regulator of G-protein signaling 10 | R12 family | IUPHAR/BPS Guide to PHARMACOLOGY

Top ▲

regulator of G-protein signaling 10

Target not currently curated in GtoImmuPdb

Target id: 2818

Nomenclature: regulator of G-protein signaling 10

Abbreviated Name: RGS10

Family: R12 family

Annotation status:  image of a grey circle Awaiting annotation/under development. Please contact us if you can help with annotation.  » Email us

Gene and Protein Information
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human - 181 10q25 RGS10 regulator of G protein signaling 10
Mouse - 181 7 F3 Rgs10 regulator of G-protein signalling 10
Rat - 181 1q36 Rgs10 regulator of G-protein signaling 10
Previous and Unofficial Names
Database Links
Ensembl Gene
Entrez Gene
Human Protein Atlas
RefSeq Nucleotide
RefSeq Protein
Associated Proteins
G Proteins
Name References
Gαi/0 7
Interacting Proteins
Name Effect References
polyubiquitin-C 8,15-16
amyloid beta (A4) precursor protein 14
lysophosphatidic acid phosphatase type 6 2
histone deacetlyase complex subunit SAP18 2
eukaryotic translation initiation factor 3A 2
β2-adrenoceptor 9
spinophilin (SPL; Neurabin-2, PPP1R9B) 13
Tissue Distribution
RGS10 is expressed in the forebrain interneurons, dentate gyrus and the striatum. Furthermore, microglia, enkephalin-expressing indirect pathway neuronal cells, and CA3 pyramidal cells expresses RGS10.
Species:  Mouse
Technique:  Immunohistochemistry.
References:  17
RGS10 is expressed in the dentate gyrus granule cells; superficial layers of neocortex and the dorsal raphe.
Species:  Rat
Technique:  In situ hybridisation.
References:  4
RGS10 is expressed in the dentate gyrus granule cell layer, dorsal raphe nucleus, striatum, and the forebrain interneurons. Other cells that express RGS10 include: microglia, enkephalin-expressing indirect pathway neuronal cells, and CA3 pyramidal cells.
Species:  Rat
Technique:  Immunohistochemistry.
References:  17
Functional Assays
RGS10 enhances GTPase activity, and accelerates the hydrolysis of the active GTP-bound Gαi.
Species:  Human
Tissue:  In vitro assays.
Response measured:  Inactivation of Gαi.
References:  7
Physiological Functions
RGS10 negatively regulates NF-κB transcriptional activity.
Species:  Mouse
Tissue:  Brain.
References:  11
Physiological Consequences of Altering Gene Expression
RGS10 knockout mice display enhanced microglial activation and an increase in the production of pro-inflammatory cytokines. In contrast, over-expression of RGS10 prevents the activation of microglia and subsequent pro-inflammatory cytokine production.
Species:  Mouse
Tissue:  Brain microglia.
Technique:  Gene knockout and gene over-expression.
References:  11-12
RGS10 knockout mice developed enhanced osteopetrosis, in addition to impaired osteoclast differentiation.
Species:  Mouse
Tissue:  Osteoclasts.
Technique:  Gene knockout.
References:  19
Macrophages isolated from RGS10 knockout mice exhibit dysregulation in M1 responses, and an impairment in M2 phenotype responses upon priming with IL-4.
Species:  Mouse
Tissue:  Macrophages.
Technique:  Gene knockout.
References:  10
RGS10 knockdown in ovarian cancer cells enhances their survival following chemotherapy treatment.
Species:  Human
Tissue:  SKOV-3 and MDR-HeyA8 cells
Technique:  RNA intererence (RNAi)
References:  5
RGS10 prevents chemokine-upregulated T lymphocytes adhesion.
Species:  Human
Tissue:  T lymphocytes.
Technique:  RNA interference (RNAi)
References:  3
Xenobiotics Influencing Gene Expression
Lipopolysaccharide (10 ng/ml) treatment significantly down-regulates RGS10 expression in mouse primary microglia and murine BV-2 microglia cell line. The LPS-induced RGS10 suppression reaches its peak 48 hours after starting the treatment.
Species:  Mouse
Tissue:  Mice primary microglia, murine BV2 microglial cell line.
Technique:  Immunoblot analysis.
References:  12
Tumor necrosis factor (TNF) treatment (10 ng/ml) reduces RGS10 expression in BV-2 microglia cell line. The decrease in RGS10 expression is observed after 24 hours of TNF treatment.
Species:  Mouse
Tissue:  Murine BV2 microglial cell line.
Technique:  Immunofluorescence, immunoblot analysis.
References:  12
Cisplatin treatment (100 µM) for 48 hours significantly reduces RGS10 mRNA expression in SKOV-3 cells.
Species:  Human
Tissue:  SKOV-3 ovarian tumor ‎cells.
Technique:  Quantitative real-time PCR.
References:  6
Histone deacetylase inhibitor trichostatin A (TSA) increases the mRNA expression of RGS10 in A2780-AD cells.
Species:  Human
Tissue:  A2780-AD human ovarian carcinoma cells.
Technique:  Quantitative real-time PCR.
References:  1
Clinically-Relevant Mutations and Pathophysiology
Disease:  Osteoporosis
Disease Ontology: DOID:11476
OMIM: 166710
References:  19
Disease:  Parkinson Disease
Synonyms: Parkinson's disease [Disease Ontology: DOID:14330]
Disease Ontology: DOID:14330
OMIM: 168600
References:  12
Biologically Significant Variants
Type:  Splice variant
Species:  Human
Description:  Loss of RGS10A variant is associated with impaired osteoclast differentiation.
Amino acids:  181
Nucleotide accession: 
Protein accession: 
References:  18


