Top ▲
Gene and Protein Information ![]() |
||||||
class A G protein-coupled receptor | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 359 | 3q24 | AGTR1 | angiotensin II receptor type 1 | 12,28,30,47,103 |
Mouse | 7 | 359 | 13 16.0 cM | Agtr1a | angiotensin II receptor, type 1a | 140,179 |
Mouse | 7 | 359 | 3 7.6 cM | Agtr1b | angiotensin II receptor, type 1b | 140,179 |
Rat | 7 | 359 | 17q12 | Agtr1a | angiotensin II receptor, type 1a | 67-68,85,113 |
Rat | 7 | 359 | 2q24 | Agtr1b | angiotensin II receptor, type 1b | 39,63,67,74,113,138,153,178 |
Gene and Protein Information Comments | ||||||
Both rat and mouse have a second gene that codes for the AT1 receptor. |
Database Links ![]() |
|
Specialist databases | |
GPCRDB | agtr1_human (Hs), agtra_mouse (Mm), agtrb_mouse (Mm), agtrb_rat (Rn), agtra_rat (Rn) |
Other databases | |
ChEMBL Target | CHEMBL227 (Hs), CHEMBL5741 (Mm), CHEMBL329 (Rn), CHEMBL263 (Rn) |
DrugBank Target | P30556 (Hs) |
Ensembl Gene | ENSG00000144891 (Hs), ENSMUSG00000054988 (Mm), ENSMUSG00000049115 (Mm), ENSRNOG00000010640 (Rn), ENSRNOG00000018346 (Rn) |
Entrez Gene | 185 (Hs), 11607 (Mm), 11608 (Mm), 24180 (Rn), 81638 (Rn) |
Human Protein Atlas | ENSG00000144891 (Hs) |
KEGG Gene | hsa:185 (Hs), mmu:11607 (Mm), mmu:11608 (Mm), rno:24180 (Rn), rno:81638 (Rn) |
OMIM | 106165 (Hs) |
Orphanet | ORPHA138533 (Hs) |
Pharos | P30556 (Hs) |
RefSeq Nucleotide | NM_000685 (Hs), NM_175086 (Mm), NM_177322 (Mm), NM_030985 (Rn), NM_031009 (Rn) |
RefSeq Protein | NP_000676 (Hs), NP_796296 (Mm), NP_780295 (Mm), NP_112247 (Rn), NP_112271 (Rn) |
UniProtKB | P30556 (Hs), P29755 (Mm), P29754 (Mm), P29089 (Rn), P25095 (Rn) |
Wikipedia | AGTR1 (Hs) |
Selected 3D Structures ![]() |
|||||||||||||
![]() |
|
||||||||||||
![]() |
|
||||||||||||
![]() |
|
Natural/Endogenous Ligands ![]() |
angiotensin A {Sp: Human} |
angiotensin II {Sp: Human, Mouse, Rat} |
angiotensin III {Sp: Human, Mouse, Rat} |
angiotensin IV {Sp: Human, Mouse, Rat} |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific agonist tables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Agonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ind8-AngII, a modified version of AngII which was generated by the addition of a single connecting methylene group to the terminal phenyl moiety, produces an AT1R β-arrestin biased ligand (human receptor Ki 38 nM) [147], |
Antagonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific antagonist tables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antagonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LY301875, LY303336, telmisartan, candesartan, irbesartan, valsartan, EXP3174, azilsartan medoxomil and saprisartan [150-151] are all classed as insurmountable antagonists. Partial agonist: Activate the receptor but have only partial efficacy (less than 50%) at the receptor relative to a full agonist. Insurmountable antagonists: When preincubated on cells/tissues these competitive antagonists cause a full or partial depression of the maximal response induced by an agonist (e.g. Angiotensin II) in a concentration-response curve. The degree of insurmountable inhibition is related to the formation of a slow dissociating receptor-antagonist complex [45,105,160,162-163]. Selective ligands ([Sar1,Ile4,Ile8]Ang II, [Sar1-Ala8]-Ang II, [Sar1-Ile8]-Ang II, [Sar1-Gly4,Gly8]-Ang II and TRV120027): Produce greater than 80% activation of G-protein-independent signal and less than 20% activation of G-protein-dependent signal. For an overview of AT1R antagonist binding properties see [107]. Two losartan derivatives have been developed for positron emission tomography (PET): [18F]FEtLos (Ki = 2000 nM) and [18F]AMBF3Los (Ki = 7.9 nM) [137]. |
Immunopharmacology Comments |
Accumulating evidence suggests that regulation of the mutually antagonistic angiotensin receptors AT1 and AT2 is essential for maintaining control of inflammation and that an imbalance between these two receptors has pathophysiological potential [145]. |
Immuno Process Associations | |||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
Primary Transduction Mechanisms ![]() |
|
Transducer | Effector/Response |
Gi/Go family Gq/G11 family |
Adenylate cyclase inhibition Phospholipase C stimulation Calcium channel Phospholipase A2 stimulation Phospholipase D stimulation Other - See Comments |
Comments:
Other effectors and responses are inositol phosphate turnover, protein kinase C activation and RhoA activation. Other transducers are JAK2 resulting in STAT3 phosphorylation [99].; Src with effectors FAK, GIT1, CamK II, Cas [115,124]; pp60c-src with effector phospholipase C-gamma 1 [65,100]; β-arrestin resulting in MAPK phosphorylation in the cytoplasm; and CARMA3 with effector NF-κB [104]. Like many growth factors, activation of several tyrosine kinases (receptor (EGFR), non-receptor (JAK, Src, Pyk2)) and phosphorylation and activation of several downstream cascades such as mitogen activated protein (MAP kinase) cascade, the JAK-STAT pathway are observed. AT1R activation also lead to ROS production via activation of the NADH-NADPH oxidase pathways, modulation of ion channels, transactivation of EGFR [13,33,36,50,141-142,155,174]. G-protein dependent signalling leads to phosphorylation and nuclear translocation of Elk-1 and MAPK whereas β-arrestin dependent signalling leads to MAPK phosphorylation in the cytoplasm [5,154] but not nuclear translocation. |
|
References: 33 |
Tissue Distribution ![]() |
||||||||
|
||||||||
|
Expression Datasets ![]() |
|
|
Functional Assays ![]() |
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
Physiological Functions ![]() |
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
Physiological Consequences of Altering Gene Expression ![]() |
||||||||||
|
||||||||||
Physiological Consequences of Altering Gene Expression Comments | ||||||||||
Mice lacking the AT1a receptor have a marked reduction of systolic blood pressure [176]. There is no impairment of development and no major abnormalities of the heart and vascular system in AT1A KO mice but there are mild signs of mesangial expansion and juxtaglomerular cell hypertrophy. The tubuloglomerular feedback loop is undetectable. The lack of AT1a signaling causes structural abnormalities in the renal vascular system and transforms the phenotype of VSMCs into cell proliferation, induces the escape of VSMCs from the circular mechanical integrity, and results in increased synthesis of extracellular matrices [64]. AT1a receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction [53]. Deficiency of angiotensin type 1a receptors in adipocytes reduces differentiation and promotes hypertrophy of adipocytes in lean mice [128]. AngII can elicit renal vasoconstriction, albeit attenuated, in AT1A knockout mice [135]. Ischemia-induced angiogenesis was also impaired in in AT1a receptor knockout mice suggesting that AT1 receptor pathway promotes early angiogenesis by supporting inflammatory cell infiltration and angiogenic cytokine expression [139]. Genetic disruption of AT1a receptor improves long-term survival of mice with chronic severe aortic