution in the kidney varies for these splice variants [23]
General Comments
Kir1.1 (renal outer medullary potassium (ROMK) channel) is a molecular target for novel diuretics for the treatment of hypertension and heart failure [8]. The working hypothesis being that inhibition of Kir1.1 channels in the kidney, by novel small molecules, would yield the diuretic/natriuretic efficacy of existing diuretic drugs, but would have reduced potential for unwanted side effects such as dose-limiting hypokalemia [9]. A review of the medicinal chemistry effort that has been dedicated to the development of Kir1.1 channel blockers/inhibitors with therapeutic potential was published by Aretz et al. in 2019 [1]. The first small molecule Kir1.1 clinical candidate was the Merck compound MK-7145 [11,27]. However, clinical progress appears to have stalled, with one study (NCT01558674) stating 'Lack of efficacy' as the reason for termination.

References

Show »

1. Aretz CD, Vadukoot AK, Hopkins CR. (2019) Discovery of Small Molecule Renal Outer Medullary Potassium (ROMK) Channel Inhibitors: A Brief History of Medicinal Chemistry Approaches To Develop Novel Diuretic Therapeutics. J Med Chem, 62 (19): 8682-8694. [PMID:31034224]

2. Bhave G, Chauder BA, Liu W, Dawson ES, Kadakia R, Nguyen TT, Lewis LM, Meiler J, Weaver CD, Satlin LM et al.. (2011) Development of a selective small-molecule inhibitor of Kir1.1, the renal outer medullary potassium channel. Mol Pharmacol, 79 (1): 42-50. [PMID:20926757]

3. Boim MA, Ho K, Shuck ME, Bienkowski MJ, Block JH, Slightom JL, Yang Y, Brenner BM, Hebert SC. (1995) ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am J Physiol, 268 (6 Pt 2): F1132-40. [PMID:7611454]

4. Cader ZM, Noble-Topham S, Dyment DA, Cherny SS, Brown JD, Rice GP, Ebers GC. (2003) Significant linkage to migraine with aura on chromosome 11q24. Hum Mol Genet, 12 (19): 2511-7. [PMID:12915447]

5. Choe H, Sackin H, Palmer LG. (2000) Permeation properties of inward-rectifier potassium channels and their molecular determinants. J Gen Physiol, 115 (4): 391-404. [PMID:10736307]

6. Doi T, Fakler B, Schultz JH, Schulte U, Brändle U, Weidemann S, Zenner HP, Lang F, Ruppersberg JP. (1996) Extracellular K+ and intracellular pH allosterically regulate renal Kir1.1 channels. J Biol Chem, 271 (29): 17261-6. [PMID:8663367]

7. Felix JP, Liu J, Schmalhofer WA, Bailey T, Bednarek MA, Kinkel S, Weinglass AB, Kohler M, Kaczorowski GJ, Priest BT, Garcia ML. (2006) Characterization of Kir1.1 channels with the use of a radiolabeled derivative of tertiapin. Biochemistry, 45 (33): 10129-39. [PMID:16906771]

8. Garcia ML, Kaczorowski GJ. (2014) Targeting the inward-rectifier potassium channel ROMK in cardiovascular disease. Curr Opin Pharmacol, 15: 1-6. [PMID:24721647]

9. Garcia ML, Priest BT, Alonso-Galicia M, Zhou X, Felix JP, Brochu RM, Bailey T, Thomas-Fowlkes B, Liu J, Swensen A et al.. (2014) Pharmacologic inhibition of the renal outer medullary potassium channel causes diuresis and natriuresis in the absence of kaliuresis. J Pharmacol Exp Ther, 348 (1): 153-64. [PMID:24142912]

10. Giebisch G, Hebert SC, Wang WH. (2003) New aspects of renal potassium transport. Pflugers Arch, 446 (3): 289-97. [PMID:12684792]

11. Hampton C, Zhou X, Priest BT, Pai LY, Felix JP, Thomas-Fowlkes B, Liu J, Kohler M, Xiao J, Corona A et al.. (2016) The Renal Outer Medullary Potassium Channel Inhibitor, MK-7145, Lowers Blood Pressure, and Manifests Features of Bartter's Syndrome Type II Phenotype. J Pharmacol Exp Ther, 359 (1): 194-206. [PMID:27432892]

12. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC. (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature, 362 (6415): 31-8. [PMID:7680431]

13. Jeck N, Derst C, Wischmeyer E, Ott H, Weber S, Rudin C, Seyberth HW, Daut J, Karschin A, Konrad M. (2001) Functional heterogeneity of ROMK mutations linked to hyperprostaglandin E syndrome. Kidney Int, 59 (5): 1803-11. [PMID:11318951]

14. Jiang J, Ding FX, Zhou X, Bateman TJ, Dong S, Gu X, Keh deJesus R, Pio B, Tang H, Chobanian HR et al.. (2021) Discovery of MK-8153, a Potent and Selective ROMK Inhibitor and Novel Diuretic/Natriuretic. J Med Chem, 64 (11): 7691-7701. [PMID:34038119]