Show »

1. Cacan E, Ali MW, Boyd NH, Hooks SB, Greer SF. (2014) Inhibition of HDAC1 and DNMT1 modulate RGS10 expression and decrease ovarian cancer chemoresistance. PLoS ONE, 9 (1): e87455. [PMID:24475290]

2. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M et al.. (2007) Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol., 3: 89. [PMID:17353931]

3. García-Bernal D, Dios-Esponera A, Sotillo-Mallo E, García-Verdugo R, Arellano-Sánchez N, Teixidó J. (2011) RGS10 restricts upregulation by chemokines of T cell adhesion mediated by α4β1 and αLβ2 integrins. J. Immunol., 187 (3): 1264-72. [PMID:21705617]

4. Gold SJ, Ni YG, Dohlman HG, Nestler EJ. (1997) Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J. Neurosci., 17 (20): 8024-37. [PMID:9315921]

5. Hooks SB, Callihan P, Altman MK, Hurst JH, Ali MW, Murph MM. (2010) Regulators of G-Protein signaling RGS10 and RGS17 regulate chemoresistance in ovarian cancer cells. Mol. Cancer, 9: 289. [PMID:21044322]

6. Hooks SB, Waldo GL, Corbitt J, Bodor ET, Krumins AM, Harden TK. (2003) RGS6, RGS7, RGS9, and RGS11 stimulate GTPase activity of Gi family G-proteins with differential selectivity and maximal activity. J. Biol. Chem., 278 (12): 10087-93. [PMID:12531899]

7. Hunt TW, Fields TA, Casey PJ, Peralta EG. (1996) RGS10 is a selective activator of G alpha i GTPase activity. Nature, 383 (6596): 175-7. [PMID:8774883]

8. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ et al.. (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell, 44 (2): 325-40. [PMID:21906983]

9. Kittanakom S, Barrios-Rodiles M, Petschnigg J, Arnoldo A, Wong V, Kotlyar M, Heisler LE, Jurisica I, Wrana JL, Nislow C et al.. (2014) CHIP-MYTH: a novel interactive proteomics method for the assessment of agonist-dependent interactions of the human β₂-adrenergic receptor. Biochem. Biophys. Res. Commun., 445 (4): 746-56. [PMID:24561123]

10. Lee JK, Chung J, Kannarkat GT, Tansey MG. (2013) Critical role of regulator G-protein signaling 10 (RGS10) in modulating macrophage M1/M2 activation. PLoS ONE, 8 (11): e81785. [PMID:24278459]

11. Lee JK, Chung J, McAlpine FE, Tansey MG. (2011) Regulator of G-protein signaling-10 negatively regulates NF-κB in microglia and neuroprotects dopaminergic neurons in hemiparkinsonian rats. J. Neurosci., 31 (33): 11879-88. [PMID:21849548]

12. Lee JK, McCoy MK, Harms AS, Ruhn KA, Gold SJ, Tansey MG. (2008) Regulator of G-protein signaling 10 promotes dopaminergic neuron survival via regulation of the microglial inflammatory response. J. Neurosci., 28 (34): 8517-28. [PMID:18716210]

13. Ma P, Cierniewska A, Signarvic R, Cieslak M, Kong H, Sinnamon AJ, Neubig RR, Newman DK, Stalker TJ, Brass LF. (2012) A newly identified complex of spinophilin and the tyrosine phosphatase, SHP-1, modulates platelet activation by regulating G protein-dependent signaling. Blood, 119 (8): 1935-45. [PMID:22210881]

14. Oláh J, Vincze O, Virók D, Simon D, Bozsó Z, Tõkési N, Horváth I, Hlavanda E, Kovács J, Magyar A et al.. (2011) Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein. J. Biol. Chem., 286 (39): 34088-100. [PMID:21832049]

15. Stes E, Laga M, Walton A, Samyn N, Timmerman E, De Smet I, Goormachtig S, Gevaert K. (2014) A COFRADIC protocol to study protein ubiquitination. J. Proteome Res., 13 (6): 3107-13. [PMID:24816145]

16. Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C. (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell Proteomics, 10 (10): M111.013284. [PMID:21890473]

17. Waugh JL, Lou AC, Eisch AJ, Monteggia LM, Muly EC, Gold SJ. (2005) Regional, cellular, and subcellular localization of RGS10 in rodent brain. J. Comp. Neurol., 481 (3): 299-313. [PMID:15593368]

18. Yang S, Chen W, Stashenko P, Li YP. (2007) Specificity of RGS10A as a key component in the RANKL signaling mechanism for osteoclast differentiation. J. Cell. Sci., 120 (Pt 19): 3362-71. [PMID:17881498]

19. Yang S, Li YP. (2007) RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca2+]i oscillation regulation. Genes Dev., 21 (14): 1803-16. [PMID:17626792]


Show »

How to cite this page

Select citation format: