Top ▲

α1B-adrenoceptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 23

Nomenclature: α1B-adrenoceptor

Family: Adrenoceptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 520 5q33.3 ADRA1B adrenoceptor alpha 1B 70
Mouse 7 514 11 25.81 cM Adra1b adrenergic receptor, alpha 1b 50
Rat 7 515 10q21 Adra1b adrenoceptor alpha 1B 5
Previous and Unofficial Names Click here for help
adrenergic alpha 1B receptor | alpha 1B-adrenoceptor | alpha 1B-adrenoreceptor | alpha1B-adrenergic receptor | adrenergic receptor
Database Links Click here for help
Specialist databases
GPCRdb ada1b_human (Hs), ada1b_rat (Mm), ada1b_mouse (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human α1B-adrenoceptor in complex with inverse agonist (+)-cyclazosin.
PDB Id:  7B6W
Ligand:  (+)-cyclazosin
Resolution:  2.87Å
Species:  Human
References:  24
Natural/Endogenous Ligands Click here for help
(-)-adrenaline
(-)-noradrenaline

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
oxymetazoline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.2 – 6.5 pKi 61,67,77
pKi 5.2 – 6.5 [61,67,77]
(-)-adrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 3.9 – 6.5 pKi 67,77
pKi 3.9 – 6.5 [67,77]
NS-49 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.1 pKi 61
pKi 5.1 [61]
cirazoline Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.1 pKi 67
pKi 5.1 [67]
(+)-adrenaline Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.1 pKi 77
pKi 5.1 [77]
(-)-noradrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 3.8 – 6.2 pKi 67,77
pKi 3.8 – 6.2 [67,77]
A61603 Small molecule or natural product Click here for species-specific activity table Hs Full agonist <4.0 pKi 67
pKi <4.0 (Ki >1x10-4 M) [67]
phenylephrine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 3.9 pKi 67
pKi 3.9 [67]
methoxamine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 3.0 – 4.0 pKi 67,77
pKi 3.0 – 4.0 [67,77]
phenylephrine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 6.1 – 9.0 pEC50 28,55,67
pEC50 6.1 – 9.0 [67]
pEC50 6.3 – 7.5 [28,55]
(-)-noradrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.9 – 9.2 pEC50 67
pEC50 5.9 – 9.2 [67]
cirazoline Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.9 – 8.1 pEC50 67
pEC50 6.9 – 8.1 [67]
(-)-adrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 5.4 – 9.4 pEC50 67
pEC50 5.4 – 9.4 [67]
oxymetazoline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 6.7 – 7.4 pEC50 67
pEC50 6.7 – 7.4 [67]
A61603 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.6 – 6.5 pEC50 67
pEC50 5.6 – 6.5 [67]
methoxamine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 4.0 – 6.6 pEC50 67
pEC50 4.0 – 6.6 [67]
Agonist Comments
Non catecholamine agonists, such as methoxamine and amidephrine, have both low affinity and low intrinsic activity at the α1B- adrenoceptor [55]. Much data has been generated using the hamster α1B-adrenoceptor, since this was the first α1B- homolog to be cloned. More recent data has been obtained utilising the human receptor. There is no evidence for any significant species differences in agonist and antagonist affinity between hamster, rat and human receptors. Methoxamine behaves as a full agonist for some and a partial agonist at other signalling pathways [67]. A61603 is highly selective for α1A-AR- no agonists currently available are selective for α1B-AR.