15. Jin W, Lu Z. (1999) Synthesis of a stable form of tertiapin: a high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry, 38 (43): 14286-93. [PMID:10572003]

16. Károlyi L, Konrad M, Köckerling A, Ziegler A, Zimmermann DK, Roth B, Wieg C, Grzeschik K-H, Koch MC, Seyberth HW. (1997) Mutations in the gene encoding the inwardly-rectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: evidence for genetic heterogeneity. International Collaborative Study Group for Bartter-like Syndromes. Hum Mol Genet, 6 (1): 17-26. [PMID:9002665]

17. Lee WS, Hebert SC. (1995) ROMK inwardly rectifying ATP-sensitive K+ channel. I. Expression in rat distal nephron segments. Am J Physiol, 268 (6 Pt 2): F1124-31. [PMID:7611453]

18. Lu M, Leng Q, Egan ME, Caplan MJ, Boulpaep EL, Giebisch GH, Hebert SC. (2006) CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. J Clin Invest, 116 (3): 797-807. [PMID:16470247]

19. Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, Wang W, Giebisch G, Shull GE, Hebert SC. (2002) Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter's) knockout mice. J Biol Chem, 277 (40): 37881-7. [PMID:12130653]

20. Mennitt PA, Wade JB, Ecelbarger CA, Palmer LG, Frindt G. (1997) Localization of ROMK channels in the rat kidney. J Am Soc Nephrol, 8 (12): 1823-30. [PMID:9402083]

21. Nichols CG, Ho K, Hebert S. (1994) Mg(2+)-dependent inward rectification of ROMK1 potassium channels expressed in Xenopus oocytes. J Physiol (Lond.), 476 (3): 399-409. [PMID:8057249]

22. Sackin H, Vasilyev A, Palmer LG, Krambis M. (2003) Permeant cations and blockers modulate pH gating of ROMK channels. Biophys J, 84 (2 Pt 1): 910-21. [PMID:12547773]

23. Shuck ME, Bock JH, Benjamin CW, Tsai TD, Lee KS, Slightom JL, Bienkowski MJ. (1994) Cloning and characterization of multiple forms of the human kidney ROM-K potassium channel. J Biol Chem, 269 (39): 24261-70. [PMID:7929082]

24. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. (1996) Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet, 14 (2): 152-6. [PMID:8841184]

25. Srivastava S, Li D, Edwards N, Hynes AM, Wood K, Al-Hamed M, Wroe AC, Reaich D, Moochhala SH, Welling PA et al.. (2013) Identification of compound heterozygous KCNJ1 mutations (encoding ROMK) in a kindred with Bartter's syndrome and a functional analysis of their pathogenicity. Physiol Rep, 1 (6): e00160. [PMID:24400161]

26. Tanemoto M, Vanoye CG, Dong K, Welch R, Abe T, Hebert SC, Xu JZ. (2000) Rat homolog of sulfonylurea receptor 2B determines glibenclamide sensitivity of ROMK2 in Xenopus laevis oocyte. Am J Physiol Renal Physiol, 278 (4): F659-66. [PMID:10751228]

27. Tang H, Zhu Y, Teumelsan N, Walsh SP, Shahripour A, Priest BT, Swensen AM, Felix JP, Brochu RM, Bailey T et al.. (2016) Discovery of MK-7145, an Oral Small Molecule ROMK Inhibitor for the Treatment of Hypertension and Heart Failure. ACS Med Chem Lett, 7 (7): 697-701. [PMID:27437080]

28. Tsai TD, Shuck ME, Thompson DP, Bienkowski MJ, Lee KS. (1995) Intracellular H+ inhibits a cloned rat kidney outer medulla K+ channel expressed in Xenopus oocytes. Am J Physiol, 268 (5 Pt 1): C1173-8. [PMID:7762610]

29. Wade JB, Fang L, Coleman RA, Liu J, Grimm PR, Wang T, Welling PA. (2011) Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium. Am J Physiol Renal Physiol, 300 (6): F1385-93. [PMID:21454252]

30. Xu JZ, Hall AE, Peterson LN, Bienkowski MJ, Eessalu TE, Hebert SC. (1997) Localization of the ROMK protein on apical membranes of rat kidney nephron segments. Am J Physiol, 273 (5 Pt 2): F739-48. [PMID:9374837]

31. Yang L, Frindt G, Palmer LG. (2010) Magnesium modulates ROMK channel-mediated potassium secretion. J Am Soc Nephrol, 21 (12): 2109-16. [PMID:21030597]

32. Yoo D, Flagg TP, Olsen O, Raghuram V, Foskett JK, Welling PA. (2004) Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions. J Biol Chem, 279 (8): 6863-73. [PMID:14604981]

33. Zhou H, Chepilko S, Schütt W, Choe H, Palmer LG, Sackin H. (1996) Mutations in the pore region of ROMK enhance Ba2+ block. Am J Physiol, 271 (6 Pt 1): C1949-56. [PMID:8997197]

34. Zhou H, Tate SS, Palmer LG. (1994) Primary structure and functional properties of an epithelial K channel. Am J Physiol, 266 (3 Pt 1): C809-24. [PMID:8166245]

Contributors

Show »

How to cite this page