regurgitation (AR). In cases of chronic severe AR, blockade of AT1 receptor attenuates the progression of LV dilatation, hypertrophy and fibrosis, thereby mitigating heart failure and improving long-term survival [114]. AT1a receptor knockout in mice causes polyuria and urine concentration defects by reducing basal vasopressin levels and its receptor signaling proteins in the inner medulla [94]. AT1a receptor deficient mice exhibited reduced angiogenesis and delay in wound healing in angiotensin II type 1a receptor- [83]. AT1a receptor plays an important role in skin wound healing by accelerating keratinocyte and fibroblast migration via heparin-binding epidermal growth factor (EGF)-like growth factor-mediated EGF receptor transactivation [173]. Expression of AT1a receptors in C1 neurons restores the sympathoexcitation to angiotensin in the rostral ventrolateral medulla of AT1a knockout mice [21]. Mice lacking the AT1B receptor do not differ from wild-type. The AT1B receptor has a minor role but may compensate for much of the regulatory action in AT1A deleted rodent. For example, AT1B receptor mediates calcium signaling in vascular smooth muscle cells of AT1A receptor-deficient mice [185]. Animals with both AT1A and AT1B gene deletion have an impaired growth, hypotension and marked abnormalities in renal structures. There is a complete absence of pressor responses to Ang II. Transgenic mice overexpressing the AT1 receptor exhibit a drastic cardiac hypertrophy and die within several days of age. The transgenic rats however appear normal unless there is pressure or volume overload, which elicit a more pronounced hypertrophy than in normal rats. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling with increased expression of ventricular atrial natriuretic factor and interstitial collagen deposition and died prematurely of heart failure. Neither the systolic blood pressure nor the heart rate were changed [125]. AT1R overexpression in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block [54]. Increased expression of cardiac AT1a receptors decreases myocardial microvessel density after experimental myocardial infarction and this is amenable to AT(1) receptor blockade, suggesting that efficacy of AT1 receptor blockers post-myocardial infarction may be due to a stimulatory effect on angiogenesis [32]. Overexpression of AT1a receptors impairs excitation-contraction coupling in the mouse heart before the development of cardiac hypertrophy [134]. Overexpression of AT(1) receptor under the control of alpha-myosin heavy chain promoter in angiotensinogen-knockout background mice showed spontaneous systolic dysfunction and chamber dilatation, accompanied by severe interstitial fibrosis. Progression of cardiac remodeling in this model was prevented by treatment with candesartan, an inverse agonist for the AT(1) receptor demonstrating that constitutive activity of the AT(1) receptor under basal conditions contributes to the cardiac remodeling even in the absence of Ang II, when the AT(1) receptor is upregulated in the heart [177]. Transgenic rat model that exhibits an upregulated myocardial AT1 receptor density demonstrates augmented cardiac hypertrophy and contractile response to angiotensin II after volume and pressure overload, but not under baseline conditions [58]. Brain-selective overexpression of AT1a receptors resulted in enhanced cardiovascular responsiveness to intracerebroventricular (ICV) Ang II injection with no change in baseline blood. However, blockade of central AT1 receptors with ICV