Top ▲

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta

Click here for help

Immunopharmacology Ligand target has curated data in GtoImmuPdb

Target id: 2155

Nomenclature: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta

Abbreviated Name: PI3Kδ

Family: Phosphatidylinositol-4,5-bisphosphate 3-kinase family, Phosphatidylinositol kinases

Gene and Protein Information Click here for help
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human - 1044 1p36.22 PIK3CD phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta 81
Mouse - 1043 4 E2 Pik3cd phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta
Rat - 944 5q36 Pik3cd phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta
Previous and Unofficial Names Click here for help
PI3Kdelta | p110δ/PIK3CD | phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta | phosphatidylinositol-4 | phosphatidylinositol 3-kinase catalytic delta polypeptide
Database Links Click here for help
Alphafold
BRENDA
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Enzyme
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Discovery and Optimization of New Benzimidazole- and Benzoxazole-Pyrimidone Selective PI3KBeta Inhibitors for the Treatment of Phosphatase and TENsin homologue (PTEN)-Deficient Cancers
PDB Id:  4AJW
Resolution:  2.8Å
Species:  Mouse
References:  17
Image of receptor 3D structure from RCSB PDB
Description:  The crystal structure of the murine class IA PI 3-kinase p110delta in complex with IC-87114.
PDB Id:  2X38
Ligand:  IC-87114
Resolution:  2.2Å
Species:  Mouse
References:  9
Image of receptor 3D structure from RCSB PDB
Description:  PI3K delta in complex with 2methoxyN[2methoxy5(7{[(2R)4(oxetan3 yl)morpholin2yl]methoxy}1,3dihydro2 benzofuran5yl)pyridin3yl]ethane1 sulfonamide
PDB Id:  6TNS
Ligand:  compound 41 [PMID: 31855425]
Resolution:  2.4Å
Species:  Mouse
References:  37
Enzyme Reaction Click here for help
EC Number: 2.7.1.153

Download all structure-activity data for this target as a CSV file go icon to follow link

Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
compound 41 [PMID: 31855425] Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 9.7 pKd 37
pKd 9.7 (Kd 2x10-10 M) [37]
Description: Apparent binding affinity determined using the lipid kinobead assay.
neolymphostin A Small molecule or natural product Click here for species-specific activity table Hs Inhibition 8.3 pKd 15
pKd 8.3 (Kd 4.9x10-9 M) [15]
Description: Determined using an active-site dependent competition binding assay.
wortmannin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 8.3 pKd 15
pKd 8.3 (Kd 5.5x10-9 M) [15]
eganelisib Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 7.6 pKd 27
pKd 7.6 (Kd 2.3x10-8 M) [27]
bimiralisib Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 7.6 pKd
pKd 7.6 (Kd 2.5x10-8 M)
LY 294002 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 6.2 pKd 24
pKd 6.2 (Kd 7.1x10-7 M) [24]
GSK2292767 Small molecule or natural product Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 10.1 pKi 8
pKi 10.1 (Ki 8x10-11 M) [8]
taselisib Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 9.7 – 10.1 pKi 11,60
pKi 10.1 (Ki 7.9x10-11 M) [11]
pKi 9.7 (Ki 2.1x10-10 M) [60]
PF-06843195 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition >9.6 pKi 18
pKi >9.6 (Ki <2.8x10-10 M) [18]
compound 82 [PMID: 21332118] Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 8.9 pKi 22
pKi 8.9 (Ki 1.2x10-9 M) [22]
pictilisib Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 8.8 pKi 11
pKi 8.8 (Ki 1.54x10-9 M) [11]
inavolisib Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 7.9 pKi 11
pKi 7.9 (Ki 1.22x10-8 M) [11]
IC-87114 Small molecule or natural product Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition ~7.7 pKi 46
pKi ~7.7 (Ki ~2x10-8 M) [46]
omipalisib Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 7.2 pKi 44
pKi 7.2 (Ki 6x10-8 M) [44]
AZ2 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 6.7 pKi 33
pKi 6.7 (Ki 1.99x10-7 M) [33]
KU-0060648 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Inhibition >10.0 pIC50 14
pIC50 >10.0 (IC50 <1x10-10 M) [14]
nemiralisib Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 9.9 pIC50 25
pIC50 9.9 (IC50 1.26x10-10 M) [25]
Description: In a homogeneous time-resolved fluorescence (HTRF) assay in the presence of 2mM ATP.
amdizalisib Small molecule or natural product Click here for species-specific activity table Hs Inhibition 9.5 pIC50 73
pIC50 9.5 (IC50 3x10-10 M) [73]
compound 15a [PMID: 32069401] Small molecule or natural product Click here for species-specific activity table Hs Inhibition 9.3 pIC50 89
pIC50 9.3 (IC50 5x10-10 M) [89]
compound 20f [PMID: 28520415] Small molecule or natural product Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 9.2 pIC50 66
pIC50 9.2 (IC50 6.3x10-10 M) [66]
copanlisib Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 9.1 pIC50 52
pIC50 9.1 (IC50 7x10-10 M) [52]
AZD8154 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 9.1 pIC50 65
pIC50 9.1 (IC50 7x10-10 M) [65]
compound (S)-29 [PMID: 37606563] Small molecule or natural product Immunopharmacology Ligand Hs Inhibition 9.1 pIC50 77
pIC50 9.1 (IC50 8x10-10 M) [77]
compound 5d [PMID: 31335136] Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 9.0 pIC50 50
pIC50 9.0 (IC50 1.1x10-9 M) [50]
compound 52 [PMID: 28541707] Small molecule or natural product Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 8.8 pIC50 53
pIC50 8.8 (IC50 1.7x10-9 M) [53]
linperlisib Small molecule or natural product Primary target of this compound Hs Inhibition 8.6 pIC50 87
pIC50 8.6 (IC50 2.4x10-9 M) [87]
Description: Measured in a luminescence assay to detect modulation of ADP formation in the presence of test compound and hPI3Kδ.
idelalisib Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 8.6 pIC50 47
pIC50 8.6 (IC50 2.5x10-9 M) in vitro activity against recombinant enzyme [47]
duvelisib Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 8.6 pIC50 83
pIC50 8.6 (IC50 2.5x10-9 M) [83]
RV6153 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 8.6 pIC50 75
pIC50 8.6 (IC50 2.5x10-9 M) [75]
Description: In a biochemical enzyme activity assay.
pictilisib Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 8.5 pIC50 29
pIC50 8.5 (IC50 3x10-9 M) [29]
PI-103 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 8.5 pIC50 69
pIC50 8.5 (IC50 3x10-9 M) [69]
puquitinib Small molecule or natural product Click here for species-specific activity table Hs Inhibition 8.5 pIC50 86
pIC50 8.5 (IC50 3.3x10-9 M) [86]
compound 2q [PMID: 30986068] Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 8.4 pIC50 58
pIC50 8.4 (IC50 3.9x10-9 M) [58]
Description: In a biochemical HTRF assay measuring generation of PIP3 via phosphorylation of PIP2, using PI3Kδ 14-604 fragment.
panulisib Small molecule or natural product Click here for species-specific activity table Hs Inhibition 8.4 pIC50 41
pIC50 8.4 (IC50 4x10-9 M) [41]
Description: Using a radiometric protein kinase (33PanQinase activity) assay.
ZSTK474 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 8.2 – 8.3 pIC50 85,88
pIC50 8.2 – 8.3 (IC50 6x10-9 – 5x10-9 M) [85,88]
torin 2 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 8.3 pIC50 54
pIC50 8.3 (IC50 5.67x10-9 M) [54]
AZD8835 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Inhibition 8.2 pIC50 7
pIC50 8.2 (IC50 5.7x10-9 M) [7]
compound 41 [PMID: 31855425] Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 8.2 pIC50 37
pIC50 8.2 (IC50 6.31x10-9 M) [37]
apitolisib Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 8.2 pIC50 74
pIC50 8.2 (IC50 6.7x10-9 M) [74]
dactolisib Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Inhibition 8.1 pIC50 57
pIC50 8.1 (IC50 7x10-9 M) [57]
AZD8186 Small molecule or natural product Click here for species-specific activity table Hs Inhibition 7.9 pIC50 34
pIC50 7.9 (IC50 1.2x10-8 M) [34]
seletalisib Small molecule or natural product Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 7.9 pIC50 3
pIC50 7.9 (IC50 1.2x10-8 M) [3]
RV1729 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 7.9 pIC50 43
pIC50 7.9 (IC50 1.2x10-8 M) [43]
Description: In a biochemical enzyme activity assay.
acalisib Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Inhibition 7.9 pIC50 72
pIC50 7.9 (IC50 1.27x10-8 M) [72]
Description: In an in vitro biochemical assay using recombinant enzyme.
umbralisib Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 7.9 pIC50 80
pIC50 7.9 (IC50 1.383x10-8 M) [80]
PI-3065 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Inhibition 7.8 pIC50 2
pIC50 7.8 (IC50 1.5x10-8 M) [2]
AMG319 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 7.7 pIC50 21
pIC50 7.7 (IC50 1.8x10-8 M) [21]
parsaclisib Small molecule or natural product Immunopharmacology Ligand Hs Inhibition 7.3 – 8.0 pIC50 49
pIC50 7.3 – 8.0 (IC50 5x10-8 – 1x10-8 M) [49]
leniolisib Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 7.6 pIC50 19
pIC50 7.6 (IC50 2.3x10-8 M) [19]
Description: In vitro enzyme assay
tenalisib Small molecule or natural product Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 7.6 pIC50 79
pIC50 7.6 (IC50 2.405x10-8 M) [79]
Description: In a high throughput biochemical assay.
pilaralisib Small molecule or natural product Click here for species-specific activity table Hs Inhibition 7.4 pIC50 85
pIC50 7.4 (IC50 3.6x10-8 M) [85]
samotolisib Small molecule or natural product Click here for species-specific activity table Hs Inhibition 7.4 pIC50 6
pIC50 7.4 (IC50 3.8x10-8 M) [6]
fimepinostat Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 7.4 pIC50 67
pIC50 7.4 (IC50 3.9x10-8 M) [67]
VS-5584 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Inhibition 7.4 pIC50 36
pIC50 7.4 (IC50 4.2x10-8 M) [36]
vulolisib Small molecule or natural product Click here for species-specific activity table Hs Inhibition 7.3 pIC50 90
pIC50 7.3 (IC50 4.9x10-8 M) [90]
dezapelisib Small molecule or natural product Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition >7.3 pIC50 48
pIC50 >7.3 (IC50 <5x10-8 M) [48]
Description: The same value was obtained using an enzyme activity assay and a scintillation proximity assay.
AZD6482 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 7.1 pIC50 61
pIC50 7.1 (IC50 8x10-8 M) [61]
TGX-221 Small molecule or natural product Click here for species-specific activity table Hs Inhibition 7.0 pIC50 40
pIC50 7.0 (IC50 1x10-7 M) [40]
zandelisib Small molecule or natural product Click here for species-specific activity table Hs Inhibition >7.0 pIC50 12
pIC50 >7.0 (IC50 <1x10-7 M) [12]
PP121 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 6.8 pIC50 5
pIC50 6.8 (IC50 1.5x10-7 M) [5]
compound 27 [PMID: 35834807] Small molecule or natural product Click here for species-specific activity table Hs Inhibition 6.8 pIC50 38
pIC50 6.8 (IC50 1.53x10-7 M) [38]
LY 294002 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 6.7 pIC50 14
pIC50 6.7 (IC50 2.2x10-7 M) [14]
sapanisertib Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Guide to Malaria Pharmacology Ligand Hs Inhibition 6.6 pIC50 39
pIC50 6.6 (IC50 2.3x10-7 M) [39]
NVP-CLR457 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 6.6 pIC50 28
pIC50 6.6 (IC50 2.3x10-7 M) [28]
TG-100-115 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 6.6 pIC50 63
pIC50 6.6 (IC50 2.35x10-7 M) [63]
DS-7423 Small molecule or natural product Click here for species-specific activity table Hs Inhibition 6.6 pIC50 42
pIC50 6.6 (IC50 2.6x10-7 M) [42]
alpelisib Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 6.5 pIC50 31
pIC50 6.5 (IC50 2.9x10-7 M) [31]
PI 3-Kg inhibitor Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 6.5 pIC50 13
pIC50 6.5 (IC50 3x10-7 M) [13]
AZD3458 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 6.5 pIC50 64
pIC50 6.5 (IC50 3.16x10-7 M) [64]
Description: In a biochemical enzyme activity assay.
SAR260301 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 6.3 pIC50 16
pIC50 6.3 (IC50 4.68x10-7 M) [16]
izorlisib Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 6.3 pIC50 62
pIC50 6.3 (IC50 5x10-7 M) [62]
IC-87114 Small molecule or natural product Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 6.3 pIC50 71
pIC50 6.3 (IC50 5x10-7 M) [71]
PIK-75 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 6.3 pIC50 45
pIC50 6.3 (IC50 5.1x10-7 M) [45]
STK16-IN-1 Small molecule or natural product Click here for species-specific activity table Hs Inhibition 6.1 pIC50 51
pIC50 6.1 (IC50 8.56x10-7 M) [51]
Description: In an in vitro enzymatic assay.
compound 7 [PMID: 31955578] Small molecule or natural product Click here for species-specific activity table Hs Inhibition 5.8 pIC50 10
pIC50 5.8 (IC50 1.7x10-6 M) [10]
eCF309 Small molecule or natural product Click here for species-specific activity table Hs Inhibition 5.7 pIC50 30
pIC50 5.7 (IC50 1.84x10-6 M) [30]
Description: In a biochemical assay.
serabelisib Small molecule or natural product Click here for species-specific activity table Hs Inhibition >5.0 pIC50 70
pIC50 >5.0 (IC50 <1x10-5 M) [70]
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
roginolisib Small molecule or natural product Hs Inhibition 6.5 pIC50 32
pIC50 6.5 (IC50 3.47x10-7 M) [32]
Description: Inhibitory efficacy determined by Scintillation Proximity Assay detecting phosphorylated lipid substrates after incubation with recombinant PI3Kδ and radioactive ATP.
PIK-108 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Negative 6.2 pIC50 17
pIC50 6.2 (IC50 6.58x10-7 M) [17]
DiscoveRx KINOMEscan® screen Click here for help
A screen of 72 inhibitors against 456 human kinases. Quantitative data were derived using DiscoveRx KINOMEscan® platform.
http://www.discoverx.com/services/drug-discovery-development-services/kinase-profiling/kinomescan
Reference: 23,84