Note that pEC50 values have been determined in a variety of assay formats measuring intracellular Ca2+ release, ERK1/2 phosphorylation, extracellular acidification rate and cAMP accumulation. Clinical uses: α1B-AR are not specific clinical targets although adrenaline and noradrenaline used for shock will activate α1B-AR in blood vessels.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I]HEAT (BE2254) Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Inverse agonist 9.9 – 10.2 pKd 54,75,77
pKd 9.9 – 10.2 [54,75,77]
[3H]prazosin Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Inverse agonist 9.1 pKd 68
pKd 9.1 [68]
HEAT (BE2254) Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.0 pKd 68
pKd 8.0 [68]
MT-1207 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 10.1 pKi 87
pKi 10.1 (Ki 8.6x10-11 M) [87]
compound 12 [PMID: 26238322] Small molecule or natural product Hs Antagonist 9.8 pKi 37
pKi 9.8 [37]
(+)-cyclazosin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inverse agonist 8.7 – 9.9 pKi 30,68
pKi 8.7 – 9.9 [30,68]
prazosin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Inverse agonist 8.7 – 9.9 pKi 28,68,77,90
pKi 8.7 – 9.9 [28,68,77,90]
NAN 190 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.2 pKi 94
pKi 9.2 [94]
spiperone Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inverse agonist 9.2 pKi 94
pKi 9.2 [94]
tamsulosin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Inverse agonist 8.1 – 9.7 pKi 28,68,77,90
pKi 8.1 – 9.7 [28,68,77,90]
doxazosin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.5 – 9.1 pKi 35,68
pKi 8.5 – 9.1 (Ki 8.13x10-10 M) [35,68]
Rec 15/2615 Small molecule or natural product Hs Antagonist 7.8 – 9.5 pKi 68,83
pKi 7.8 – 9.5 [68,83]
rho-TIA Peptide Hs Antagonist 8.4 pKi 19
pKi 8.4 [19]
A-119637 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.3 pKi 12
pKi 8.3 [12]
L-765314 Small molecule or natural product Rn Antagonist 8.3 pKi 64
pKi 8.3 [64]
terazosin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.0 – 8.6 pKi 52,68
pKi 8.0 – 8.6 [52,68]
ketanserin Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.2 pKi 94
pKi 8.2 [94]
WB 4101 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.4 – 9.0 pKi 28,68,77
pKi 7.4 – 9.0 [28,68,77]
alfuzosin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.6 – 8.6 pKi 40,68
pKi 7.6 – 8.6 (Ki 2.8x10-9 M) [40,68]
ritanserin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.0 pKi 94
pKi 8.0 [94]
A-123189 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.0 pKi 12
pKi 8.0 [12]
muscarinic toxin β Peptide Hs Antagonist 8.0 pKi 10
pKi 8.0 [10]
mamba toxin CM-3 Peptide Hs Antagonist 8.0 pKi 10
pKi 8.0 [10]
risperidone Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.8 – 8.0 pKi 68,94
pKi 7.8 – 8.0 [68,94]
clozapine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.4 – 8.2 pKi 68,94
pKi 7.4 – 8.2 [68,94]
upidosin Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.8 pKi 28
pKi 7.8 [28]
L-765314 Small molecule or natural product Hs Antagonist 7.7 pKi 64
pKi 7.7 [64]
spiroxatrine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.6 pKi 94
pKi 7.6 [94]
cyproheptadine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.6 pKi 94
pKi 7.6 [94]
AH 11110 Small molecule or natural product Hs Antagonist 7.5 pKi 74
pKi 7.5 [74]
mianserin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.4 pKi 94
pKi 7.4 [94]
indoramin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.8 – 7.4 pKi 28,68
pKi 6.8 – 7.4 [28,68]
silodosin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.5 – 7.7 pKi 68,77
pKi 6.5 – 7.7 [68,77]
Ro-70-0004 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 pKi 90
pKi 7.1 [90]
phentolamine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 6.6 – 7.5 pKi 68,77
pKi 6.6 – 7.5 [68,77]
S(+)-niguldipine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.3 – 7.7 pKi 28,68,77
pKi 6.3 – 7.7 [28,68,77]
KMUP-1 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.9 pKi 49
pKi 6.9 [49]
5-methylurapidil Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 – 7.7 pKi 28,68,77,94
pKi 6.1 – 7.7 [28,68,77,94]
BMY-7378 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.2 – 7.5 pKi 12,68,94
pKi 6.2 – 7.5 [12,68,94]
MT-1207 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.8 pIC50 87
pIC50 9.8 (IC50 1.5x10-10 M) [87]
View species-specific antagonist tables
Antagonist Comments
There are no highly selective α1B-AR antagonists available. (+) Cyclazosin has been shown to have minor α1B- selectivity in early [79] but not more recent [68] radioligand binding assays with recombinant receptors. No functional selectivity is reported in isolated tissue preparations [79]. The 19 amino acid peptide, rho-TIA, produces non-competitive blockade of α1B-AR mediated inositol phosphate formation at concentrations producing competitive blockade of this response in cells expressing α1A or α1D subtypes. There is reported variation in affinities for antagonists related to the assay system used [68,93].
Prazosin, alfuzosin, cyclazosin, doxazosin and terazosin are selective for α1-ARs vs. α2-ARs but show similar affinity for all 3 alpha;1-AR subtypes. Clinical uses: α1B-AR are not specific clinical targets however α1-AR antagonists used for hypertension and benign prostatic hypertrophy will block α1B-AR in blood vessels.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
lorazepam Small molecule or natural product Approved drug Rn Positive 3.8 pKi 88
pKi 3.8 (Ki 1.7x10-4 M) [88]
midazolam Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Positive 3.7 pKi 88
pKi 3.7 (Ki 1.83x10-4 M) [88]
rho-TIA Peptide Click here for species-specific activity table Rn Negative 9.1 pIC50 48
pIC50 9.1 (IC50 8x10-10 M) [48]
Allosteric Modulator Comments
The conopeptide ρ-TIA is a negative allosteric regulator at the hamster α1B-AR (pKi 7.6, [69]).
Additionally, σ-TIA competes for radioligand binding to recombinant α1B-AR in a non-competitive manner [19,33].
Data published by Williams et al. (2018) show that diazepam is not a direct allosteric modulator of α1-ARs [89], but modulates receptor activity by inhibition of phosphodiesterase 4.
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Calcium channel
Other - See Comments
Comments:  The α1B-adrenoceptor is coupled to calcium release and inositol phosphate production (i.e. Gq) less efficiently than the α1A but more efficiently than the α1D.
References:  33,45,54
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Phospholipase D stimulation
Other - See Comments
Comments:  PDK-1 is involved in phosphorylation and desensitization [3].
cAMP accumulation [51,67].
α1-ARs form hetero-oligomeric complexes with the ACKR3:CXCR4 heteromer, and the complex is required for α1B/D-AR function. Phenylephrine-induced inositol trisphosphate production from hVSMCs is abolished after ACKR3 and CXCR4 siRNA knockdown [2].
α1-ARs (all subtypes) also activate protein Kinase C and mitogen activated protein kinases. Like the α1A-AR, α1B-AR can couple to Gs to activate adenylyl cyclase and increase cAMP levels but less efficiently than coupling to Gq.
References:  33,54
Tissue Distribution Click here for help
Prostate cancer cell lines DU145, PC3 and TRAMP.
Species:  Human
Technique:  Radioligand binding.
References:  76
Mesenchymal stromal cells.
Species:  Human
Technique:  RT-PCR, immunocytochemistry.
References:  46
α1B-adrenoceptors are either absent or scarce on human prostatic stromal smooth muscle, proximal urethra or corpus cavernosa, present in the human spleen and kidney, and with other subtypes in human somatic arteries and veins.
Species:  Human
Technique:  RT-PCR, RNase protection assay.
References:  54,66
Lymphocytes & saphenous vein.
Species:  Human
Technique:  In situ hybridisation.
References:  82,92
Osteoblasts & SaM-1 cell line.
Species:  Human
Technique:  RT-PCR, antagonist (chloroethyclonidine) effects.
References:  41,44
Coronary endothelial cells.
Species:  Human
Technique:  PCR, radioligand binding.
References:  42
Uterus, cervix & umbilical vein.
Species:  Human
Technique:  RT-PCR, tissue contraction.
References:  26-27
Ventricular myocytes.
Species:  Mouse
Technique:  RT-qPCR, ERK1/2 responses, contraction, FRET, confocal microscopy.
References:  58,91
Testes & spermatocytes.
Species:  Mouse
Technique:  In situ hybridisation.
References:  53
Atria.
Species:  Mouse
Technique:  RT-PCR, positive inotropic and chronotropic effects.
References:  101
Cerebral cortex, cerebellum, amygdaloid, hypothalamus, midbrain, pontine, spinal cord, olfactory, periaqueductal grey, NG2 oligodendrocytes.
Species:  Mouse
Technique:  In situ hybridisation, GFP-tagged transgenic mouse.
References:  60,62
Spleen.
Species:  Mouse
Technique:  Isometric contractions of spleen from α1A/D–knockout mice.
References:  6
Bone formation and cellular proliferation.
Species:  Mouse
Technique:  Tomography of fluorescently labelled bone in WT and α1B-AR knockout mice.
References:  81
Nucleus accumbens - unmyelinated axons and axon terminals with some labeling in dendrites.
Species:  Rat
Technique:  Immunohistochemistry and electron microscopy.
References:  56
In the rat brain, highest levels of α1B-AR are found in regions involved in stress and neuroendocrine function, including hypothalamic paraventricular nuclei, supraoptic nucleus, median eminence and arcuate nucleus. Also in layer V of the frontal cortex, thalamus, hippocampus, diagonal band of Broca and caudate-putamen. Some midbrain and hindbrain regions important for motor function were also immunoreactive.
Species:  Rat
Technique:  Immunohistochemistry.
References:  1,21
Taste buds.
Species:  Rat
Technique:  RT-PCR
References:  102
Prefrontal cortex, contralateral hind limb, somatosensory cortex, secondary motor cortex, ipsilateral laminae I-III spinal cord.
Species:  Rat
Technique:  In situ hybridisation.
References:  59,73
Liver, hepatocytes, carotid artery.
Species:  Rat
Technique:  Receptor binding 3H prazosin.
References:  93
High expression levels of α1B-AR in the medial layer of the aorta and caudal, femoral, iliac, renal, superior mesenteric and mesenteric resistance arteries.
Species:  Rat
Technique:  Immunohistochemistry.
References:  65
Spleen.
Species:  Rat
Technique:  Isometric contractions of spleen and selective antagonists.
References:  7
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Isometric contraction of mouse spleen.
Species:  Mouse
Tissue:  Spleen.
Response measured:  Contraction.
References:  6-7
Isolated longitudinal strip of rat spleen.
Species:  Rat
Tissue:  Spleen
Response measured:  Contraction
References:  79
Isolated first order venules.
Species:  Human
Tissue:  Vasculature.
Response measured:  Contraction.
References:  31
Nerve growth factor increases α1B-AR expression and augments neuronal responsiveness to norepinephrine.
Species:  Rat
Tissue:  Primary dorsal root ganglion cells.
Response measured:  Neuronal responsiveness.
References:  100
Sphingosine-1-phosphate or lysophosphatidic acid induced α1B-AR desensitization and phosphorylation.
Species:  Rat
Tissue:  Transfected Rat-1 fibroblasts.
Response measured:  Phosphorylation and desensitization.
References:  14-15
α1B-AR mediated renal vasoconstriction during renal impairment, but not during normal renal function.
Species:  Rat
Tissue:  Kidney.
Response measured:  Vasconstriction.
References:  43
Reduced binding affinity for prazosin and tamsulosin associated with T130A mutation in transmembrane domain III.
Species:  Human
Tissue:  HEK 293 cells transfected with human α1B-AR cDNA.
Response measured:  Receptor binding.
References:  80
Desensitisation of α1B-AR produced by insulin, insulin-like growth factor-1 and estrogen.
Species:  Human
Tissue:  Transfected Rat-1 cells & DDT1MF2 cells.
Response measured:  Desensitization and internalization.
References:  13,29,32,57
Functional changes produced by formation of heterodimers with α1B- or α1D-ARs. Heterodimer formation is observed for human AND rat receptors.
Species:  Human
Tissue:  Transfected HEK 293 & DDT(1)MF-2 cells.
Response measured:  Heterodimer formation.
References:  34,85
Internalisation of α1B-ARs.
Species:  Human
Tissue:  HEK293 cells.
Response measured:  FRET, confocal microscopy, and intracellular calcium quantitation.
References:  4
Functional changes produced by formation of heterodimers with α1B- and α1D-ARs.
Species:  Human
Tissue:  Vascular smooth muscle cells.
Response measured:  Heterodimer formation and function.
References:  2
Phosphorylation and desensitisation of α1B-ARs.
Species:  Human
Tissue:  HEK293 cells.
Response measured:  Mass spectrometry, FRET, Ca2+ signaling.
References:  38-39
The selectivity of α-adrenoceptor agonists for the human α1Aa, α1Ba, and α1D-ARs.
Species:  Human
Tissue:  CHO-K1 cells stably expressing α1B-AR.
Response measured:  Whole cell [3H]prazosin binding, intracellular Ca2++ release, ERK1/2 phosphorylation, cAMP accumulation.
References:  67
Rat primary neonatal cardiomyocytes.
Species:  Rat
Tissue:  Neonatal cardiomyocytes.
Response measured:  Transcriptome analysis of signalling pathways.
References:  51
Signalling, oligomerisation and nuclear localisation of α1B-AR in ventricular myocytes.
Species:  Mouse
Tissue:  Ventricular myocytes.
Response measured:  Receptor knockout mice, adenovirus transfection, confocal microscopy, FRET, ERK1/2 responses.
References:  91
Binding phenotypes of α1B-AR.
Species:  Rat
Tissue:  Liver intact preparations and homogenates, carotid artery.
Response measured:  Receptor binding.
References:  93
Analysis of adrenoceptor subtypes in ventricular myocytes.
Species:  Mouse
Tissue:  Ventricular myocytes.
Response measured:  Receptor knockin and knockout mice, ERK1/2 and phospholamban responses, contraction.
References:  58
Role of α1B-AR in bone formation.
Species:  Mouse
Tissue:  Bone.
Response measured:  Microcomputed tomography and fluorescent labelling of bone.
References:  81
Physiological Functions Click here for help
Contraction of mesenteric resistance arteries.
Species:  Rat
Tissue:  Vasculature.
References:  65
Contraction of umbilical vein.
Species:  Human
Tissue:  Vasculature.
References:  27
α1B-AR roles in the regulation of cardiac growth and contractile function.
Species:  Mouse
Tissue:  Heart.
References:  18,101
Contraction of mammary artery and saphenous vein (with α1A).
Species:  Human
Tissue:  Vasculature
References:  31
Adrenaline induced stimulation of hydroxyl radical formation in isolated hepatocytes.
Species:  Rat
Tissue:  Liver.
References:  17
CNS Stimulation by d-amphetamine, cocaine and morphine.
Species:  Mouse
Tissue:  Brain.
References:  25
Growth of vascular adventitia following balloon injury.
Species:  Rat
Tissue:  Aorta.
References:  99
Increased replication of human osteoblasts.
Species:  Human
Tissue:  Bone.
References:  41
α1B-AR activation initiates a PLC-dependent biphasic change in pinealocyte membrane potential.
Species:  Rat
Tissue:  Primary pinealocytes.
References: 
Diabetes increases α1B-AR mRNA in non-pregnant rats.
Species:  Rat
Tissue:  Uterus.
References:  78
Hetero-oligomer formation with ACKR-3 and CXCR4 required for α1B-AR function.
Species:  Human
Tissue:  Vascular smooth muscle cells.
References:  2
Modulation of α1B-AR translocation to endosomes by PKC and Rab9.
Species:  Human
Tissue:  Transfected HEK293 cells.
References:  4
Contraction of spleen.
Species:  Rat
Tissue:  Spleen.
References:  7
Homologous and heterologous desensitisation direct α1B-AR to different endocytotic vesicles.
Species:  Human
Tissue:  HEK293 cells.
References:  16
Enhanced viability but not proliferation.
Species:  Human
Tissue:  Colonic cancer SW480 cells.
References:  36
α1B-AR activation initiates a PLC-dependent biphasic change in pinealocyte membrane potential.
Species:  Rat
Tissue:  Primary pinealocytes.
References:  97
Bone formation and cellular proliferation.
Species:  Mouse
Tissue:  Osteoblasts.
References:  81
Physiological Consequences of Altering Gene Expression Click here for help
Mice with myocyte-targeted α1B-ARs develop spontaneous ventricular arrhythmias and repolarization defects with age
Species:  Mouse
Tissue:  Heart.
Technique:  Gene over-expression.
References:  71
α1B-AR knockout mice display reduced neointimal growth, adventitial thickening and lumen loss. α1B-AR mediates vascular remodeling trophic effects after injury.
Species:  Mouse
Tissue:  Carotid artery.
Technique:  Gene knockout.
References:  98
Mice with constitutively active mutation (CAM) have decreased inotropic response to phenylephrine (decreased cardiac function).
Species:  Mouse
Tissue:  Heart.
Technique:  Gene over-expression, Langendorff isolated perfused heart assay.
References:  72
α1B-AR knockout mice display reduced fertility and spermatogenesis (hypofertile, low testosterone, high leutinizing hormone).
Species:  Mouse
Tissue:  Testes.
Technique:  Gene knockouts.
References:  53
α1B-AR knockout mice exhibit altered locomoter and rewarding effects of psychostimulants and opiates; mediates dopamine release (hyperactivity and rewarding behavior of cocaine, morphine, amphetamine).
Species:  Mouse
Tissue:  Brain.
Technique:  Gene knockouts.
References:  8,22,86
α1B-AR knockout mice display attenuated pressor and positive inotropic effects after transient bilateral carotid occlusion and denervated aortic baroreceptor surgery. α1B-AR regulates sympathetic neuroeffector junction and baroreceptor activation.
Species:  Mouse
Tissue:  Mesenteric vasculature.
Technique:  Gene knockout.
References:  84
Mice with constitutively active mutation (CAM) have cardiac gene expression profile consistent with maladaptive hypertrophy (a gene expression profile of inflammation, hypertrophy, Src related signaling).
Species:  Mouse
Tissue:  Heart.
Technique:  Gene over-expression and microarray analysis.
References:  96
Mice with constitutively active mutation (CAM) have decreased inotropic response to phenylephrine (decreased cardiac function).
Species:  Mouse
Tissue:  Heart.
Technique:  Gene over-expression, Langendorff isolated perfused heart assay.
References:  72
Mice with constitutively active mutation (CAM) have increased apoptosis, NMDA receptors, but decreased GABA-A receptor (neurodegenerative profile).
Species:  Mouse
Tissue:  Brain.
Technique:  Gene over-expression and microarry analysis.
References:  95
Mice with constitutively active mutation (CAM) have increased spontaneous interictal epileptogenicity and EEG /behavioral seizures (epilepsy).
Species:  Mouse
Tissue:  Brain.
Technique:  Gene over-expression.
References:  47
α1B-AR knockout mice display compensatory changes in α1-AR subtypes; liver from α1B-AR knockout animals displays increased α1A-AR expression.
Species:  Mouse
Tissue:  Liver, hepatocytes.
Technique:  Gene knockout.
References:  23
Mice with constitutively active mutation (CAM) have progressive synucleinopathy that is rescued by long-term terazosin treatment (abnormal aggregated alpha-synuclein inclusion bodies & Purkinje cell loss).
Species:  Mouse
Tissue:  Brain.
Technique:  Gene over-expression.
References:  63
α1B-AR knockout mice display impaired glucose homeostasis (hyperinsulinemia and insulin resistance).
Species:  Mouse
Tissue:  Blood, liver.
Technique:  Gene knockout.
References:  11
Mice with constitutively active mutation (CAM) have hypotension, autonomic failure and cardiac hypertrophy (lower basal and phenylephrine-induced blood pressure, cardiac hypertrophy, cardiac dysfunction, reduced plasma catecholamines and cortisol, weight loss).
Species:  Mouse
Tissue:  Brain & heart.
Technique:  Gene over-expression.
References:  103
α1B-AR knockout mice are protected against methamphetamine induced degeneration (methamphetamine toxicity) of the nigro-striatal neuronal pathway in CNS and show an enhanced reactivity to new situations.
Species:  Mouse
Tissue:  Brain- nigro-striatal projection.
Technique:  Gene knockout.
References:  9
α1B- knockout mice have elevated glycogen stores in both fed and fasted state and are hyperinsulinemic when fasted. They are more sensitive to obesity induced by a high fat diet.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  20
α1B-AR play an important role in bone formation and cellular proliferation.
Species:  Mouse
Tissue:  Bone.
Technique:  Gene knockout, examination of bone microarchitecture by microcomputed tomography and bone formation by fluorescent labelling of bone.
References:  81
Mice with constitutively active mutation (CAM) have progressive apoptotic Parkinsonian-like neurodegeneration with multiple system atrophy (granulovacular apoptotic neurodegeneration, movement disorder, dopaminergic degeneration).
Species:  Mouse
Tissue:  Haert.
Technique:  Gene over-expression.
References:  104
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0004184 abnormal baroreceptor physiology PMID: 15466664 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0002972 abnormal cardiac muscle contractility PMID: 14519431 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0000304 abnormal cardiac stroke volume PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0001544 abnormal cardiovascular system physiology PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0002332 abnormal exercise endurance PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0002078 abnormal glucose homeostasis PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0003921 abnormal heart left ventricle morphology PMID: 15466664 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0005406 abnormal heart size PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0001449 abnormal learning/ memory PMID: 11222061 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0004215 abnormal myocardial fiber physiology PMID: 14519431 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0003562 abnormal pancreatic beta cell physiology PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0003461 abnormal response to novel object PMID: 11222061 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0002216 abnormal seminiferous tubule morphology PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0002784 abnormal Sertoli cell morphology PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0001463 abnormal spatial learning PMID: 11222061 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0000230 abnormal systemic arterial blood pressure PMID: 9326654 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0002782 abnormal testicular secretion PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001155 arrest of spermatogenesis PMID: 17951539 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0006138 congestive heart failure PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0005140 decreased cardiac muscle contractility PMID: 15466664  9326654 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0003393 decreased cardiac output PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0002702 decreased circulating free fatty acid level PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0002780 decreased circulating testosterone level PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0001417 decreased exploration in new environment PMID: 11115730 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005439 decreased glycogen level PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0005333 decreased heart rate PMID: 15466664 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0005333 decreased heart rate PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0002834 decreased heart weight PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001935 decreased litter size PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0004901 decreased male germ cell number PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0002843 decreased systemic arterial blood pressure PMID: 15466664 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0006264 decreased systemic arterial systolic blood pressure PMID: 15466664 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0004852 decreased testis weight PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0003026 decreased vasoconstriction PMID: 15466664 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0003068 enlarged kidney PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0001559 hyperglycemia PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0009750 impaired behavioral response to addictive substance PMID: 11923452 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0009712 impaired conditioned place preference behavior PMID: 11923452 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005293 impaired glucose tolerance PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0004000 impaired passive avoidance behavior PMID: 11115730 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0005599 increased cardiac muscle contractility PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0002079 increased circulating insulin level PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005669 increased circulating leptin level PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001751 increased circulating luteinizing hormone level PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0001415 increased exploration in new environment PMID: 11222061 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005440 increased glycogen level PMID: 14581480 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0003823 increased left ventricular developed pressure PMID: 14519431 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005458 increased percent body fat PMID: 14581480 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0004485 increased response of heart to induced stress PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005658 increased susceptibility to diet-induced obesity PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005331 insulin resistance PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0008280 male germ cell apoptosis PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001925 male infertility PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001922 reduced male fertility PMID: 17951539 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0002188 small heart PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
B6.129-Adra1b Adra1a
MGI:104773  MGI:104774  MP:0002188 small heart PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0004565 small myocardial fiber PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
B6.129-Adra1b Adra1a
MGI:104773  MGI:104774  MP:0004565 small myocardial fiber PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001157 small seminal vesicle PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001153 small seminiferous tubules PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001147 small testis PMID: 17951539 

References

Show »

1. Acosta-Martinez M, Fiber JM, Brown RD, Etgen AM. (1999) Localization of alpha1B-adrenergic receptor in female rat brain regions involved in stress and neuroendocrine function. Neurochemistry International, 35: 383-391. [PMID:10517699]

2. Albee LJ, Eby JM, Tripathi A, LaPorte HM, Gao X, Volkman BF, Gaponenko V, Majetschak M. (2017) α1-Adrenergic Receptors Function Within Hetero-Oligomeric Complexes With Atypical Chemokine Receptor 3 and Chemokine (C-X-C motif) Receptor 4 in Vascular Smooth Muscle Cells. J Am Heart Assoc, 6 (8). [PMID:28862946]

3. Alcántara Hernández R, García-Sáinz JA. (2012) Roles of phosphoinositide-dependent kinase-1 in α1B-adrenoceptor phosphorylation and desensitization. Eur J Pharmacol, 674 (2-3): 179-87. [PMID:22134004]

4. Alfonzo-Méndez MA, Hernández-Espinosa DA, Carmona-Rosas G, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. (2017) Protein Kinase C Activation Promotes α1B-Adrenoceptor Internalization and Late Endosome Trafficking through Rab9 Interaction. Role in Heterologous Desensitization. Mol Pharmacol, 91 (4): 296-306. [PMID:28082304]

5. Alonso-Llamazares A, Zamanillo D, Casanova E, Ovalle S, Calvo P, Chinchetru MA. (1995) Molecular cloning of alpha 1d-adrenergic receptor and tissue distribution of three alpha 1-adrenergic receptor subtypes in mouse. J Neurochem, 65: 2387-2392. [PMID:7595531]

6. Alsufyani HA, Daly C, Docherty JR. (2021) Interaction between α1B - and other α1 - and α2 -adrenoceptors in producing contractions of mouse spleen. Basic Clin Pharmacol Toxicol, 129 (6): 416-426. [PMID:34383990]

7. Alsufyani HA, McCormick PA, Docherty JR. (2021) Both α1B- and α1A-adrenoceptor subtypes are involved in contractions of rat spleen. Pharmacol Rep, 73 (1): 255-260. [PMID:32860192]

8. Auclair A, Drouin C, Cotecchia S, Glowinski J, Tassin JP. (2004) 5-HT2A and alpha1b-adrenergic receptors entirely mediate dopamine release, locomotor response and behavioural sensitization to opiates and psychostimulants. Eur J Neurosci, 20 (11): 3073-84. [PMID:15579162]

9. Battaglia G, Fornai F, Busceti CL, Lembo G, Nicoletti F, De Blasi A. (2003) Alpha-1B adrenergic receptor knockout mice are protected against methamphetamine toxicity. J Neurochem, 86 (2): 413-21. [PMID:12871582]

10. Blanchet G, Upert G, Mourier G, Gilquin B, Gilles N, Servent D. (2013) New α-adrenergic property for synthetic MTβ and CM-3 three-finger fold toxins from black mamba. Toxicon, 75: 160-7. [PMID:23648423]

11. Burcelin R, Uldry M, Foretz M, Perrin C, Dacosta A, Nenniger-Tosato M, Seydoux J, Cotecchia S, Thorens B. (2004) Impaired glucose homeostasis in mice lacking the alpha1b-adrenergic receptor subtype. J Biol Chem, 279 (2): 1108-15. [PMID:14581480]

12. Carroll WA, Sippy KB, Esbenshade TA, Buckner SA, Hancock AA, Meyer MD. (2001) Two novel and potent 3-[(o-methoxyphenyl)piperazinylethyl]-5-phenylthien. Bioorg Med Chem Lett, 11 (9): 1119-21. [PMID:11354357]

13. Casas-González P, García-Sáinz JA. (2006) Role of epidermal growth factor receptor transactivation in alpha1B-adrenoceptor phosphorylation. Eur J Pharmacol, 542 (1-3): 31-6. [PMID:16828079]

14. Casas-González P, Ruiz-Martínez A, García-Sáinz JA. (2003) Lysophosphatidic acid induces alpha1B-adrenergic receptor phosphorylation through G beta gamma, phosphoinositide 3-kinase, protein kinase C and epidermal growth factor receptor transactivation. Biochim Biophys Acta, 1633 (2): 75-83. [PMID:12880866]

15. Castillo-Badillo JA, Molina-Muñoz T, Romero-Ávila MT, Vázquez-Macías A, Rivera R, Chun J, García-Sáinz JA. (2012) Sphingosine 1-phosphate-mediated α1B-adrenoceptor desensitization and phosphorylation. Direct and paracrine/autocrine actions. Biochim Biophys Acta, 1823 (2): 245-54. [PMID:22019450]

16. Castillo-Badillo JA, Sánchez-Reyes OB, Alfonzo-Méndez MA, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. (2015) α1B-adrenergic receptors differentially associate with Rab proteins during homologous and heterologous desensitization. PLoS One, 10 (3): e0121165. [PMID:25799564]

17. Castrejón-Sosa M, Villalobos-Molina R, Guinzberg R, Piña E. (2002) Adrenaline (via alpha(1B)-adrenoceptors) and ethanol stimulate OH* radical production in isolated rat hepatocytes. Life Sci, 71 (21): 2469-74. [PMID:12270752]

18. Chalothorn D, McCune DF, Edelmann SE, Tobita K, Keller BB, Lasley RD, Perez DM, Tanoue A, Tsujimoto G, Post GR et al.. (2003) Differential cardiovascular regulatory activities of the alpha 1B- and alpha 1D-adrenoceptor subtypes. J Pharmacol Exp Ther, 305 (3): 1045-53. [PMID:12649302]

19. Chen Z, Rogge G, Hague C, Alewood D, Colless B, Lewis RJ, Minneman KP. (2004) Subtype-selective noncompetitive or competitive inhibition of human alpha1-adrenergic receptors by rho-TIA. J Biol Chem, 279 (34): 35326-33. [PMID:15194691]

20. Cotecchia S, Björklöf K, Rossier O, Stanasila L, Greasley P, Fanelli F. (2002) The alpha1b-adrenergic receptor subtype: molecular properties and physiological implications. J Recept Signal Transduct Res, 22 (1-4): 1-16. [PMID:12503605]

21. Day HE, Campeau S, Watson Jr SJ, Akil H. (1997) Distribution of alpha 1a-, alpha 1b- and alpha 1d-adrenergic receptor mRNA in the rat brain and spinal cord. J Chem Neuroanat, 13 (2): 115-39. [PMID:9285356]

22. DeBoy JM, Jarboe BR. (1991) A response to "Can cytology proficiency testing programs discriminate between competent and incompetent practitioners?". QRB Qual Rev Bull, 17 (7): 206. [PMID:1923452]

23. Deighan C, Woollhead AM, Colston JF, McGrath JC. (2004) Hepatocytes from alpha1B-adrenoceptor knockout mice reveal compensatory adrenoceptor subtype substitution. Br J Pharmacol, 142 (6): 1031-7. [PMID:15210583]

24. Deluigi M, Morstein L, Schuster M, Klenk C, Merklinger L, Cridge RR, de Zhang LA, Klipp A, Vacca S, Vaid TM et al.. (2022) Crystal structure of the α1B-adrenergic receptor reveals molecular determinants of selective ligand recognition. Nat Commun, 13 (1): 382. [PMID:35046410]

25. Drouin C, Darracq L, Trovero F, Blanc G, Glowinski J, Cotecchia S, Tassin JP. (2002) Alpha1b-adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. J Neurosci, 22 (7): 2873-84. [PMID:11923452]

26. Ducza E, Kormányos Z, Resch BE, Falkay G. (2005) Correlation between the alterations in the mRNA expressions of the alpha1-adrenoceptor and estrogen receptor subtypes in the pregnant human uterus and cervix. Eur J Pharmacol, 528 (1-3): 183-7. [PMID:16325176]

27. Errasti AE, Werneck de Avellar MC, Daray FM, Tramontano J, Luciani LI, Lina Bard MJ, Maróstica E, Rothlin RP. (2003) Human umbilical vein vasoconstriction induced by epinephrine acting on alpha1B-adrenoceptor subtype. Am J Obstet Gynecol, 189 (5): 1472-80. [PMID:14634588]

28. Ford AP, Daniels DV, Chang DJ, Gever JR, Jasper JR, Lesnick JD, Clarke DE. (1997) Pharmacological pleiotropism of the human recombinant alpha1A-adrenoceptor: implications for alpha1-adrenoceptor classification. Br J Pharmacol, 121 (6): 1127-35. [PMID:9249248]

29. García-Sáinz JA, Romero-Avila MT, Molina-Muñoz T, Medina Ldel C. (2004) Insulin induces alpha1B-adrenergic receptor phosphorylation and desensitization. Life Sci, 75 (16): 1937-47. [PMID:15306161]

30. Giardinà D, Crucianelli M, Romanelli R, Leonardi A, Poggesi E, Melchiorre C. (1996) Synthesis and biological profile of the enantiomers of [4-(4-amino-6,7-dimethoxyquinazolin-2-yl)-cis-octahydroquinoxalin- 1-yl]furan-2-ylmethanone (cyclazosin), a potent competitive alpha 1B- adrenoceptor antagonist. J Med Chem, 39 (23): 4602-7. [PMID:8917649]

31. Giessler C, Wangemann T, Silber RE, Dhein S, Brodde OE. (2002) Noradrenaline-induced contraction of human saphenous vein and human internal mammary artery: involvement of different alpha-adrenoceptor subtypes. Naunyn Schmiedebergs Arch Pharmacol, 366 (2): 104-9. [PMID:12122495]

32. González-Arenas A, Aguilar-Maldonado B, Avendaño-Vázquez SE, García-Sáinz JA. (2006) Estrogens cross-talk to alpha1b-adrenergic receptors. Mol Pharmacol, 70 (1): 154-62. [PMID:16638969]

33. Hague C, Chen Z, Uberti M, Minneman KP. (2003) Alpha(1)-adrenergic receptor subtypes: non-identical triplets with different dancing partners?. Life Sci, 74 (4): 411-8. [PMID:14609720]

34. Hague C, Lee SE, Chen Z, Prinster SC, Hall RA, Minneman KP. (2006) Heterodimers of alpha1B- and alpha1D-adrenergic receptors form a single functional entity. Mol Pharmacol, 69 (1): 45-55. [PMID:16195468]

35. Hancock AA, Buckner SA, Brune ME, Katwala S, Milicic I, Ireland LM, Morse PA, Knepper SM, Meyer MD,Chapple CR et al.. (1998) Pharmacological characterization of A-131701, a novel R 1 -adrenoceptor antagonist selective for R 1A - and R 1D - compared to R 1B -adrenoceptors. Drug Development Research, 44: 140-162.

36. Harris DA, Park JM, Lee KS, Xu C, Stella N, Hague C. (2017) Label-Free Dynamic Mass Redistribution Reveals Low-Density, Prosurvival α1B-Adrenergic Receptors in Human SW480 Colon Carcinoma Cells. J Pharmacol Exp Ther, 361 (2): 219-228. [PMID:28196836]

37. Hayashi R, Ohmori E, Moriwaki M, Kumagai H, Isogaya M. (2015) Indolylpiperidine derivatives as potent and selective α1B adrenoceptor antagonists. Bioorg Med Chem Lett, 25 (18): 3921-3. [PMID:26238322]

38. Hernández-Espinosa DA, Carmona-Rosas G, Alfonzo-Méndez MA, Alcántara-Hernández R, García-Sáinz JA. (2019) Sites phosphorylated in human α1B-adrenoceptors in response to noradrenaline and phorbol myristate acetate. Biochim Biophys Acta Mol Cell Res, 1866 (10): 1509-1519. [PMID:31325464]

39. Hernández-Espinosa DA, Reyes-Cruz G, García-Sáinz JA. (2020) Roles of the G protein-coupled receptor kinase 2 and Rab5 in α1B-adrenergic receptor function and internalization. Eur J Pharmacol, 867: 172846. [PMID:31811856]

40. Hieble JP, Bondinell WE, Ruffolo Jr RR. (1995) Alpha- and beta-adrenoceptors: from the gene to the clinic. 1. Molecular biology and adrenoceptor subclassification. J Med Chem, 38 (18): 3415-44. [PMID:7658428]

41. Huang HH, Brennan TC, Muir MM, Mason RS. (2009) Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. J Cell Physiol, 220 (1): 267-75. [PMID:19334040]

42. Jensen BC, Swigart PM, Montgomery MD, Simpson PC. (2010) Functional alpha-1B adrenergic receptors on human epicardial coronary artery endothelial cells. Naunyn Schmiedebergs Arch Pharmacol, 382 (5-6): 475-82. [PMID:20857090]

43. Khan MA, Sattar MA, Abdullah NA, Johns EJ. (2008) Alpha1B-adrenoceptors mediate adrenergically-induced renal vasoconstrictions in rats with renal impairment. Acta Pharmacol Sin, 29 (2): 193-203. [PMID:18215348]

44. Kodama D, Togari A. (2010) Modulation of potassium channels via the α1B-adrenergic receptor in human osteoblasts. Neurosci Lett, 485 (2): 102-6. [PMID:20813157]

45. Kodama D, Togari A. (2013) Store-operated calcium entry induced by activation of Gq-coupled alpha1B adrenergic receptor in human osteoblast. Biochem Biophys Res Commun, 437 (2): 239-44. [PMID:23806689]

46. Kotova PD, Sysoeva VY, Rogachevskaja OA, Bystrova MF, Kolesnikova AS, Tyurin-Kuzmin PA, Fadeeva JI, Tkachuk VA, Kolesnikov SS. (2014) Functional expression of adrenoreceptors in mesenchymal stromal cells derived from the human adipose tissue. Biochim Biophys Acta, 1843 (9): 1899-908. [PMID:24841820]

47. Kunieda T, Zuscik MJ, Boongird A, Perez DM, Lüders HO, Najm IM. (2002) Systemic overexpression of the alpha 1B-adrenergic receptor in mice: an animal model of epilepsy. Epilepsia, 43 (11): 1324-9. [PMID:12423381]

48. Lima V, Mueller A, Kamikihara SY, Raymundi V, Alewood D, Lewis RJ, Chen Z, Minneman KP, Pupo AS. (2005) Differential antagonism by conotoxin rho-TIA of contractions mediated by distinct alpha1-adrenoceptor subtypes in rat vas deferens, spleen and aorta. Eur J Pharmacol, 508 (1-3): 183-92. [PMID:15680270]

49. Liu CM, Lo YC, Wu BN, Wu WJ, Chou YH, Huang CH, An LM, Chen IJ. (2007) cGMP-enhancing- and alpha1A/alpha1D-adrenoceptor blockade-derived inhibition of Rho-kinase by KMUP-1 provides optimal prostate relaxation and epithelial cell anti-proliferation efficacy. Prostate, 67 (13): 1397-410. [PMID:17639498]

50. Lomasney JW, Cotecchia S, Lorenz W, Leung WY, Schwinn DA, Yang-Feng TL, Brownstein M, Lefkowitz RJ, Caron MG. (1991) Molecular cloning and expression of the cDNA for the alpha 1A-adrenergic receptor. The gene for which is located on human chromosome 5. J Biol Chem, 266 (10): 6365-9. [PMID:1706716]

51. Martin RD, Sun Y, Bourque K, Audet N, Inoue A, Tanny JC, Hébert TE. (2018) Receptor- and cellular compartment-specific activation of the cAMP/PKA pathway by α1-adrenergic and ETA endothelin receptors. Cell Signal, 44: 43-50. [PMID:29329779]

52. Meyer MD, Altenbach RJ, Basha FZ, Carroll WA, Drizin I, Elmore SW, Ehrlich PP, Lebold SA, Tietje K, Sippy KB et al.. (1997) Synthesis and pharmacological characterization of 3-[2-((3aR,9bR)-cis-6-methoxy-2,3,3a,4,5,9b-hexahydro-1H-benz[e] isoindol-2-yl)ethyl]pyrido-[3',4':4,5]thieno[3,2-d]pyrimidine-2,4 (1H,3H)-dione (A-131701): a uroselective alpha 1A adrenoceptor antagonist for the symptomatic treatment of benign prostatic hyperplasia. J Med Chem, 40 (20): 3141-3. [PMID:9379432]

53. Mhaouty-Kodja S, Lozach A, Habert R, Tanneux M, Guigon C, Brailly-Tabard S, Maltier JP, Legrand-Maltier C. (2007) Fertility and spermatogenesis are altered in {alpha}1b-adrenergic receptor knockout male mice. J Endocrinol, 195 (2): 281-92. [PMID:17951539]

54. Michelotti GA, Price DT, Schwinn DA. (2000) Alpha 1-adrenergic receptor regulation: basic science and clinical implications. Pharmacol Ther, 88 (3): 281-309. [PMID:11337028]

55. Minneman KP, Theroux TL, Hollinger S, Han C, Esbenshade TA. (1994) Selectivity of agonists for cloned alpha 1-adrenergic receptor subtypes. Mol Pharmacol, 46 (5): 929-36. [PMID:7969082]

56. Mitrano DA, Jackson K, Finley S, Seeley A. (2018) α1b-Adrenergic Receptor Localization and Relationship to the D1-Dopamine Receptor in the Rat Nucleus Accumbens. Neuroscience, 371: 126-137. [PMID:29229557]

57. Molina-Muñoz T, Romero-Avila MT, Avendaño-Vázquez SE, García-Sáinz JA. (2008) Phosphorylation, desensitization and internalization of human alpha1B-adrenoceptors induced by insulin-like growth factor-I. Eur J Pharmacol, 578 (1): 1-10. [PMID:17915215]

58. Myagmar BE, Flynn JM, Cowley PM, Swigart PM, Montgomery MD, Thai K, Nair D, Gupta R, Deng DX, Hosoda C et al.. (2017) Adrenergic Receptors in Individual Ventricular Myocytes: The Beta-1 and Alpha-1B Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent. Circ Res, 120 (7): 1103-1115. [PMID:28219977]

59. Nalepa I, Vetulani J, Borghi V, Kowalska M, Przewłocka B, Pavone F. (2005) Formalin hindpaw injection induces changes in the [3H]prazosin binding to alpha1-adrenoceptors in specific regions of the mouse brain and spinal cord. J Neural Transm, 112 (10): 1309-19. [PMID:15719155]

60. Nicholson R, Dixon AK, Spanswick D, Lee K. (2005) Noradrenergic receptor mRNA expression in adult rat superficial dorsal horn and dorsal root ganglion neurons. Neurosci Lett, 380 (3): 316-21. [PMID:15862909]

61. Obika K, Shibata K, Horie K, Foglar R, Kimura K, Tsujimoto G. (1995) NS-49, a novel alpha 1a-adrenoceptor-selective agonist characterization using recombinant human alpha 1-adrenoceptors. Eur J Pharmacol, 291 (3): 327-34. [PMID:8719417]

62. Papay R, Gaivin R, McCune DF, Rorabaugh BR, Macklin WB, McGrath JC, Perez DM. (2004) Mouse alpha1B-adrenergic receptor is expressed in neurons and NG2 oligodendrocytes. J Comp Neurol, 478 (1): 1-10. [PMID:15334645]

63. Papay R, Zuscik MJ, Ross SA, Yun J, McCune DF, Gonzalez-Cabrera P, Gaivin R, Drazba J, Perez DM. (2002) Mice expressing the alpha(1B)-adrenergic receptor induces a synucleinopathy with excessive tyrosine nitration but decreased phosphorylation. J Neurochem, 83 (3): 623-34. [PMID:12390524]

64. Patane MA, Scott AL, Broten TP, Chang RS, Ransom RW, DiSalvo J, Forray C, Bock MG. (1998) 4-Amino-2-[4-[1-(benzyloxycarbonyl)-2(S)- [[(1,1-dimethylethyl)amino]carbonyl]-piperazinyl]-6, 7-dimethoxyquinazoline (L-765,314): a potent and selective alpha1b adrenergic receptor antagonist. J Med Chem, 41 (8): 1205-8. [PMID:9548811]

65. Piascik MT, Hrometz SL, Edelmann SE, Guarino RD, Hadley RW, Brown RD. (1997) Immunocytochemical localization of the alpha-1B adrenergic receptor and the contribution of this and the other subtypes to vascular smooth muscle contraction: analysis with selective ligands and antisense oligonucleotides. J Pharmacol Exp Ther, 283 (2): 854-68. [PMID:9353407]

66. Price DT, Lefkowitz RJ, Caron MG, Berkowitz D, Schwinn DA. (1994) Localization of mRNA for three distinct alpha 1-adrenergic receptor subtypes in human tissues: implications for human alpha-adrenergic physiology. Mol Pharmacol, 45 (2): 171-5. [PMID:8114668]

67. Proudman RGW, Baker JG. (2021) The selectivity of α-adrenoceptor agonists for the human α1A, α1B, and α1D-adrenoceptors. Pharmacol Res Perspect, 9 (4): e00799. [PMID:34355529]

68. Proudman RGW, Pupo AS, Baker JG. (2020) The affinity and selectivity of α-adrenoceptor antagonists, antidepressants, and antipsychotics for the human α1A, α1B, and α1D-adrenoceptors. Pharmacol Res Perspect, 8 (4): e00602. [PMID:32608144]

69. Ragnarsson L, Wang CI, Andersson Å, Fajarningsih D, Monks T, Brust A, Rosengren KJ, Lewis RJ. (2013) Conopeptide ρ-TIA defines a new allosteric site on the extracellular surface of the α1B-adrenoceptor. J Biol Chem, 288 (3): 1814-27. [PMID:23184947]

70. Ramarao CS, Denker JM, Perez DM, Gaivin RJ, Riek RP, Graham RM. (1992) Genomic organization and expression of the human alpha 1B-adrenergic receptor. J Biol Chem, 267 (30): 21936-45. [PMID:1328250]

71. Rivard K, Trépanier-Boulay V, Rindt H, Fiset C. (2009) Electrical remodeling in a transgenic mouse model of alpha1B-adrenergic receptor overexpression. Am J Physiol Heart Circ Physiol, 296 (3): H704-18. [PMID:19112097]

72. Ross SA, Rorabaugh BR, Chalothorn D, Yun J, Gonzalez-Cabrera PJ, McCune DF, Piascik MT, Perez DM. (2003) The alpha(1B)-adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. Cardiovasc Res, 60 (3): 598-607. [PMID:14659805]

73. Santana N, Mengod G, Artigas F. (2013) Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors. Int J Neuropsychopharmacol, 16 (5): 1139-51. [PMID:23195622]

74. Saussy Jr DL, Goetz AS, Queen KL, King HK, Lutz MW, Rimele TJ. (1996) Structure activity relationships of a series of buspirone analogs at alpha-1 adrenoceptors: further evidence that rat aorta alpha-1 adrenoceptors are of the alpha-1D-subtype. J Pharmacol Exp Ther, 278 (1): 136-44. [PMID:8764344]

75. Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH, Worman NP, Campbell S, Fidock MD, Furness LM, Parry-Smith DJ et al.. (1995) Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: sequence corrections and direct comparison with other species homologues. J Pharmacol Exp Ther, 272 (1): 134-42. [PMID:7815325]

76. Shi T, Gaivin RJ, McCune DF, Gupta M, Perez DM. (2007) Dominance of the alpha1B-adrenergic receptor and its subcellular localization in human and TRAMP prostate cancer cell lines. J Recept Signal Transduct Res, 27 (1): 27-45. [PMID:17365508]

77. Shibata K, Foglar R, Horie K, Obika K, Sakamoto A, Ogawa S, Tsujimoto G. (1995) KMD-3213, a novel, potent, alpha 1a-adrenoceptor-selective antagonist: characterization using recombinant human alpha 1-adrenoceptors and native tissues. Mol Pharmacol, 48 (2): 250-8. [PMID:7651358]

78. Spiegl G, Zupkó I, Minorics R, Csík G, Csonka D, Falkay G. (2009) Effects of experimentally induced diabetes mellitus on pharmacologically and electrically elicited myometrial contractility. Clin Exp Pharmacol Physiol, 36 (9): 884-91. [PMID:19298542]

79. Stam WB, Van der Graaf PH, Saxena PR. (1998) Functional characterisation of the pharmacological profile of the putative alpha1B-adrenoceptor antagonist, (+)-cyclazosin. Eur J Pharmacol, 361 (1): 79-83. [PMID:9851544]

80. Takahashi K, Hossain M, Ahmed M, Bhuiyan MA, Ohnuki T, Nagatomo T. (2007) Asp125 and Thr130 in transmembrane domain 3 are major sites of alpha1b-adrenergic receptor antagonist binding. Biol Pharm Bull, 30 (10): 1891-4. [PMID:17917257]

81. Tanaka K, Hirai T, Kodama D, Kondo H, Hamamura K, Togari A. (2016) α1B -Adrenoceptor signalling regulates bone formation through the up-regulation of CCAAT/enhancer-binding protein δ expression in osteoblasts. Br J Pharmacol, 173 (6): 1058-69. [PMID:26750808]

82. Tayebati SK, Bronzetti E, Morra Di Cella S, Mulatero P, Ricci A, Rossodivita I, Schena M, Schiavone D, Veglio F, Amenta F. (2000) In situ hybridization and immunocytochemistry of alpha1-adrenoceptors in human peripheral blood lymphocytes. J Auton Pharmacol, 20 (5-6): 305-12. [PMID:11350496]

83. Testa R, Guarneri L, Angelico P, Poggesi E, Taddei C, Sironi G, Colombo D, Sulpizio AC, Naselsky DP, Hieble JP et al.. (1997) Pharmacological characterization of the uroselective alpha-1 antagonist Rec 15/2739 (SB 216469): role of the alpha-1L adrenoceptor in tissue selectivity, part II. J Pharmacol Exp Ther, 281 (3): 1284-93. [PMID:9190864]

84. Townsend SA, Jung AS, Hoe YS, Lefkowitz RY, Khan SA, Lemmon CA, Harrison RW, Lee K, Barouch LA, Cotecchia S et al.. (2004) Critical role for the alpha-1B adrenergic receptor at the sympathetic neuroeffector junction. Hypertension, 44 (5): 776-82. [PMID:15466664]

85. Uberti MA, Hall RA, Minneman KP. (2003) Subtype-specific dimerization of alpha 1-adrenoceptors: effects on receptor expression and pharmacological properties. Mol Pharmacol, 64 (6): 1379-90. [PMID:14645668]

86. Villégier AS, Drouin C, Bizot JC, Marien M, Glowinski J, Colpaërt F, Tassin JP. (2003) Stimulation of postsynaptic alpha1b- and alpha2-adrenergic receptors amplifies dopamine-mediated locomotor activity in both rats and mice. Synapse, 50 (4): 277-84. [PMID:14556232]

87. Wang P, Zhu H, Tian JS, Zhu W, Xu S, Yao H, Liu J, Zhu Z, Miao CY, Xu J. (2024) Discovery of MT-1207: A Novel, Potent Multitarget Inhibitor as a Promising Clinical Candidate for the Treatment of Hypertension. J Med Chem, 67 (18): 16128-16144. [PMID:38968440]

88. Waugh DJ, Gaivin RJ, Damron DS, Murray PA, Perez DM. (1999) Binding, partial agonism, and potentiation of alpha(1)-adrenergic receptor function by benzodiazepines: A potential site of allosteric modulation. J Pharmacol Exp Ther, 291 (3): 1164-71. [PMID:10565838]

89. Williams LM, He X, Vaid TM, Abdul-Ridha A, Whitehead AR, Gooley PR, Bathgate RAD, Williams SJ, Scott DJ. (2019) Diazepam is not a direct allosteric modulator of α1-adrenoceptors, but modulates receptor signaling by inhibiting phosphodiesterase-4. Pharmacol Res Perspect, 7 (1): e00455. [PMID:30619611]

90. Williams TJ, Blue DR, Daniels DV, Davis B, Elworthy T, Gever JR, Kava MS, Morgans D, Padilla F, Tassa S et al.. (1999) In vitro alpha1-adrenoceptor pharmacology of Ro 70-0004 and RS-100329, novel alpha1A-adrenoceptor selective antagonists. Br J Pharmacol, 127 (1): 252-8. [PMID:10369480]

91. Wright CD, Wu SC, Dahl EF, Sazama AJ, O'Connell TD. (2012) Nuclear localization drives α1-adrenergic receptor oligomerization and signaling in cardiac myocytes. Cell Signal, 24 (3): 794-802. [PMID:22120526]

92. Yan M, Sun J, Bird PI, Liu DL, Grigg M, Lim YL. (2001) Alpha1A- and alpha1B-adrenoceptors are the major subtypes in human saphenous vein. Life Sci, 68 (10): 1191-8. [PMID:11228103]

93. Yoshiki H, Uwada J, Anisuzzaman AS, Umada H, Hayashi R, Kainoh M, Masuoka T, Nishio M, Muramatsu I. (2014) Pharmacologically distinct phenotypes of α1B -adrenoceptors: variation in binding and functional affinities for antagonists. Br J Pharmacol, 171 (21): 4890-901. [PMID:24923551]

94. Yoshio R, Taniguchi T, Itoh H, Muramatsu I. (2001) Affinity of serotonin receptor antagonists and agonists to recombinant and native alpha1-adrenoceptor subtypes. Jpn J Pharmacol, 86 (2): 189-95. [PMID:11459121]

95. Yun J, Gaivin RJ, McCune DF, Boongird A, Papay RS, Ying Z, Gonzalez-Cabrera PJ, Najm I, Perez DM. (2003) Gene expression profile of neurodegeneration induced by alpha1B-adrenergic receptor overactivity: NMDA/GABAA dysregulation and apoptosis. Brain, 126 (Pt 12): 2667-81. [PMID:12937073]

96. Yun J, Zuscik MJ, Gonzalez-Cabrera P, McCune DF, Ross SA, Gaivin R, Piascik MT, Perez DM. (2003) Gene expression profiling of alpha(1b)-adrenergic receptor-induced cardiac hypertrophy by oligonucleotide arrays. Cardiovasc Res, 57 (2): 443-55. [PMID:12566117]

97. Zemkova H, Stojilkovic SS, Klein DC. (2011) Norepinephrine causes a biphasic change in mammalian pinealocye membrane potential: role of alpha1B-adrenoreceptors, phospholipase C, and Ca2+. Endocrinology, 152 (10): 3842-51. [PMID:21828176]

98. Zhang H, Cotecchia S, Thomas SA, Tanoue A, Tsujimoto G, Faber JE. (2004) Gene deletion of dopamine beta-hydroxylase and alpha1-adrenoceptors demonstrates involvement of catecholamines in vascular remodeling. Am J Physiol Heart Circ Physiol, 287 (5): H2106-14. [PMID:15231500]

99. Zhang H, Faber JE. (2001) Trophic effect of norepinephrine on arterial intima-media and adventitia is augmented by injury and mediated by different alpha1-adrenoceptor subtypes. Circ Res, 89 (9): 815-22. [PMID:11679412]

100. Zhang Q, Tan Y. (2011) Nerve growth factor augments neuronal responsiveness to noradrenaline in cultured dorsal root ganglion neurons of rats. Neuroscience, 193: 72-9. [PMID:21784134]

101. Zhang S, Takahashi R, Yamashita N, Teraoka H, Kitazawa T. (2018) Αlpha1B-adrenoceptor-mediated positive inotropic and positive chronotropic actions in the mouse atrium. Eur J Pharmacol, 839: 82-88. [PMID:30172786]

102. Zhang Y, Kolli T, Hivley R, Jaber L, Zhao FI, Yan J, Herness S. (2010) Characterization of the expression pattern of adrenergic receptors in rat taste buds. Neuroscience, 169 (3): 1421-37. [PMID:20478367]

103. Zuscik MJ, Chalothorn D, Hellard D, Deighan C, McGee A, Daly CJ, Waugh DJ, Ross SA, Gaivin RJ, Morehead AJ et al.. (2001) Hypotension, autonomic failure, and cardiac hypertrophy in transgenic mice overexpressing the alpha 1B-adrenergic receptor. J Biol Chem, 276 (17): 13738-43. [PMID:11278430]

104. Zuscik MJ, Sands S, Ross SA, Waugh DJ, Gaivin RJ, Morilak D, Perez DM. (2000) Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. Nat Med, 6 (12): 1388-94. [PMID:11100125]

Contributors

Show »

How to cite this page