losartan reduced basal blood pressure suggesting an enhanced contribution of central AT1 receptors to the maintenance of baseline blood pressure in this model [87]. Renovascular hypertension in mice with brain-selective overexpression of AT1a receptors is buffered by increased nitric oxide production in the periphery suggesting that activation of endogenous NO systems plays an important role in buffering the maintenance of hypertension caused by overexpression of AT(1a) receptors in the brain [88]. Brain-selective overexpression of AT(1A) receptors results in enhanced salt appetite and altered water intake [89]. AT1 receptor overexpression in podocytes induces protein leakage and structural podocyte damage progressing to focal segmental glomerulosclerosis in transgenic rats [59]. Mice with overexpression of a constitutively active AT1a receptor transgene in renal proximal tubule caused increased baseline blood pressure. Depletion of endogenous AT1a receptors in the proximal tubule reduced blood pressure. In contrast to the changes observed at baseline, there was no difference in the blood pressure response to a pressor dose of Ang II in either experimental model suggesting that Ang II signaling via the AT1a receptor in the renal proximal tubule is a regulator of systemic blood pressure under baseline conditions [93]. |
Phenotypes, Alleles and Disease Models ![]() |
Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Clinically-Relevant Mutations and Pathophysiology ![]() |
||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
Clinically-Relevant Mutations and Pathophysiology Comments | ||||||||||||
Other pathophysiological actions of AT1 receptor include induction of cardiac fibrosis, renal fibrosis, perivascular fibrosis, induction of cell and tissue senescence, induction of insulin resistance, induction of endothelial dysfunction, induction of skeletal muscle wasting, reduction of exercise tolerance, induction of tissue ER stress, induction of aortic aneurysm, acceleration of atherosclerosis. Preeclampsia is associated with the presence of autoantibodies capable of activating the AT1R [166,172]. AT(1)-B(2)-receptor heterodimerization is also reported to be correlated to preeclampsia [1]. |
Biologically Significant Variants ![]() |
||||||||||
|
||||||||||
|
||||||||||
|
General Comments |
For information on miRNAs predicted to target AGTR1 3'-UTR please see TargetScan [46,92]. Crystallography has confirmed the different conformations that AT1R adopts in Gq-biased and β-arrestin-biased ligand-bound states [147]. AT1R cross talk with TRPV4 has been observed. Internalization of both the receptors is inhibited by antagonists that independently target either partner in the interaction pair [181]. |
1. AbdAlla S, Lother H, el Massiery A, Quitterer U. (2001) Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat. Med., 7 (9): 1003-9. [PMID:11533702]
2. AbdAlla S, Lother H, Quitterer U. (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature, 407 (6800): 94-8. [PMID:10993080]
3. Agelis G, Resvani A, Durdagi S, Spyridaki K, Tůmová T, Slaninová J, Giannopoulos P, Vlahakos D, Liapakis G, Mavromoustakos T et al.. (2012) The discovery of new potent non-peptide Angiotensin II AT1 receptor blockers: a concise synthesis, molecular docking studies and biological evaluation of N-substituted 5-butylimidazole derivatives. Eur J Med Chem, 55: 358-74. [PMID:22889560]
4. Agelis G, Resvani A, Koukoulitsa C, Tůmová T, Slaninová J, Kalavrizioti D, Spyridaki K, Afantitis A, Melagraki G, Siafaka A et al.. (2013) Rational design, efficient syntheses and biological evaluation of N,N'-symmetrically bis-substituted butylimidazole analogs as a new class of potent Angiotensin II receptor blockers. Eur J Med Chem, 62: 352-70. [PMID:23376252]
5. Ahn S, Shenoy SK, Wei H, Lefkowitz RJ. (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J. Biol. Chem., 279 (34): 35518-25. [PMID:15205453]
6. Aiyar N, Griffin E, Shu A, Heys R, Bergsma DJ, Weinstock J, Edwards R. (1993) Characterization of [3H]SK&F 108566 as a radioligand for angiotensin type-1 receptor. J. Recept. Res., 13 (5): 849-61. [PMID:8463997]
7. Allen AM, Moeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY, Mendelsohn FA. (1998) Angiotensin receptors in the nervous system. Brain Res. Bull., 47 (1): 17-28. [PMID:9766385]
8. Asico LD, Ladines C, Fuchs S, Accili D, Carey RM, Semeraro C, Pocchiari F, Felder RA, Eisner GM, Jose PA. (1998) Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension. J. Clin. Invest., 102 (3): 493-8. [PMID:9691085]
9. Baiardi G, Macova M, Armando I, Ando H, Tyurmin D, Saavedra JM. (2005) Estrogen upregulates renal angiotensin II AT1 and AT2 receptors in the rat. Regul. Pept., 124 (1-3): 7-17. [PMID:15544836]
10. Baker KM, Chernin MI, Wixson SK, Aceto JF. (1990) Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am. J. Physiol., 259 (2 Pt 2): H324-32. [PMID:2143633]
11. Batenburg WW, Garrelds IM, Bernasconi CC, Juillerat-Jeanneret L, van Kats JP, Saxena PR, Danser AH. (2004) Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries. Circulation, 109 (19): 2296-301. [PMID:15117835]
12. Bergsma DJ, Ellis C, Kumar C, Nuthulaganti P, Kersten H, Elshourbagy N, Griffin E, Stadel JM, Aiyar N. (1992) Cloning and characterization of a human angiotensin II type 1 receptor. Biochem. Biophys. Res. Commun., 183 (3): 989-95. [PMID:1567413]
13. Berk BC, Corson MA. (1997) Angiotensin II signal transduction in vascular smooth muscle: role of tyrosine kinases. Circ. Res., 80 (5): 607-16. [PMID:9130441]
14. Bhatnagar A, Unal H, Jagannathan R, Kaveti S, Duan ZH, Yong S, Vasanji A, Kinter M, Desnoyer R, Karnik SS. (2013) Interaction of G-protein βγ complex with chromatin modulates GPCR-dependent gene regulation. PLoS ONE, 8 (1): e52689. [PMID:23326349]
15. Bonnardeaux A, Davies E, Jeunemaitre X, Féry I, Charru A, Clauser E, Tiret L, Cambien F, Corvol P, Soubrier F. (1994) Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension, 24 (1): 63-9. [PMID:8021009]
16. Bullock GR, Steyaert I, Bilbe G, Carey RM, Kips J, De Paepe B, Pauwels R, Praet M, Siragy HM, de Gasparo M. (2001) Distribution of type-1 and type-2 angiotensin receptors in the normal human lung and in lungs from patients with chronic obstructive pulmonary disease. Histochem. Cell Biol., 115 (2): 117-24. [PMID:11444146]
17. Burns KD, Li N. (2003) The role of angiotensin II-stimulated renal tubular transport in hypertension. Curr. Hypertens. Rep., 5 (2): 165-71. [PMID:12642017]
18. Catt KJ, Mendelsohn FA, Millan MA, Aguilera G. (1984) The role of angiotensin II receptors in vascular regulation. J. Cardiovasc. Pharmacol., 6 Suppl 4: S575-86. [PMID:6083400]
19. Chansel D, Vandermeersch S, Pham P, Ardaillou R. (1993) Characterization of [3H]losartan receptors in isolated rat glomeruli. Eur. J. Pharmacol., 247 (2): 193-8. [PMID:8282008]
20. Chaves FJ, Corella D, Sorli JV, Marin-Garcia P, Guillen M, Redon J. (2004) Polymorphisms of the renin-angiotensin system influence height in normotensive women in a Spanish population. J. Clin. Endocrinol. Metab., 89 (5): 2301-5. [PMID:15126556]
21. Chen D, Bassi JK, Walther T, Thomas WG, Allen AM. (2010) Expression of angiotensin type 1A receptors in C1 neurons restores the sympathoexcitation to angiotensin in the rostral ventrolateral medulla of angiotensin type 1A knockout mice. Hypertension, 56 (1): 143-50. [PMID:20458002]
22. Chen J, Guo L, Peiffer DA, Zhou L, Chan OT, Bibikova M, Wickham-Garcia E, Lu SH, Zhan Q, Wang-Rodriguez J et al.. (2008) Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues. Int. J. Cancer, 122 (10): 2249-54. [PMID:18241037]
23. Chen TB, Lotti VJ, Chang RS. (1992) Characterization of the binding of [3H]L-158,809: a new potent and selective nonpeptide angiotensin II receptor (AT1) antagonist radioligand. Mol. Pharmacol., 42 (6): 1077-82. [PMID:1480133]
24. Chiu AT, McCall DE, Roscoe WA. (1992) [125I]EXP985: a highly potent and specific nonpeptide radioligand antagonist for the AT1 angiotensin receptor. Biochem. Biophys. Res. Commun., 188 (3): 1030-9. [PMID:1445340]
25. Criscione L, de Gasparo M, Bühlmayer P, Whitebread S, Ramjoué HP, Wood J. (1993) Pharmacological profile of valsartan: a potent, orally active, nonpeptide antagonist of the angiotensin II AT1-receptor subtype. Br. J. Pharmacol., 110 (2): 761-71. [PMID:8242249]
26. Cullinane AB, Leung PS, Ortego J, Coca-Prados M, Harvey BJ. (2002) Renin-angiotensin system expression and secretory function in cultured human ciliary body non-pigmented epithelium. Br J Ophthalmol, 86 (6): 676-83. [PMID:12034692]
27. Curnow KM, Pascoe L, Davies E, White PC, Corvol P, Clauser E. (1995) Alternatively spliced human type 1 angiotensin II receptor mRNAs are translated at different efficiencies and encode two receptor isoforms. Mol. Endocrinol., 9 (9): 1250-62. [PMID:7491117]
28. Curnow KM, Pascoe L, White PC. (1992) Genetic analysis of the human type-1 angiotensin II receptor. Mol. Endocrinol., 6 (7): 1113-8. [PMID:1508224]
29. da Silva OG, Rossignoli Pde S, Carrillo-Sepúlveda MA, Barreto-Chaves ML, Chies AB. (2011) Involvement of the AT1 receptor in the venoconstriction induced by angiotensin II in both the inferior vena cava and femoral vein. Peptides, 32 (1): 112-7. [PMID:20955746]
30. Davies E, Bonnardeaux A, Lathrop GM, Corvol P, Clauser E, Soubrier F. (1994) Angiotensin II (type-1) receptor locus: CA repeat polymorphism and genetic mapping. Hum. Mol. Genet., 3 (5): 838. [PMID:8081376]
31. Davisson RL, Oliverio MI, Coffman TM, Sigmund CD. (2000) Divergent functions of angiotensin II receptor isoforms in the brain. J. Clin. Invest., 106 (1): 103-6. [PMID:10880053]
32. de Boer RA, Pinto YM, Suurmeijer AJ, Pokharel S, Scholtens E, Humler M, Saavedra JM, Boomsma F, van Gilst WH, van Veldhuisen DJ. (2003) Increased expression of cardiac angiotensin II type 1 (AT(1)) receptors decreases myocardial microvessel density after experimental myocardial infarction. Cardiovasc. Res., 57 (2): 434-42. [PMID:12566116]
33. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev., 52 (3): 415-72. [PMID:10977869]
34. de Gasparo M, Whitebread S. (1995) Binding of valsartan to mammalian angiotensin AT1 receptors. Regul. Pept., 59 (3): 303-11. [PMID:8577935]
35. de Gasparo M, Whitebread S, Bottari SP, Levens NR. (1994) Heterogeneity of angiotensin receptor subtypes. In Medicinal Chemistry of the Renin-Angiotensin System.. Edited by Timmermanns PBMWM, Wexler RR (Elsevier) 269-294. [ISBN:0444820531]
36. Doan TN, Ali MS, Bernstein KE. (2001) Tyrosine kinase activation by the angiotensin II receptor in the absence of calcium signaling. J. Biol. Chem., 276 (24): 20954-8. [PMID:11319216]