Key to terms and symbols Click column headers to sort
Target used in screen: PIK3CD
Ligand Sp. Type Action Value Parameter
pictilisib Small molecule or natural product Ligand has a PDB structure Hs Inhibitor Inhibition 8.3 pKd
PI-103 Small molecule or natural product Ligand has a PDB structure Hs Inhibitor Inhibition 7.8 pKd
PP-242 Small molecule or natural product Ligand has a PDB structure Hs Inhibitor Inhibition 7.5 pKd
TG-100-115 Small molecule or natural product Ligand has a PDB structure Hs Inhibitor Inhibition 6.6 pKd
ruboxistaurin Small molecule or natural product Ligand has a PDB structure Hs Inhibitor Inhibition <5.5 pKd
SB203580 Small molecule or natural product Immunopharmacology Ligand Hs Inhibitor Inhibition <5.5 pKd
erlotinib Small molecule or natural product Approved drug Ligand has a PDB structure Hs Inhibitor Inhibition <5.5 pKd
linifanib Small molecule or natural product Hs Inhibitor Inhibition <5.5 pKd
GSK690693 Small molecule or natural product Ligand has a PDB structure Hs Inhibitor Inhibition <5.5 pKd
masitinib Small molecule or natural product Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibitor Inhibition <5.5 pKd
Displaying the top 10 most potent ligands  View all ligands in screen »
Immunopharmacology Comments
PI3Kδ is preferentially expressed in cells of hemopoietic lineage and is involved in neutrophil chemotaxis. It is the only PI3K isoform with expression restricted to leukocytes. Genetic and pharmacological inactivation of PI3Kδ indicates its importantance for the function of T cells, B cell, mast cells and neutrophils. PI3kδ is a promising target for drugs for preventing or treating inflammation, autoimmunity and transplant rejection [35], with selective PI3Kδ inhibitors of particular relevance- see for example AMG319 [21], leniolisib [19] and seletalisib [3].
The PI3Kδ isoform is of particular therapeutic interest in chronic obstructive airway diseases, such as severe asthma and COPD given its signalling role in regulating neutrophil superoxide generation.
The potential for PI3kδ as a druggable target in immuno-oncology and chronic obstructive airway diseases is discussed in [1] and [59], respectively.
Cell Type Associations
Immuno Cell Type:  B cells
Cell Ontology Term:   B cell (CL:0000236)
References:  81
Immuno Cell Type:  T cells
Cell Ontology Term:   alpha-beta T cell (CL:0000789)
References:  81
Immuno Process Associations
Immuno Process:  Inflammation
Comment:  Also involved in neutrophil superoxide generation.
Immuno Process:  T cell (activation)
Immuno Process:  B cell (activation)
Immuno Process:  Immune regulation
Immuno Process:  Immune system development
Immuno Process:  Cytokine production & signalling
Immuno Process:  Chemotaxis & migration
Immuno Process:  Cellular signalling
Comment:  Also involved in neutrophil superoxide generation.
Immuno Disease Associations
Disease Name:  Activated PI3K delta syndrome
Disease Synonyms:  no synonynms
Comment:  The effects of constitutive PI3Kδ activation in this syndrome are the opposite (or inverse) of the effects mediated by pharmacological PI3Kδ inhibition.
Disease X-refs:  OMIM: 615513
Orphanet: ORPHA397596
References: 
Tissue Distribution Click here for help
Leukocytes
Species:  Human
Technique:  Northern blot
References:  81
Lymphoid and myeloid cell populations, T cells, B cells (N.B. platelets negative)
Species:  Human
Technique:  Immunocytochemistry
References:  81
Spleen and thymus
Species:  Rat
Technique:  Immunohistochemistry
References:  81
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Activated PI3K delta syndrome
Description: A rare autosomal dominant, genetic disease causing primary immunodeficiency and characterised by lymphadenopathy, immunodeficiency leading to recurrent infections, and an increased risk of EBV-associated lymphoma.
Synonyms: APDS/PASLI
Immunodeficiency 14
p110 delta activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency
OMIM: 615513
Orphanet: ORPHA397596
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense, gain of function Human Y524N 1570 T>A This is a de novo pathogenic GOF mutation in the helical domain of PI3Kδ discovered in a 6-year-old patient with APDS. 56
Missense, gain of function Human N334K; E525K; E1021K 1002 C>A; 1573 G>A; 3061 G>A N334K is in the C2 domain, E525K is in the helical domain and E1021K is in the C-lobe of the kinase domain. 55
Clinically-Relevant Mutations and Pathophysiology Comments
To date (August 2018) eleven missense disease-causing variants of PIK3δ have been identified in the various functional domains of the kinase:
R929C [82], E1021K [4], and E1025G [26] in the kinase domain
N334 K [55], C416R [20], and R405C [68] in the C2 domain
E525K [55], E525A [78] and Y524N [56] in the helical domain
E81K [76] in the adaptor-binding domain (ABD)
G124D [76] in the ABD-Ras-binding domain linker
General Comments
PI3Kδ belongs to the class IA phospho-inositide-3-kinases (PI3Ks). In common with PI3Kα and PI3Kβ, PI3Kδ displays a broad phosphoinositide lipid substrate specificity. It interacts with SH2/SH3 domain-containing p85 adaptor proteins and with GTP-bound Ras. Expression of PI3Kδ is restricted to leukocytes [81], whereas PI3Kα and PI3Kβ are widely expressed.

References

Show »

1. Adams JL, Smothers J, Srinivasan R, Hoos A. (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov, 14 (9): 603-22. [PMID:26228631]

2. Ali K, Soond DR, Piñeiro R, Hagemann T, Pearce W, Lim EL, Bouabe H, Scudamore CL, Hancox T, Maecker H et al.. (2014) Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer. Nature, 510 (7505): 407-11. [PMID:24919154]

3. Allen RA, Brookings DC, Powell MJ, Delgado J, Shuttleworth LK, Merriman M, Fahy IJ, Tewari R, Silva JP, Healy LJ et al.. (2017) Seletalisib: Characterization of a Novel, Potent, and Selective Inhibitor of PI3Kδ. J Pharmacol Exp Ther, 361 (3): 429-440. [PMID:28442583]

4. Angulo I, Vadas O, Garçon F, Banham-Hall E, Plagnol V, Leahy TR, Baxendale H, Coulter T, Curtis J, Wu C et al.. (2013) Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science, 342 (6160): 866-71. [PMID:24136356]

5. Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA. (2008) Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol, 4 (11): 691-9. [PMID:18849971]

6. Barda DA, Mader MM. (2013) PI3 kinase/mTOR dual inhibitor. Patent number: US8440829 B2. Assignee: Eli Lilly And Company. Priority date: 14/01/2011. Publication date: 14/05/2013.

7. Barlaam B, Cosulich S, Delouvrié B, Ellston R, Fitzek M, Germain H, Green S, Hancox U, Harris CS, Hudson K et al.. (2015) Discovery of 1-(4-(5-(5-amino-6-(5-tert-butyl-1,3,4-oxadiazol-2-yl)pyrazin-2-yl)-1-ethyl-1,2,4-triazol-3-yl)piperidin-1-yl)-3-hydroxypropan-1-one (AZD8835): A potent and selective inhibitor of PI3Kα and PI3Kδ for the treatment of cancers. Bioorg Med Chem Lett, 25 (22): 5155-62. [PMID:26475521]

8. Barton N, Convery M, Cooper AWJ, Down K, Hamblin JN, Inglis G, Peace S, Rowedder J, Rowland P, Taylor JA et al.. (2018) Discovery of Potent, Efficient, and Selective Inhibitors of Phosphoinositide 3-Kinase δ through a Deconstruction and Regrowth Approach. J Med Chem, 61 (24): 11061-11073. [PMID:30532965]

9. Berndt A, Miller S, Williams O, Le DD, Houseman BT, Pacold JI, Gorrec F, Hon WC, Liu Y, Rommel C et al.. (2010) The p110 delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Nat Chem Biol, 6 (2): 117-24. [PMID:20081827]

10. Bonazzi S, Goold CP, Gray A, Thomsen NM, Nunez J, Karki RG, Gorde A, Biag JD, Malik HA, Sun Y et al.. (2020) Discovery of a Brain-Penetrant ATP-Competitive Inhibitor of the Mechanistic Target of Rapamycin (mTOR) for CNS Disorders. J Med Chem, 63 (3): 1068-1083. [PMID:31955578]

11. Braun M-G, Hanan E, Staben ST, Heald RA, Macleod C, Elliott R. (2017) Benzoxazepin oxazolidinone compounds and methods of use. Patent number: US20170015678. Assignee: Genentech, Inc.. Priority date: 02/07/2015. Publication date: 19/01/2017.

12. Brown SD, Matthews DJ. (2012) (alpha- substituted aralkylamino and heteroarylalkylamino) pyrimidinyl and 1,3,5 -triazinyl benzimidazoles, pharmaceutical compositions containing them, and these compounds for use in treating proliferative diseases. Patent number: WO2012135160A1. Assignee: Pathway Therapeutics Inc.. Priority date: 28/03/2011. Publication date: 04/10/2012.

13. Camps M, Rückle T, Ji H, Ardissone V, Rintelen F, Shaw J, Ferrandi C, Chabert C, Gillieron C, Françon B et al.. (2005) Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med, 11 (9): 936-43. [PMID:16127437]

14. Cano C, Saravanan K, Bailey C, Bardos J, Curtin NJ, Frigerio M, Golding BT, Hardcastle IR, Hummersone MG, Menear KA et al.. (2013) 1-substituted (Dibenzo[b,d]thiophen-4-yl)-2-morpholino-4H-chromen-4-ones endowed with dual DNA-PK/PI3-K inhibitory activity. J Med Chem, 56 (16): 6386-401. [PMID:23855836]

15. Castro-Falcón G, Seiler GS, Demir Ö, Rathinaswamy MK, Hamelin D, Hoffmann RM, Makowski SL, Letzel AC, Field SJ, Burke JE et al.. (2018) Neolymphostin A Is a Covalent Phosphoinositide 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Dual Inhibitor That Employs an Unusual Electrophilic Vinylogous Ester. J Med Chem, 61 (23): 10463-10472. [PMID:30380865]

16. Certal V, Carry JC, Halley F, Virone-Oddos A, Thompson F, Filoche-Rommé B, El-Ahmad Y, Karlsson A, Charrier V, Delorme C et al.. (2014) Discovery and optimization of pyrimidone indoline amide PI3Kβ inhibitors for the treatment of phosphatase and tensin homologue (PTEN)-deficient cancers. J Med Chem, 57 (3): 903-20. [PMID:24387221]

17. Certal V, Halley F, Virone-Oddos A, Delorme C, Karlsson A, Rak A, Thompson F, Filoche-Rommé B, El-Ahmad Y, Carry JC et al.. (2012) Discovery and optimization of new benzimidazole- and benzoxazole-pyrimidone selective PI3Kβ inhibitors for the treatment of phosphatase and TENsin homologue (PTEN)-deficient cancers. J Med Chem, 55 (10): 4788-805. [PMID:22524426]

18. Cheng H, Orr STM, Bailey S, Brooun A, Chen P, Deal JG, Deng YL, Edwards MP, Gallego GM, Grodsky N et al.. (2021) Structure-Based Drug Design and Synthesis of PI3Kα-Selective Inhibitor (PF-06843195). J Med Chem, 64 (1): 644-661. [PMID:33356246]

19. Cooke NG, Fernandes GDSP, Graveleau N, Hebach C, Hogenauer K, Hollingworth G, Smith AB, Soldermann N, Stowasser F, Strang R et al.. (2012) Tetrahydro-pyrido-pyrimidine derivatives. Patent number: WO2012004299. Assignee: Novartis Ag. Priority date: 06/07/2010. Publication date: 12/01/2012.

20. Crank MC, Grossman JK, Moir S, Pittaluga S, Buckner CM, Kardava L, Agharahimi A, Meuwissen H, Stoddard J, Niemela J et al.. (2014) Mutations in PIK3CD can cause hyper IgM syndrome (HIGM) associated with increased cancer susceptibility. J Clin Immunol, 34 (3): 272-6. [PMID:24610295]

21. Cushing TD, Hao X, Shin Y, Andrews K, Brown M, Cardozo M, Chen Y, Duquette J, Fisher B, Gonzalez-Lopez de Turiso F et al.. (2015) Discovery and in vivo evaluation of (S)-N-(1-(7-fluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine (AMG319) and related PI3Kδ inhibitors for inflammation and autoimmune disease. J Med Chem, 58 (1): 480-511. [PMID:25469863]

22. D'Angelo ND, Kim TS, Andrews K, Booker SK, Caenepeel S, Chen K, D'Amico D, Freeman D, Jiang J, Liu L et al.. (2011) Discovery and optimization of a series of benzothiazole phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors. J Med Chem, 54 (6): 1789-811. [PMID:21332118]

23. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP. (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol, 29 (11): 1046-51. [PMID:22037378]

24. Dittmann A, Werner T, Chung CW, Savitski MM, Fälth Savitski M, Grandi P, Hopf C, Lindon M, Neubauer G, Prinjha RK et al.. (2014) The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains. ACS Chem Biol, 9 (2): 495-502. [PMID:24533473]

25. Down K, Amour A, Baldwin IR, Cooper AW, Deakin AM, Felton LM, Guntrip SB, Hardy C, Harrison ZA, Jones KL et al.. (2015) Optimization of Novel Indazoles as Highly Potent and Selective Inhibitors of Phosphoinositide 3-Kinase δ for the Treatment of Respiratory Disease. J Med Chem, 58 (18): 7381-99. [PMID:26301626]

26. Dulau Florea AE, Braylan RC, Schafernak KT, Williams KW, Daub J, Goyal RK, Puck JM, Rao VK, Pittaluga S, Holland SM et al.. (2017) Abnormal B-cell maturation in the bone marrow of patients with germline mutations in PIK3CD. J Allergy Clin Immunol, 139 (3): 1032-1035.e6. [PMID:27697496]

27. Evans CA, Liu T, Lescarbeau A, Nair SJ, Grenier L, Pradeilles JA, Glenadel Q, Tibbitts T, Rowley AM, DiNitto JP et al.. (2016) Discovery of a Selective Phosphoinositide-3-Kinase (PI3K)-γ Inhibitor (IPI-549) as an Immuno-Oncology Clinical Candidate. ACS Med Chem Lett, 7 (9): 862-7. [PMID:27660692]

28. Fairhurst RA, Furet P, Imbach-Weese P, Stauffer F, Rueeger H, McCarthy C, Ripoche S, Oswald S, Arnaud B, Jary A et al.. (2022) Identification of NVP-CLR457 as an Orally Bioavailable Non-CNS-Penetrant pan-Class IA Phosphoinositol-3-Kinase Inhibitor. J Med Chem, 65 (12): 8345-8379. [PMID:35500094]

29. Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, Chuckowree IS, Clarke PA, Depledge P, Eccles SA et al.. (2008) The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer . J Med Chem, 51 (18): 5522-32. [PMID:18754654]

30. Fraser C, Carragher NO, Unciti-Broceta A. (2016) eCF309: a potent, selective and cell-permeable mTOR inhibitor. Medchemcomm, 7 (3): 471-477.

31. Furet P, Guagnano V, Fairhurst RA, Imbach-Weese P, Bruce I, Knapp M, Fritsch C, Blasco F, Blanz J, Aichholz R et al.. (2013) Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg Med Chem Lett, 23 (13): 3741-8. [PMID:23726034]

32. Gaillard P, Jeanclaude-Etter I, Pomel V, Sebille E, Jeyaprakashnarayanan S, Muzerelle M. (2015) Tricyclic pyrazol amine derivatives. Patent number: US9073940B2. Assignee: Merck Serono SA. Priority date: 12/11/2010. Publication date: 07/07/2015.

33. Gangadhara G, Dahl G, Bohnacker T, Rae R, Gunnarsson J, Blaho S, Öster L, Lindmark H, Karabelas K, Pemberton N et al.. (2019) A class of highly selective inhibitors bind to an active state of PI3Kγ. Nat Chem Biol, 15 (4): 348-357. [PMID:30718815]

34. Hancox U, Cosulich S, Hanson L, Trigwell C, Lenaghan C, Ellston R, Dry H, Crafter C, Barlaam B, Fitzek M et al.. (2015) Inhibition of PI3Kβ signaling with AZD8186 inhibits growth of PTEN-deficient breast and prostate tumors alone and in combination with docetaxel. Mol Cancer Ther, 14 (1): 48-58. [PMID:25398829]

35. Harris SJ, Foster JG, Ward SG. (2009) PI3K isoforms as drug targets in inflammatory diseases: lessons from pharmacological and genetic strategies. Curr Opin Investig Drugs, 10 (11): 1151-62. [PMID:19876783]

36. Hart S, Novotny-Diermayr V, Goh KC, Williams M, Tan YC, Ong LC, Cheong A, Ng BK, Amalini C, Madan B et al.. (2013) VS-5584, a novel and highly selective PI3K/mTOR kinase inhibitor for the treatment of cancer. Mol Cancer Ther, 12 (2): 151-61. [PMID:23270925]

37. Henley ZA, Amour A, Barton N, Bantscheff M, Bergamini G, Bertrand SM, Convery M, Down K, Dümpelfeld B, Edwards CD et al.. (2020) Optimization of Orally Bioavailable PI3Kδ Inhibitors and Identification of Vps34 as a Key Selectivity Target. J Med Chem, 63 (2): 638-655. DOI: 10.1021/acs.jmedchem.9b01585 [PMID:31855425]

38. Hou Y, Zhang F, Min W, Yuan K, Kuang W, Wang X, Zhu Y, Sun C, Xia F, Wang Y et al.. (2022) Discovery of Novel Phosphoinositide-3-Kinase α Inhibitors with High Selectivity, Excellent Bioavailability, and Long-Acting Efficacy for Gastric Cancer. J Med Chem, 65 (14): 9873-9892. [PMID:35834807]

39. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ et al.. (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature, 485 (7396): 55-61. [PMID:22367541]

40. Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, Wright CE, Kenche V, Anderson KE, Dopheide SM, Yuan Y et al.. (2005) PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med, 11 (5): 507-14. [PMID:15834429]

41. Jalota-Badhwar A, Bhatia DR, Boreddy S, Joshi A, Venkatraman M, Desai N, Chaudhari S, Bose J, Kolla LS, Deore V et al.. (2015) P7170: A Novel Molecule with Unique Profile of mTORC1/C2 and Activin Receptor-like Kinase 1 Inhibition Leading to Antitumor and Antiangiogenic Activity. Mol Cancer Ther, 14 (5): 1095-106. [PMID:25700704]

42. Kashiyama T, Oda K, Ikeda Y, Shiose Y, Hirota Y, Inaba K, Makii C, Kurikawa R, Miyasaka A, Koso T et al.. (2014) Antitumor activity and induction of TP53-dependent apoptosis toward ovarian clear cell adenocarcinoma by the dual PI3K/mTOR inhibitor DS-7423. PLoS One, 9 (2): e87220. [PMID:24504419]

43. King-Underwood J, Ito K, Murray PJ, Brookfield FA, Brown CJ. (2012) QUINAZOLIN-4 (3H) -ONE DERIVATIVES USED AS PI3 KINASE INHIBITORS. Patent number: WO2012052753. Assignee: RESPIVERT LIMITED. Priority date: 18/10/2010. Publication date: 26/04/2012.

44. Knight SD, Adams ND, Burgess JL, Chaudhari AM, Darcy MG, Donatelli CA, Luengo JI, Newlander KA, Parrish CA, Ridgers LH et al.. (2010) Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin. ACS Med Chem Lett, 1 (1): 39-43. [PMID:24900173]

45. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B et al.. (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell, 125 (4): 733-47. [PMID:16647110]

46. Knight ZA, Shokat KM. (2005) Features of selective kinase inhibitors. Chem Biol, 12 (6): 621-37. [PMID:15975507]

47. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, Byrd JC, Tyner JW, Loriaux MM, Deininger M et al.. (2011) CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood, 117 (2): 591-4. [PMID:20959606]

48. Li Y-L, Metcalf BW, Combs AP. (2011) Pyrimidinones as PI3K inhibitors. Patent number: WO2011008487. Assignee: Incyte Corporation. Priority date: 29/06/2009. Publication date: 20/01/2011.

49. Li Y-L, Yao W, Combs AP, Yue EW, Mei S, Zhu W, Glenn J, Maduskuie TP Jr, Sparks RB, Douty B. (2013) Heterocyclylamines as pi3k inhibitors. Patent number: WO2013033569A1. Assignee: Incyte Corporation. Priority date: 02/09/2011. Publication date: 07/03/2013.

50. Lin S, Jin J, Liu Y, Tian H, Zhang Y, Fu R, Zhang J, Wang M, Du T, Ji M et al.. (2019) Discovery of 4-Methylquinazoline Based PI3K Inhibitors for the Potential Treatment of Idiopathic Pulmonary Fibrosis. J Med Chem, 62 (19): 8873-8879. [PMID:31335136]

51. Liu F, Wang J, Yang X, Li B, Wu H, Qi S, Chen C, Liu X, Yu K, Wang W et al.. (2016) Discovery of a Highly Selective STK16 Kinase Inhibitor. ACS Chem Biol, 11 (6): 1537-43. [PMID:27082499]

52. Liu N, Rowley BR, Bull CO, Schneider C, Haegebarth A, Schatz CA, Fracasso PR, Wilkie DP, Hentemann M, Wilhelm SM et al.. (2013) BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol Cancer Ther, 12 (11): 2319-30. [PMID:24170767]

53. Liu Q, Shi Q, Marcoux D, Batt DG, Cornelius L, Qin LY, Ruan Z, Neels J, Beaudoin-Bertrand M, Srivastava AS et al.. (2017) Identification of a Potent, Selective, and Efficacious Phosphatidylinositol 3-Kinase δ (PI3Kδ) Inhibitor for the Treatment of Immunological Disorders. J Med Chem, 60 (12): 5193-5208. [PMID:28541707]

54. Liu Q, Wang J, Kang SA, Thoreen CC, Hur W, Ahmed T, Sabatini DM, Gray NS. (2011) Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J Med Chem, 54 (5): 1473-80. [PMID:21322566]

55. Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, Avery DT, Moens L, Cannons JL, Biancalana M et al.. (2014) Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol, 15 (1): 88-97. [PMID:24165795]

56. Luo Y, Xia Y, Wang W, Li Z, Jin Y, Gong Y, He T, Li Q, Li C, Yang J. (2018) Identification of a novel de novo gain-of-function mutation of PIK3CD in a patient with activated phosphoinositide 3-kinase δ syndrome. Clin Immunol, 197: 60-67. [PMID:30138677]

57. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chène P, De Pover A, Schoemaker K et al.. (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther, 7 (7): 1851-63. [PMID:18606717]

58. Methot JL, Zhou H, Kattar SD, McGowan MA, Wilson K, Garcia Y, Deng Y, Altman M, Fradera X, Lesburg C et al.. (2019) Structure Overhaul Affords a Potent Purine PI3Kδ Inhibitor with Improved Tolerability. J Med Chem, 62 (9): 4370-4382. [PMID:30986068]

59. Mårdh CK, Root J, Uddin M, Stenvall K, Malmgren A, Karabelas K, Thomas M. (2017) Targets of Neutrophil Influx and Weaponry: Therapeutic Opportunities for Chronic Obstructive Airway Disease. J Immunol Res, 2017: 5273201. [PMID:28596972]

60. Ndubaku CO, Heffron TP, Staben ST, Baumgardner M, Blaquiere N, Bradley E, Bull R, Do S, Dotson J, Dudley D et al.. (2013) Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1H-1,2-4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): a β-sparing phosphoinositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity. J Med Chem, 56 (11): 4597-610. [PMID:23662903]

61. Nylander S, Kull B, Björkman JA, Ulvinge JC, Oakes N, Emanuelsson BM, Andersson M, Skärby T, Inghardt T, Fjellström O et al.. (2012) Human target validation of phosphoinositide 3-kinase (PI3K)β: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kβ inhibitor. J Thromb Haemost, 10 (10): 2127-36. [PMID:22906130]

62. Ohwada J, Ebiike H, Kawada H, Tsukazaki M, Nakamura M, Miyazaki T, Morikami K, Yoshinari K, Yoshida M, Kondoh O et al.. (2011) Discovery and biological activity of a novel class I PI3K inhibitor, CH5132799. Bioorg Med Chem Lett, 21 (6): 1767-72. [PMID:21316229]

63. Palanki MS, Dneprovskaia E, Doukas J, Fine RM, Hood J, Kang X, Lohse D, Martin M, Noronha G, Soll RM et al.. (2007) Discovery of 3,3'-(2,4-diaminopteridine-6,7-diyl)diphenol as an isozyme-selective inhibitor of PI3K for the treatment of ischemia reperfusion injury associated with myocardial infarction. J Med Chem, 50 (18): 4279-94. [PMID:17685602]

64. Pemberton N, Mogemark M, Arlbrandt S, Bold P, Cox RJ, Gardelli C, Holden NS, Karabelas K, Karlsson J, Lever S et al.. (2018) Discovery of Highly Isoform Selective Orally Bioavailable Phosphoinositide 3-Kinase (PI3K)-γ Inhibitors. J Med Chem, 61 (12): 5435-5441. [PMID:29852070]

65. Perry M, Karabelas K, Mogemark M, Bold P, Tyrchan C, Nikitidid A, Petersen J, Borjesson U. (2018) 5-[2-(pyridin-2-ylamino)-1,3-thiazol-5-yl]-2,3-dihydro-1 h-isoindol-1 -one derivatives and their use as dual inhibitors of phosphatidylinositol 3-kinase delta & gamma. Patent number: WO2018055040A1. Assignee: Astrazeneca Ab. Priority date: 22/09/2016. Publication date: 29/03/2018.

66. Perry MWD, Björhall K, Bonn B, Carlsson J, Chen Y, Eriksson A, Fredlund L, Hao H, Holden NS, Karabelas K et al.. (2017) Design and Synthesis of Soluble and Cell-Permeable PI3Kδ Inhibitors for Long-Acting Inhaled Administration. J Med Chem, 60 (12): 5057-5071. [PMID:28520415]

67. Qian C, Lai CJ, Bao R, Wang DG, Wang J, Xu GX, Atoyan R, Qu H, Yin L, Samson M et al.. (2012) Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin Cancer Res, 18 (15): 4104-13. [PMID:22693356]

68. Rae W, Gao Y, Ward D, Mattocks CJ, Eren E, Williams AP. (2017) A novel germline gain-of-function variant in PIK3CD. Clin Immunol, 181: 29-31. [PMID:28578023]

69. Raynaud FI, Eccles SA, Patel S, Alix S, Box G, Chuckowree I, Folkes A, Gowan S, De Haven Brandon A, Di Stefano F et al.. (2009) Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol Cancer Ther, 8 (7): 1725-38. [PMID:19584227]

70. Ren P, Liu Y, Li L, Chan K, Wilson TE, Campbell SF. (2013) Heterocyclic compounds and uses thereof. Patent number: US20130035324 A1. Assignee: Ren P, Liu Y, Li L, Chan K, Wilson TE, Campbell SF.. Priority date: 17/08/2009. Publication date: 07/02/2013.

71. Sadhu C, Masinovsky B, Dick K, Sowell CG, Staunton DE. (2003) Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement. J Immunol, 170 (5): 2647-54. [PMID:12594293]

72. Shugg RP, Thomson A, Tanabe N, Kashishian A, Steiner BH, Puri KD, Pereverzev A, Lannutti BJ, Jirik FR, Dixon SJ et al.. (2013) Effects of isoform-selective phosphatidylinositol 3-kinase inhibitors on osteoclasts: actions on cytoskeletal organization, survival, and resorption. J Biol Chem, 288 (49): 35346-57. [PMID:24133210]

73. Su W-G, Dai G, Zhang W, Deng W. (2016) Novel imidazopyridazine compounds and their use. Patent number: WO2016045591A1. Assignee: Hutchison Medipharma Limited. Priority date: 24/09/2014. Publication date: 31/03/2016.

74. Sutherlin DP, Bao L, Berry M, Castanedo G, Chuckowree I, Dotson J, Folks A, Friedman L, Goldsmith R, Gunzner J et al.. (2011) Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. J Med Chem, 54 (21): 7579-87. [PMID:21981714]

75. Taddei DMA, Onions ST, Smith AJ, Copmans AH, Broeckx RLM. (2016) Phosphoinositide 3-kinase inhibitors. Patent number: US9227977B2. Assignee: Respivert Ltd. Priority date: 15/03/2013. Publication date: 05/01/2016.

76. Takeda AJ, Zhang Y, Dornan GL, Siempelkamp BD, Jenkins ML, Matthews HF, McElwee JJ, Bi W, Seeborg FO, Su HC et al.. (2017) Novel PIK3CD mutations affecting N-terminal residues of p110δ cause activated PI3Kδ syndrome (APDS) in humans. J Allergy Clin Immunol, 140 (4): 1152-1156.e10. [PMID:28414062]

77. Tang Y, Zheng F, Bao X, Zheng Y, Hu X, Lou S, Zhao H, Cui S. (2023) Discovery of Highly Selective and Orally Bioavailable PI3Kδ Inhibitors with Anti-Inflammatory Activity for Treatment of Acute Lung Injury. J Med Chem, 66 (17): 11905-11926. [PMID:37606563]

78. Tsujita Y, Mitsui-Sekinaka K, Imai K, Yeh TW, Mitsuiki N, Asano T, Ohnishi H, Kato Z, Sekinaka Y, Zaha K et al.. (2016) Phosphatase and tensin homolog (PTEN) mutation can cause activated phosphatidylinositol 3-kinase δ syndrome-like immunodeficiency. J Allergy Clin Immunol, 138 (6): 1672-1680.e10. [PMID:27426521]

79. Vakkalanka SKVS, Bhavar PK, Viswanadha S, Babu G. (2017) Dual selective PI3 delta and gamma kinase inhibitors. Patent number: US9790224B2. Assignee: Rhizen Pharmaceuticals SA. Priority date: 07/06/2013. Publication date: 17/10/2017.

80. Vakkalanka SKVS, Muthuppalaniappan M, Nagarathnam D. (2014) Novel selective pi3k delta inhibitors. Patent number: US20140011819 A1. Assignee: Rhizen Pharmaceuticals Sa.. Priority date: 04/07/2012. Publication date: 09/01/2014.

81. Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ, Higashi K, Volinia S, Downward J, Waterfield MD. (1997) P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci USA, 94 (9): 4330-5. [PMID:9113989]

82. Wentink M, Dalm V, Lankester AC, van Schouwenburg PA, Schölvinck L, Kalina T, Zachova R, Sediva A, Lambeck A, Pico-Knijnenburg I et al.. (2017) Genetic defects in PI3Kδ affect B-cell differentiation and maturation leading to hypogammaglobulineamia and recurrent infections. Clin Immunol, 176: 77-86. [PMID:28104464]

83. Winkler DG, Faia KL, DiNitto JP, Ali JA, White KF, Brophy EE, Pink MM, Proctor JL, Lussier J, Martin CM et al.. (2013) PI3K-δ and PI3K-γ inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem Biol, 20 (11): 1364-74. [PMID:24211136]

84. Wodicka LM, Ciceri P, Davis MI, Hunt JP, Floyd M, Salerno S, Hua XH, Ford JM, Armstrong RC, Zarrinkar PP et al.. (2010) Activation state-dependent binding of small molecule kinase inhibitors: structural insights from biochemistry. Chem Biol, 17 (11): 1241-9. [PMID:21095574]

85. Wu P, Hu Y. (2012) Small molecules targeting phosphoinositide 3-kinases. Medchemcomm, 3 (11): 1337-1355. DOI: 10.1039/C2MD20044A

86. Xie C, He Y, Zhen M, Wang Y, Xu Y, Lou L. (2017) Puquitinib, a novel orally available PI3Kδ inhibitor, exhibits potent antitumor efficacy against acute myeloid leukemia. Cancer Sci, 108 (7): 1476-1484. [PMID:28418085]

87. Xu Z, Lou Y. (2017) Fused heterocyclic compound, preparation method therefor, pharmaceutcial composition, and uses thereof. Patent number: US20160244432A1. Assignee: SHANGHAI YINGLI PHARMACEUTICAL Co. Priority date: 16/10/2013. Publication date: 23/05/2017.

88. Yaguchi S, Fukui Y, Koshimizu I, Yoshimi H, Matsuno T, Gouda H, Hirono S, Yamazaki K, Yamori T. (2006) Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J Natl Cancer Inst, 98 (8): 545-56. [PMID:16622124]

89. Yu Y, Han Y, Zhang F, Gao Z, Zhu T, Dong S, Ma M. (2020) Design, Synthesis, and Biological Evaluation of Imidazo[1,2-a]pyridine Derivatives as Novel PI3K/mTOR Dual Inhibitors. J Med Chem, 63 (6): 3028-3046. [PMID:32069401]

90. Zhan X, Su L. (2021) Three fused ring derivative-containing salt or crystal form and pharmaceutical composition thereof. Patent number: WO2021104146A1. Assignee: Shanghai Hansen Biomedical Technology, Jiangsu Hansen Pharmaceutical Group. Priority date: 25/11/2019. Publication date: 03/06/2021.

How to cite this page