Top ▲

TRPV1

Click here for help

Immunopharmacology Ligand target has curated data in GtoImmuPdb

Target id: 507

Nomenclature: TRPV1

Family: Transient Receptor Potential channels (TRP)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 1 839 17p13.2 TRPV1 transient receptor potential cation channel subfamily V member 1 26
Mouse 6 1 839 11 45.25 cM Trpv1 transient receptor potential cation channel, subfamily V, member 1 18
Rat 6 1 838 10q24 Trpv1 transient receptor potential cation channel, subfamily V, member 1 14
Previous and Unofficial Names Click here for help
OTRPC1 | VR1 | capsaicin receptor | osm-9-like TRP channel 1 | vanilloid receptor 1 | transient receptor potential cation channel
Database Links Click here for help
Alphafold
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Reconstruction of TRPV1 ion channel in complex with capsaicin by single particle cryo-microscopy
PDB Id:  3J5R
Ligand:  capsaicin
Resolution:  4.2Å
Species:  Rat
References:  12
Image of receptor 3D structure from RCSB PDB
Description:  Structure of TRPV1 ion channel determined by single particle electron cryo-microscopy
PDB Id:  3J5P
Resolution:  3.275Å
Species:  Rat
References:  12
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
TRPV3 52
TRPV2 33,47
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
PI3 kinase 53
calmodulin 43
A-kinase-anchoring protein (AKAP)79/150 69
Functional Characteristics Click here for help
γ = 35 pS at – 60 mV; 77 pS at + 60 mV, conducts mono and di-valent cations with a selectivity for divalents (PCa/PNa = 9.6); voltage- and time- dependent outward rectification; potentiated by ethanol; activated/potentiated/upregulated by PKC stimulation; extracellular acidification facilitates activation by PKC; desensitisation inhibited by PKA; inhibited by Ca2+/ calmodulin; cooling reduces vanilloid-evoked currents; may be tonically active at body temperature
Ion Selectivity and Conductance Click here for help
Species:  Rat
Rank order:  Ca2+ > Mg2+ > Cs+ [35.0 - 80.0 pS] = K+ = Na+
References:  14
Voltage Dependence Click here for help
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  50.0 – 150.0 100.0 – 600.0 61 HEK 293 cells transiently transfected with hTRPV1 Human
Inactivation  - -
Comments  Activation of TRPV1 by thermal or chemical stimuli is associated with leftward shift of the voltage dependence of activation (9.1 mVºC-1). Whether voltage sensitivity underlies channel activation or represents an independent, allosterically coupled property is currently unresolved [34,38].
Other chemical activators (Human)
NO-mediated cysteine S-nitrosylation
Physical activators (Human)
depolarization (V½ ~ 0 mV at 35°C), noxious heat (> 43°C at pH 7.4)

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
resiniferatoxin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Agonist 9.8 pEC50 - Physiological 18
pEC50 9.8 [18]
Holding voltage: Physiological
arvanil Small molecule or natural product Mm Agonist 9.6 pEC50 - Physiological 18
pEC50 9.6 [18]
Holding voltage: Physiological
olvanil Small molecule or natural product Mm Agonist 8.4 pEC50 - Physiological 18
pEC50 8.4 [18]
Holding voltage: Physiological
resiniferatoxin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 8.4 pEC50 - Physiological 51
pEC50 8.4 (EC50 3.98x10-9 M) [51]
Holding voltage: Physiological
olvanil Small molecule or natural product Rn Agonist 8.1 pEC50 - Physiological 29
pEC50 8.1 [29]
Holding voltage: Physiological
capsaicin Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Agonist 8.0 pEC50 - Physiological 18
pEC50 8.0 [18]
Holding voltage: Physiological
olvanil Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.7 pEC50 - Physiological 51
pEC50 7.7 (EC50 1.99x10-8 M) [51]
Holding voltage: Physiological
zucapsaicin Small molecule or natural product Approved drug Hs Activation 7.6 pEC50 - - 2
pEC50 7.6 (EC50 2.82x10-8 M) [2]
Description: Agonist activity at human TRPV1, determined as increase in [45]Ca2+ uptake in CHO cells expressing the ion channel
capsaicin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 7.5 pEC50 - -100.0 – 160.0 61
pEC50 7.5 (EC50 3.16x10-8 M) [61]
Holding voltage: -100.0 – 160.0 mV
resiniferatoxin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Agonist 7.5 pEC50 - -40.0 14
pEC50 7.5 [14]
Holding voltage: -40.0 mV
DkTx Peptide Rn Activation 6.6 pEC50 - Physiological 11
pEC50 6.6 (EC50 2.3x10-10 M) [11]
Holding voltage: Physiological
vanillotoxin-3 Peptide Rn Agonist 6.3 pEC50 - -80.0 49
pEC50 6.3 (EC50 4.5x10-7 M) [49]
Holding voltage: -80.0 mV
RhTx Peptide Hs Activation 6.3 pEC50 - - 66
pEC50 6.3 (EC50 5.2x10-7 M) [66]
capsaicin Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Agonist 6.1 pEC50 - -40.0 14
pEC50 6.1 [14]
Holding voltage: -40.0 mV
anandamide Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Agonist 5.9 pEC50 - -70.0 50
pEC50 5.9 [50]
Holding voltage: -70.0 mV
vanillotoxin-2 Peptide Rn Agonist 5.9 pEC50 - -80.0 49
pEC50 5.9 (EC50 1.35x10-6 M) [49]
Holding voltage: -80.0 mV
extracellular H+ Click here for species-specific activity table Ligand is endogenous in the given species Hs - 5.4 pEC50 - -
pEC50 5.4 (EC50 3.98x10-6 M) at 37°C
anandamide Small molecule or natural product Ligand is endogenous in the given species Ligand has a PDB structure Rn Agonist 5.3 pEC50 - -40.0 70
pEC50 5.3 [70]
Holding voltage: -40.0 mV
PPAHV Small molecule or natural product Rn Agonist 5.0 – 5.5 pEC50 - -60.0 39
pEC50 5.0 – 5.5 [39]
Holding voltage: -60.0 mV
12S-HPETE Small molecule or natural product Ligand is endogenous in the given species Rn Agonist 5.1 pEC50 - -60.0 28
pEC50 5.1 (EC50 7.94x10-6 M) [28]
Holding voltage: -60.0 mV
anandamide Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Activation 5.0 pEC50 - - 1
pEC50 5.0 [1]
5S-HPETE Small molecule or natural product Ligand is endogenous in the given species Rn Agonist 5.0 pEC50 - -60.0 28
pEC50 5.0 [28]
Holding voltage: -60.0 mV
vanillotoxin-1 Peptide Rn Agonist 5.0 pEC50 - -80.0 49
pEC50 5.0 (EC50 9.9x10-6 M) [49]
Holding voltage: -80.0 mV
LTB4 Small molecule or natural product Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Rn Agonist 4.9 pEC50 - -60.0 28
pEC50 4.9 (EC50 1.25x10-5 M) [28]
Holding voltage: -60.0 mV
piperine Small molecule or natural product Ligand has a PDB structure Hs Agonist 4.4 – 5.0 pEC50 - -70.0 40
pEC50 4.4 – 5.0 [40]
Holding voltage: -70.0 mV
allicin Small molecule or natural product Rn Agonist 3.9 – 4.6 pEC50 - Physiological 36
pEC50 3.9 – 4.6 [36]
Holding voltage: Physiological
2-APB Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Agonist 3.7 – 3.9 pEC50 - -40.0 27
pEC50 3.7 – 3.9 [27]
Holding voltage: -40.0 mV
camphor Small molecule or natural product Hs - - - - -
diphenylboronic anhydride Small molecule or natural product Hs - - - - -
5S-HETE Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Hs - - - - -
[3H]resiniferatoxin Small molecule or natural product Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Activation - - - -
phenylacetylrinvanil Small molecule or natural product Click here for species-specific activity table Hs - - - - - 3
[3]
View species-specific activator tables
Activator Comments
TRPV1 is also activated by heat, ethanol, protons and phorbol-12-myristate-13-acetate [7,14,57].
Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
AZD1386 Small molecule or natural product Primary target of this compound Hs Inhibition 7.6 pIC50 - - 42
pIC50 7.6 (IC50 2.5x10-8 M) [42]
Gating Inhibitor Comments
Phosphatidylinositol-4,5-bisphosphate is also an inhibitor of channel gating [46].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
asivatrep Small molecule or natural product Immunopharmacology Ligand Rn Antagonist 8.2 pIC50 31
pIC50 8.2 (IC50 6.2x10-9 M) [31]
Description: Antagonism of capsaicin-induced calcium influx in isolated primary rat spinal dorsal root ganglia cells.
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
SB452533 Small molecule or natural product Hs Antagonist 7.7 pKB - -
pKB 7.7
[3H]A778317 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs - 8.5 pKd - - 8
pKd 8.5 (Kd 3.4x10-9 M) [8]
agatoxin 489 Small molecule or natural product Rn Inhibition 6.5 pKi - -40.0 32
pKi 6.5 [32]
Holding voltage: -40.0 mV
AMG517 Small molecule or natural product Hs - 9.0 pIC50 - - 10
pIC50 9.0 (IC50 9x10-10 M) [10]
[125I]resiniferatoxin Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Antagonist 8.4 pIC50 - -50.0 63
pIC50 8.4 (IC50 3.98x10-9 M) [63]
Holding voltage: -50.0 mV
5'-iodoresiniferatoxin Small molecule or natural product Hs - 8.4 pIC50 - -
pIC50 8.4 (IC50 3.9x10-9 M)
AMG628 Small molecule or natural product Rn - 8.4 pIC50 - - 64
pIC50 8.4 (IC50 3.7x10-9 M) [64]
A425619 Small molecule or natural product Hs - 8.3 pIC50 - - 20
pIC50 8.3 (IC50 5x10-9 M) [20]
A778317 Small molecule or natural product Hs - 8.3 pIC50 - - 8
pIC50 8.3 (IC50 5x10-9 M) [8]
SB366791 Small molecule or natural product Ligand has a PDB structure Hs - 8.2 pIC50 - - 25
pIC50 8.2 (IC50 5.7x10-9 M) [25]
A-1165442 Small molecule or natural product Hs Antagonist 8.1 pIC50 - - 62
pIC50 8.1 (IC50 9x10-9 M) [62]
Description: Antagonism of capsaicin-induced activation of hTRPV1
6-iodo-nordihydrocapsaicin Small molecule or natural product Hs - 8.0 pIC50 - -
pIC50 8.0 (IC50 1x10-8 M)
JYL1421 Small molecule or natural product Rn Antagonist 8.0 pIC50 - - 65
pIC50 8.0 (IC50 9.2x10-9 M) [65]
JNJ17203212 Small molecule or natural product Hs Antagonist 7.8 pIC50 - Physiological 55
pIC50 7.8 (IC50 1.6x10-8 M) [55]
Holding voltage: Physiological
AMG 9810 Small molecule or natural product Hs Inhibition 7.8 pIC50 - Physiological 22
pIC50 7.8 [22]
Holding voltage: Physiological
mavatrep Small molecule or natural product Rn Antagonist 7.7 pIC50 - - 45
pIC50 7.7 (IC50 2.1x10-8 M) [45]
Description: Antagonism of capsaicin-induced rTRPV1 mediated calcium influx in HEK293 cells
mavatrep Small molecule or natural product Hs Antagonist 7.6 pIC50 - - 45
pIC50 7.6 (IC50 2.3x10-8 M) [45]
Description: Antagonism of capsaicin-induced hTRPV1 current in HEK293 cells by patch clamp assay
BCTC Small molecule or natural product Hs Antagonist 7.5 pIC50 - - 17
pIC50 7.5 (IC50 3.49x10-8 M) [17]
BCTC Small molecule or natural product Rn Antagonist 7.5 pIC50 - Physiological 60
pIC50 7.5 [60]
Holding voltage: Physiological
capsazepine Small molecule or natural product Ligand has a PDB structure Hs Antagonist 7.4 pIC50 - -60.0 39
pIC50 7.4 (IC50 3.9x10-8 M) [39]
Holding voltage: -60.0 mV
SB705498 Small molecule or natural product Hs Antagonist 7.1 pIC50 - - 24
pIC50 7.1 (IC50 7.94x10-8 M) [24]
ruthenium red Click here for species-specific activity table Hs Antagonist 7.0 pIC50 - -60.0 39
pIC50 7.0 [39]
Holding voltage: -60.0 mV
ruthenium red Click here for species-specific activity table Rn Antagonist 6.7 pIC50 - -60.0 39
pIC50 6.7 [39]
Holding voltage: -60.0 mV
capsazepine Small molecule or natural product Ligand has a PDB structure Rn Antagonist 6.7 pIC50 - -60.0 39
pIC50 6.7 [39]
Holding voltage: -60.0 mV
allicin Small molecule or natural product Click here for species-specific activity table Hs - - - - -
2-APB Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs - - - - -
NADA Small molecule or natural product Click here for species-specific activity table Hs - - - - -
View species-specific channel blocker tables
Channel Blocker Comments
Of the compounds listed above, there is good evidence to denote agatoxin 489 and ruthenium red as true channel blockers. The others should be considered antagonists.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
s-RhTx Peptide Hs Positive 6.1 pEC50 68
pEC50 6.1 (EC50 8.9x10-7 M) [68]
Description: Potentiation of the effect of 10 nM capsaicin on channel activity
MRS-1477 Small molecule or natural product Hs Positive - - 30
[30]
Immunopharmacology Comments
Several lines of evidence suggest that TRPV1 is implicated in some inflammatory processes [4,6,35,37,48]. TRPV1 is expressed on mouse T cells, mouse and human dendritic cells, mouse monocytes/macrophages, and human mast cells [44]. Pharmaceutical development is targeting TRPV1 antagonists as novel anti-inflammatory agents (e.g. the clinical candidate asivatrep).
Cell Type Associations
Immuno Cell Type:  T cells
Comment:  T cell-expressed TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells.
References:  5,59
Immuno Cell Type:  Dendritic cells
Cell Ontology Term:   dendritic cell (CL:0000451)
References:  59
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  Cytokine production & signalling
Immuno Process:  Cellular signalling
Tissue Distribution Click here for help
Dorsal root ganglia, brain, kidney, pancreas, testes, uterus, spleen, stomach, small intestine, lung, liver.
Species:  Human
Technique:  RT-PCR
References:  26
Dorsal root and trigeminal ganglia, caudal hypothalamus, subset of arteriolar smooth muscle cells.
Species:  Mouse
Technique:  Transgenic reporter lines
References:  15-16,41
Trigeminal ganglia, dorsal root ganglia, kidney.
Species:  Rat
Technique:  In situ hybridisation, Northern Blot
References:  14
Dorsal root ganglia, kidney, pancreas, placenta.
Species:  Rat
Technique:  RT-PCR
References:  26
Bladder
Species:  Rat
Technique:  Immunocytochemistry, RT-PCR
References:  9
Functional Assays Click here for help
Two-electrode voltage clamp technique.
Species:  Rat
Tissue:  Xenopus laevis oocytes injected with TRPV1 cDNA.
Response measured:  Activation by capsaicin and resiniferatoxin.
References:  14
Patch clamp (whole-cell and single-channel recordings).
Species:  Rat
Tissue:  HEK cells transfected with TRPV1 vector.
Response measured:  Activation by capsaicin, resiniferatoxin and heat.
References:  14
Patch clamp (whole-cell recordings).
Species:  Mouse
Tissue:  Dorsal root ganglion neurones.
Response measured:  Activation by capsaicin, resiniferatoxin and heat.
References:  13
Intracellular Ca2+ imaging.
Species:  Rat
Tissue:  HEK 293 cells transfected with TRPV1.
Response measured:  Activation by capsaicin and anandamide.
References:  50
Patch clamp (whole-cell recordings).
Species:  Human
Tissue:  HEK 293 cells transfected with TRPV1.
Response measured:  Activation by capsaicin and heat.
References:  26
Two-electrode voltage clamp technique.
Species:  Human
Tissue:  Xenopus laevis oocytes injected with TRPV1 cDNA.
Response measured:  Activation by capsaicin and pH.
References:  26
Intracellular Ca2+ imaging.
Species:  Human
Tissue:  HEK 293 cells transfected with TRPV1.
Response measured:  Activation by capsaicin, olvanil, resiniferatoxin and anandamide.
References:  51
Intracellular Ca2+ imaging.
Species:  Mouse
Tissue:  HEK 293 cells transfected with TRPV1.
Response measured:  Activation by agonists and pH.
References:  18
Physiological Functions Click here for help
Thermosensation (moderate heat) and nociception.
Species:  Rat
Tissue:  Dorsal root ganlgia neurones.
References:  14
Detection an integration of noxious stimuli (actute nociceptive pain).
Species:  Rat
Tissue:  Sensory neurones.
References:  56
Physiological Consequences of Altering Gene Expression Click here for help
TRPV1 null mice exhibit various phenotypes including insensitivity to capsaicin and other vanilloid irritants, diminished sensitivity to noxious heat and tissue acidosis, loss of thermal hyperalgesia.
Species:  Mouse
Tissue: 
Technique:  Gene knockout by homologous recombination.
References:  13,19,54
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0005402 abnormal action potential PMID: 15509739 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0004924 abnormal behavior PMID: 17251423 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0009745 abnormal behavioral response to xenobiotic PMID: 19705551 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0005535 abnormal body temperature PMID: 18503767 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0008722 abnormal chemokine secretion PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0000427 abnormal hair cycle PMID: 16645591 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0008859 abnormal hair cycle catagen phase PMID: 16645591 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0008860 abnormal hair cycle telogen phase PMID: 16645591 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0005555 abnormal kidney excretion PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0002734 abnormal mechanical nociception PMID: 17553498 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0002272 abnormal nervous system electrophysiology PMID: 16943565 
Trpv1tm1Jbd Trpv1tm1Jbd/Trpv1tm1Jbd
involves: 129P2/OlaHsd * C57BL/6J
MGI:1341787  MP:0002272 abnormal nervous system electrophysiology PMID: 10821274 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0002272 abnormal nervous system electrophysiology PMID: 16327782 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0004948 abnormal neuronal precursor proliferation PMID: 15266010 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0002736 abnormal nociception after inflammation PMID: 10764638 
Trpv1tm1Jbd Trpv1tm1Jbd/Trpv1tm1Jbd
involves: 129P2/OlaHsd * C57BL/6J
MGI:1341787  MP:0002736 abnormal nociception after inflammation PMID: 10821274 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0008872 abnormal physiological response to xenobiotic PMID: 15121805  15128844  17347480  17553498  18341994 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0002703 abnormal renal tubule morphology PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0010055 abnormal sensory neuron physiology PMID: 10764638 
Trpv1tm1Jbd Trpv1tm1Jbd/Trpv1tm1Jbd
involves: 129P2/OlaHsd
MGI:1341787  MP:0010055 abnormal sensory neuron physiology PMID: 18499726 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0001986 abnormal taste sensitivity PMID: 19244541 
Trpv1tm1Jbd Trpv1tm1Jbd/Trpv1tm1Jbd
involves: 129P2/OlaHsd * C57BL/6J
MGI:1341787  MP:0002733 abnormal thermal nociception PMID: 10821274 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ * C57BL/6
MGI:1341787  MP:0001756 abnormal urination PMID: 12161756 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0004484 altered response of heart to induced stress PMID: 16314376 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0002862 altered righting response PMID: 19705551 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0009287 decreased abdominal fat pad weight PMID: 18503767 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0001364 decreased anxiety-related response PMID: 17251423 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0003912 decreased drinking behavior PMID: 16943565 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0009269 decreased fat cell size PMID: 18503767 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0003821 decreased left ventricle diastolic pressure PMID: 16314376 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0008844 decreased subcutaneous adipose tissue amount PMID: 18503767 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ * C57BL/6
MGI:1341787  MP:0008734 decreased susceptibility to endotoxin shock PMID: 15763167 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0002917 decreased synaptic depression PMID: 18341994 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0005264 glomerulosclerosis PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0003043 hypoalgesia PMID: 10764638 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0002578 impaired ability to fire action potentials PMID: 16943565 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0002578 impaired ability to fire action potentials PMID: 15509739 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0009454 impaired contextual conditioning behavior PMID: 17251423 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0001405 impaired coordination PMID: 19705551 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0009456 impaired cued conditioning behavior PMID: 17251423 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ * C57BL/6
MGI:1341787  MP:0003829 impaired febrile response PMID: 15763167 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0003545 increased alcohol consumption PMID: 19705551 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0008997 increased blood osmolality PMID: 16327782 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0001260 increased body weight PMID: 17347480 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0008531 increased chemical nociceptive threshold PMID: 10764638 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0003022 increased coronary flow rate PMID: 16314376 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ * C57BL/6
MGI:1341787  MP:0004499 increased incidence of chemically-induced tumors PMID: 19155296 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0008705 increased interleukin-6 secretion PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0003823 increased left ventricular developed pressure PMID: 16314376 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0002962 increased protein excretion PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0005659 increased resistance to diet-induced obesity PMID: 18503767 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0002310 increased resistance to hepatic steatosis PMID: 18503767 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0005165 increased susceptibility to injury PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0001973 increased thermal nociceptive threshold PMID: 10764638 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0001973 increased thermal nociceptive threshold PMID: 15128844 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0008560 increased tumor necrosis factor secretion PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0001859 kidney inflammation PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0001475 reduced long term depression PMID: 18341994 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0001473 reduced long term potentiation PMID: 17251423 
Gene Expression and Pathophysiology Click here for help
Overexpression
Tissue or cell type:  Vulval vestibulus.
Pathophysiology:  Vulvodynia.
Species:  Human
Technique: 
References:  58
Overexpression
Tissue or cell type:  Bowel, colon.
Pathophysiology:  Inflammatory bowel disease, Crohn's disease and ulcerative colitis.
Species:  Human
Technique: 
References:  23,67
Overexpression.
Tissue or cell type:  Synovia of joints, synoviocytes.
Pathophysiology:  Osteoarthritis.
Species:  Human
Technique: 
References:  21

References

Show »

1. Ahern GP. (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem, 278 (33): 30429-34. [PMID:12761211]

2. Ann J, Kim HS, Thorat SA, Kim H, Ha HJ, Choi K, Kim YH, Kim M, Hwang SW, Pearce LV et al.. (2020) Discovery of Nonpungent Transient Receptor Potential Vanilloid 1 (TRPV1) Agonist as Strong Topical Analgesic. J Med Chem, 63 (1): 418-424. [PMID:31702924]

3. Appendino G, De Petrocellis L, Trevisani M, Minassi A, Daddario N, Moriello AS, Gazzieri D, Ligresti A, Campi B, Fontana G et al.. (2005) Development of the first ultra-potent "capsaicinoid" agonist at transient receptor potential vanilloid type 1 (TRPV1) channels and its therapeutic potential. J Pharmacol Exp Ther, 312 (2): 561-70. [PMID:15356216]

4. Assas BM, Wakid MH, Zakai HA, Miyan JA, Pennock JL. (2016) Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis. Immunology, 147 (3): 292-304. [PMID:26643862]

5. Bertin S, Aoki-Nonaka Y, de Jong PR, Nohara LL, Xu H, Stanwood SR, Srikanth S, Lee J, To K, Abramson L et al.. (2014) The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4⁺ T cells. Nat Immunol, 15 (11): 1055-1063. [PMID:25282159]

6. Bertin S, de Jong PR, Jefferies WA, Raz E. (2014) Novel immune function for the TRPV1 channel in T lymphocytes. Channels (Austin), 8 (6): 479-80. [PMID:25530461]

7. Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau 4th RW. (2003) Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci USA, 100 (21): 12480-5. [PMID:14523239]

8. Bianchi BR, El Kouhen R, Neelands TR, Lee CH, Gomtsyan A, Raja SN, Vaidyanathan SN, Surber B, McDonald HA, Surowy CS et al.. (2007) [3H]A-778317 [1-((R)-5-tert-butyl-indan-1-yl)-3-isoquinolin-5-yl-urea]: a novel, stereoselective, high-affinity antagonist is a useful radioligand for the human transient receptor potential vanilloid-1 (TRPV1) receptor. J Pharmacol Exp Ther, 323 (1): 285-93. [PMID:17660385]

9. Birder LA, Kanai AJ, de Groat WC, Kiss S, Nealen ML, Burke NE, Dineley KE, Watkins S, Reynolds IJ, Caterina MJ. (2001) Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci USA, 98 (23): 13396-401. [PMID:11606761]

10. Blum CA, Caldwell T, Zheng X, Bakthavatchalam R, Capitosti S, Brielmann H, De Lombaert S, Kershaw MT, Matson D, Krause JE et al.. (2010) Discovery of novel 6,6-heterocycles as transient receptor potential vanilloid (TRPV1) antagonists. J Med Chem, 53 (8): 3330-48. [PMID:20307063]

11. Bohlen CJ, Priel A, Zhou S, King D, Siemens J, Julius D. (2010) A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell, 141 (5): 834-45. [PMID:20510930]

12. Cao E, Liao M, Cheng Y, Julius D. (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature, 504 (7478): 113-8. [PMID:24305161]

13. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 288 (5464): 306-13. [PMID:10764638]

14. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389 (6653): 816-24. [PMID:9349813]

15. Cavanaugh DJ, Chesler AT, Bráz JM, Shah NM, Julius D, Basbaum AI. (2011) Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J Neurosci, 31 (28): 10119-27. [PMID:21752988]

16. Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, O'Donnell D, Nicoll RA, Shah NM, Julius D et al.. (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J Neurosci, 31 (13): 5067-77. [PMID:21451044]

17. Chaudhari SS, Kadam AB, Khairatkar-Joshi N, Mukhopadhyay I, Karnik PV, Raghuram A, Rao SS, Vaiyapuri TS, Wale DP, Bhosale VM et al.. (2013) Synthesis and pharmacological evaluation of novel N-aryl-3,4-dihydro-1'H-spiro[chromene-2,4'-piperidine]-1'-carboxamides as TRPM8 antagonists. Bioorg Med Chem, 21 (21): 6542-53. [PMID:24055075]

18. Correll CC, Phelps PT, Anthes JC, Umland S, Greenfeder S. (2004) Cloning and pharmacological characterization of mouse TRPV1. Neurosci Lett, 370 (1): 55-60. [PMID:15489017]

19. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K et al.. (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 405 (6783): 183-7. [PMID:10821274]

20. El Kouhen R, Surowy CS, Bianchi BR, Neelands TR, McDonald HA, Niforatos W, Gomtsyan A, Lee CH, Honore P, Sullivan JP et al.. (2005) A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. J Pharmacol Exp Ther, 314 (1): 400-9. [PMID:15837819]

21. Fernihough J, Gentry C, Bevan S, Winter J. (2005) Regulation of calcitonin gene-related peptide and TRPV1 in a rat model of osteoarthritis. Neurosci Lett, 388 (2): 75-80. [PMID:16039054]

22. Gavva NR, Tamir R, Qu Y, Klionsky L, Zhang TJ, Immke D, Wang J, Zhu D, Vanderah TW, Porreca F et al.. (2005) AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J Pharmacol Exp Ther, 313 (1): 474-84. [PMID:15615864]

23. Geppetti P, Trevisani M. (2004) Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br J Pharmacol, 141 (8): 1313-20. [PMID:15051629]

24. Gunthorpe MJ, Hannan SL, Smart D, Jerman JC, Arpino S, Smith GD, Brough S, Wright J, Egerton J, Lappin SC et al.. (2007) Characterization of SB-705498, a potent and selective vanilloid receptor-1 (VR1/TRPV1) antagonist that inhibits the capsaicin-, acid-, and heat-mediated activation of the receptor. J Pharmacol Exp Ther, 321 (3): 1183-92. [PMID:17392405]

25. Gunthorpe MJ, Rami HK, Jerman JC, Smart D, Gill CH, Soffin EM, Luis Hannan S, Lappin SC, Egerton J, Smith GD et al.. (2004) Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology, 46 (1): 133-49. [PMID:14654105]

26. Hayes P, Meadows HJ, Gunthorpe MJ, Harries MH, Duckworth DM, Cairns W, Harrison DC, Clarke CE, Ellington K, Prinjha RK et al.. (2000) Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. Pain, 88 (2): 205-15. [PMID:11050376]

27. Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX. (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem, 279 (34): 35741-8. [PMID:15194687]

28. Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D et al.. (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA, 97 (11): 6155-60. [PMID:10823958]

29. Jerman JC, Brough SJ, Prinjha R, Harries MH, Davis JB, Smart D. (2000) Characterization using FLIPR of rat vanilloid receptor (rVR1) pharmacology. Br J Pharmacol, 130 (4): 916-22. [PMID:10864900]

30. Kaszas K, Keller JM, Coddou C, Mishra SK, Hoon MA, Stojilkovic S, Jacobson KA, Iadarola MJ. (2012) Small molecule positive allosteric modulation of TRPV1 activation by vanilloids and acidic pH. J Pharmacol Exp Ther, 340 (1): 152-60. [PMID:22005042]

31. Kim S-Y, Kim JK, Lee K-W, Woo BY, Shin SS, Moh J-H, Kim S-il, Jeong YS, Lim KM, Choi JK et al.. (2010) Compounds, isomer thereof, or pharmaceutically acceptable salts thereof as vanilloid receptor antagonist; and pharmaceutical compositions containing the same. Patent number: US7858621. Assignee: Amorepacific Corporation. Priority date: 27/07/2006. Publication date: 28/12/2010.

32. Kitaguchi T, Swartz KJ. (2005) An inhibitor of TRPV1 channels isolated from funnel Web spider venom. Biochemistry, 44 (47): 15544-9. [PMID:16300403]

33. Liapi A, Wood JN. (2005) Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur J Neurosci, 22 (4): 825-34. [PMID:16115206]

34. Liedtke WB, Heller S, Latorre R, Vargas G, Orta G, Brauchi S. (2007) Voltage and Temperature Gating of ThermoTRP Channels. Frontiers in Neuroscience,. [PMID:21204490]

35. Lowin T, Apitz M, Anders S, Straub RH. (2015) Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner. Arthritis Res Ther, 17: 321. [PMID:26567045]

36. Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A. (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol, 15 (10): 929-34. [PMID:15916949]

37. Majhi RK, Sahoo SS, Yadav M, Pratheek BM, Chattopadhyay S, Goswami C. (2015) Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J, 282 (14): 2661-81. [PMID:25903376]

38. Matta JA, Ahern GP. (2007) Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol (Lond.), 585 (Pt 2): 469-82. [PMID:17932142]

39. McIntyre P, McLatchie LM, Chambers A, Phillips E, Clarke M, Savidge J, Toms C, Peacock M, Shah K, Winter J et al.. (2001) Pharmacological differences between the human and rat vanilloid receptor 1 (VR1). Br J Pharmacol, 132 (5): 1084-94. [PMID:11226139]

40. McNamara FN, Randall A, Gunthorpe MJ. (2005) Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br J Pharmacol, 144 (6): 781-90. [PMID:15685214]

41. Mishra SK, Tisel SM, Orestes P, Bhangoo SK, Hoon MA. (2011) TRPV1-lineage neurons are required for thermal sensation. EMBO J, 30 (3): 582-93. [PMID:21139565]

42. MRC. AZD1386 TRPV1 ion channel inhibitor. Accessed on 28/10/2014. Modified on 28/10/2014. MRC/AstraZeneca: Mechanisms of Disease Call, http://webarchive.nationalarchives.gov.uk/20120104105854/http://www.mrc.ac.uk/consumption/groups/public/documents/content/mrc008366.pdf

43. Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M. (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA, 100 (13): 8002-6. [PMID:12808128]

44. Parenti A, De Logu F, Geppetti P, Benemei S. (2016) What is the evidence for the role of TRP channels in inflammatory and immune cells?. Br J Pharmacol, 173 (6): 953-69. [PMID:26603538]

45. Parsons WH, Calvo RR, Cheung W, Lee YK, Patel S, Liu J, Youngman MA, Dax SL, Stone D, Qin N et al.. (2015) Benzo[d]imidazole Transient Receptor Potential Vanilloid 1 Antagonists for the Treatment of Pain: Discovery of trans-2-(2-{2-[2-(4-Trifluoromethyl-phenyl)-vinyl]-1H-benzimidazol-5-yl}-phenyl)-propan-2-ol (Mavatrep). J Med Chem, 58 (9): 3859-74. [PMID:25850459]

46. Prescott ED, Julius D. (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science, 300 (5623): 1284-8. [PMID:12764195]

47. Rutter AR, Ma QP, Leveridge M, Bonnert TP. (2005) Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. Neuroreport, 16 (16): 1735-9. [PMID:16237318]

48. Samivel R, Kim DW, Son HR, Rhee YH, Kim EH, Kim JH, Bae JS, Chung YJ, Chung PS, Raz E et al.. (2016) The role of TRPV1 in the CD4+ T cell-mediated inflammatory response of allergic rhinitis. Oncotarget, 7 (1): 148-60. [PMID:26700618]

49. Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, Julius D. (2006) Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature, 444 (7116): 208-12. [PMID:17093448]

50. Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD, Davis JB. (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol, 129 (2): 227-30. [PMID:10694225]

51. Smart D, Jerman JC, Gunthorpe MJ, Brough SJ, Ranson J, Cairns W, Hayes PD, Randall AD, Davis JB. (2001) Characterisation using FLIPR of human vanilloid VR1 receptor pharmacology. Eur J Pharmacol, 417 (1-2): 51-8. [PMID:11301059]

52. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L et al.. (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature, 418 (6894): 186-90. [PMID:12077606]

53. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE. (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol, 128 (5): 509-22. [PMID:17074976]

54. Sugiura T, Bielefeldt K, Gebhart GF. (2007) Mouse colon sensory neurons detect extracellular acidosis via TRPV1. Am J Physiol, Cell Physiol, 292 (5): C1768-74. [PMID:17251322]

55. Swanson DM, Dubin AE, Shah C, Nasser N, Chang L, Dax SL, Jetter M, Breitenbucher JG, Liu C, Mazur C et al.. (2005) Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J Med Chem, 48 (6): 1857-72. [PMID:15771431]

56. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D. (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron, 21 (3): 531-43. [PMID:9768840]

57. Trevisani M, Smart D, Gunthorpe MJ, Tognetto M, Barbieri M, Campi B, Amadesi S, Gray J, Jerman JC, Brough SJ et al.. (2002) Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci, 5 (6): 546-51. [PMID:11992116]

58. Tympanidis P, Casula MA, Yiangou Y, Terenghi G, Dowd P, Anand P. (2004) Increased vanilloid receptor VR1 innervation in vulvodynia. Eur J Pain, 8 (2): 129-33. [PMID:14987622]

59. Vaeth M, Feske S. (2018) Ion channelopathies of the immune system. Curr Opin Immunol, 52: 39-50. [PMID:29635109]

60. Valenzano KJ, Grant ER, Wu G, Hachicha M, Schmid L, Tafesse L, Sun Q, Rotshteyn Y, Francis J, Limberis J et al.. (2003) N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine -1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: I. in vitro characterization and pharmacokinetic properties. J Pharmacol Exp Ther, 306 (1): 377-86. [PMID:12721338]

61. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature, 430 (7001): 748-54. [PMID:15306801]

62. Voight EA, Gomtsyan AR, Daanen JF, Perner RJ, Schmidt RG, Bayburt EK, DiDomenico S, McDonald HA, Puttfarcken PS, Chen J et al.. (2014) Discovery of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442): a temperature-neutral transient receptor potential vanilloid-1 (TRPV1) antagonist with analgesic efficacy. J Med Chem, 57 (17): 7412-24. [PMID:25100568]

63. Wahl P, Foged C, Tullin S, Thomsen C. (2001) Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist. Mol Pharmacol, 59 (1): 9-15. [PMID:11125018]

64. Wang HL, Katon J, Balan C, Bannon AW, Bernard C, Doherty EM, Dominguez C, Gavva NR, Gore V, Ma V et al.. (2007) Novel vanilloid receptor-1 antagonists: 3. The identification of a second-generation clinical candidate with improved physicochemical and pharmacokinetic properties. J Med Chem, 50 (15): 3528-39. [PMID:17585751]

65. Wang Y, Szabo T, Welter JD, Toth A, Tran R, Lee J, Kang SU, Suh YG, Blumberg PM, Lee J. (2002) High affinity antagonists of the vanilloid receptor. Mol Pharmacol, 62 (4): 947-56. [PMID:12237342]

66. Yang S, Yang F, Wei N, Hong J, Li B, Luo L, Rong M, Yarov-Yarovoy V, Zheng J, Wang K et al.. (2015) A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nat Commun, 6: 8297. [PMID:26420335]

67. Yiangou Y, Facer P, Dyer NH, Chan CL, Knowles C, Williams NS, Anand P. (2001) Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet, 357 (9265): 1338-9. [PMID:11343743]

68. Zhang H, Lin JJ, Xie YK, Song XZ, Sun JY, Zhang BL, Qi YK, Xu ZZ, Yang F. (2023) Structure-guided peptide engineering of a positive allosteric modulator targeting the outer pore of TRPV1 for long-lasting analgesia. Nat Commun, 14 (1): 4. [PMID:36596769]

69. Zhang X, Li L, McNaughton PA. (2008) Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron, 59 (3): 450-61. [PMID:18701070]

70. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sørgård M, Di Marzo V, Julius D, Högestätt ED. (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature, 400 (6743): 452-7. [PMID:10440374]

Contributors

Show »

How to cite this page