37. Díez J, Laviades C, Orbe J, Zalba G, López B, González A, Mayor G, Páramo JA, Beloqui O. (2003) The A1166C polymorphism of the AT1 receptor gene is associated with collagen type I synthesis and myocardial stiffness in hypertensives. J. Hypertens., 21 (11): 2085-92. [PMID:14597852]
38. Edwards RM, Aiyar N, Ohlstein EH, Weidley EF, Griffin E, Ezekiel M, Keenan RM, Ruffolo RR, Weinstock J. (1992) Pharmacological characterization of the nonpeptide angiotensin II receptor antagonist, SK&F 108566. J. Pharmacol. Exp. Ther., 260 (1): 175-81. [PMID:1309870]
39. Elton TS, Stephan CC, Taylor GR, Kimball MG, Martin MM, Durand JN, Oparil S. (1992) Isolation of two distinct type I angiotensin II receptor genes. Biochem. Biophys. Res. Commun., 184 (2): 1067-73. [PMID:1575725]
40. Esteban V, Heringer-Walther S, Sterner-Kock A, de Bruin R, van den Engel S, Wang Y, Mezzano S, Egido J, Schultheiss HP, Ruiz-Ortega M et al.. (2009) Angiotensin-(1-7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS ONE, 4 (4): e5406. [PMID:19404405]
41. Eto H, Biro S, Miyata M, Kaieda H, Obata H, Kihara T, Orihara K, Tei C. (2003) Angiotensin II type 1 receptor participates in extracellular matrix production in the late stage of remodeling after vascular injury. Cardiovasc. Res., 59 (1): 200-11. [PMID:12829191]
42. Feng YH, Noda K, Saad Y, Liu XP, Husain A, Karnik SS. (1995) The docking of Arg2 of angiotensin II with Asp281 of AT1 receptor is essential for full agonism. J. Biol. Chem., 270 (21): 12846-50. [PMID:7759541]
43. Ferri C, Desideri G, Baldoncini R, Bellini C, Valenti M, Santucci A, De Mattia G. (1999) Angiotensin II increases the release of endothelin-1 from human cultured endothelial cells but does not regulate its circulating levels. Clin. Sci., 96 (3): 261-70. [PMID:10029562]
44. Fierens F, Vanderheyden PM, De Backer JP, Vauquelin G. (1999) Binding of the antagonist [3H]candesartan to angiotensin II AT1 receptor-transfected [correction of tranfected] Chinese hamster ovary cells. Eur. J. Pharmacol., 367 (2-3): 413-22. [PMID:10079018]
45. Fierens FL, Vanderheyden PM, De Backer JP, Vauquelin G. (1999) Insurmountable angiotensin AT1 receptor antagonists: the role of tight antagonist binding. Eur. J. Pharmacol., 372 (2): 199-206. [PMID:10395100]
46. Friedman RC, Farh KK, Burge CB, Bartel DP. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 19 (1): 92-105. [PMID:18955434]
47. Furuta H, Guo DF, Inagami T. (1992) Molecular cloning and sequencing of the gene encoding human angiotensin II type 1 receptor. Biochem. Biophys. Res. Commun., 183 (1): 8-13. [PMID:1543512]
48. Gasc JM, Shanmugam S, Sibony M, Corvol P. (1994) Tissue-specific expression of type 1 angiotensin II receptor subtypes. An in situ hybridization study. Hypertension, 24: 531-537. [PMID:7960011]
49. Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, Bouton JM, Feuillet F, Makni S, Ben Amar H et al.. (2005) Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat. Genet., 37 (9): 964-8. [PMID:16116425]
50. Griendling KK, Ushio-Fukai M. (2000) Reactive oxygen species as mediators of angiotensin II signaling. Regul. Pept., 91 (1-3): 21-7. [PMID:10967199]
51. Hancock AA, Surber BW, Rotert G, Thomas S, Tasker AS, Sorensen BK, Vodenlich AD, Opgenorth TJ, Kerkman DJ, DeBernardis JF. (1994) [3H]A-81988, a potent, selective, competitive antagonist radioligand for angiotensin AT1 receptors. Eur. J. Pharmacol., 267 (1): 49-54. [PMID:8206129]
52. Handa RK, Krebs LT, Harding JW, Handa SE. (1998) Angiotensin IV AT4-receptor system in the rat kidney. Am. J. Physiol., 274 (2 Pt 2): F290-9. [PMID:9486224]
53. Harada K, Sugaya T, Murakami K, Yazaki Y, Komuro I. (1999) Angiotensin II type 1A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction. Circulation, 100 (20): 2093-9. [PMID:10562266]
54. Hein L, Stevens ME, Barsh GS, Pratt RE, Kobilka BK, Dzau VJ. (1997) Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc. Natl. Acad. Sci. U.S.A., 94 (12): 6391-6. [PMID:9177228]
55. Hernandez Schulman I, Zhou MS, Raij L. (2007) Cross-talk between angiotensin II receptor types 1 and 2: potential role in vascular remodeling in humans. Hypertension, 49 (2): 270-1. [PMID:17159080]
56. Herzig TC, Jobe SM, Aoki H, Molkentin JD, Cowley Jr AW, Izumo S, Markham BE. (1997) Angiotensin II type1a receptor gene expression in the heart: AP-1 and GATA-4 participate in the response to pressure overload. Proc. Natl. Acad. Sci. U.S.A., 94 (14): 7543-8. [PMID:9207128]
57. Hilditch A, Hunt AA, Travers A, Polley J, Drew GM, Middlemiss D, Judd DB, Ross BC, Robertson MJ. (1995) Pharmacological effects of GR138950, a novel angiotensin AT1 receptor antagonist. J. Pharmacol. Exp. Ther., 272 (2): 750-7. [PMID:7853190]
58. Hoffmann S, Krause T, van Geel PP, Willenbrock R, Pagel I, Pinto YM, Buikema H, van Gilst WH, Lindschau C, Paul M et al.. (2001) Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy. J. Mol. Med., 79 (10): 601-8. [PMID:11692158]
59. Hoffmann S, Podlich D, Hähnel B, Kriz W, Gretz N. (2004) Angiotensin II type 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats. J. Am. Soc. Nephrol., 15 (6): 1475-87. [PMID:15153558]
60. Hollon TR, Bek MJ, Lachowicz JE, Ariano MA, Mezey E, Ramachandran R, Wersinger SR, Soares-da-Silva P, Liu ZF, Grinberg A et al.. (2002) Mice lacking D5 dopamine receptors have increased sympathetic tone and are hypertensive. J. Neurosci., 22 (24): 10801-10. [PMID:12486173]
61. Holloway AC, Qian H, Pipolo L, Ziogas J, Miura S, Karnik S, Southwell BR, Lew MJ, Thomas WG. (2002) Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol. Pharmacol., 61 (4): 768-77. [PMID:11901215]
62. Holycross BJ, Peach MJ, Owens GK. (1993) Angiotensin II stimulates increased protein synthesis, not increased DNA synthesis, in intact rat aortic segments, in vitro. J. Vasc. Res., 30 (2): 80-6. [PMID:8504199]
63. Inagami T, Iwai N, Sasaki K, Yamano Y, Bardhan S, Chaki S, Guo DF, Furuta H, Ohyama K, Kambayashi Y et al.. (1994) Cloning, expression and regulation of angiotensin II receptors. Eur. Heart J., 15 Suppl D: 104-7. [PMID:7713098]
64. Inokuchi S, Kimura K, Sugaya T, Inokuchi K, Murakami K, Sakai T. (2001) Hyperplastic vascular smooth muscle cells of the intrarenal arteries in angiotensin II type 1a receptor null mutant mice. Kidney Int., 60 (2): 722-31. [PMID:11473655]
65. Ishida M, Marrero MB, Schieffer B, Ishida T, Bernstein KE, Berk BC. (1995) Angiotensin II activates pp60c-src in vascular smooth muscle cells. Circ. Res., 77 (6): 1053-9. [PMID:7586216]
66. Itoh S, Ding B, Shishido T, Lerner-Marmarosh N, Wang N, Maekawa N, Berk BC, Takeishi Y, Yan C, Blaxall BC et al.. (2006) Role of p90 ribosomal S6 kinase-mediated prorenin-converting enzyme in ischemic and diabetic myocardium. Circulation, 113 (14): 1787-98. [PMID:16585392]
67. Iwai N, Inagami T. (1992) Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett., 298 (2-3): 257-60. [PMID:1544458]
68. Iwai N, Yamano Y, Chaki S, Konishi F, Bardhan S, Tibbetts C, Sasaki K, Hasegawa M, Matsuda Y, Inagami T. (1991) Rat angiotensin II receptor: cDNA sequence and regulation of the gene expression. Biochem. Biophys. Res. Commun., 177 (1): 299-304.