Top ▲
Gene and Protein Information | ||||||
class A G protein-coupled receptor | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 520 | 5q33.3 | ADRA1B | adrenoceptor alpha 1B | 70 |
Mouse | 7 | 514 | 11 25.81 cM | Adra1b | adrenergic receptor, alpha 1b | 50 |
Rat | 7 | 515 | 10q21 | Adra1b | adrenoceptor alpha 1B | 5 |
Previous and Unofficial Names |
adrenergic alpha 1B receptor | alpha 1B-adrenoceptor | alpha 1B-adrenoreceptor | alpha1B-adrenergic receptor | adrenergic receptor |
Database Links | |
Specialist databases | |
GPCRdb | ada1b_human (Hs), ada1b_rat (Mm), ada1b_mouse (Rn) |
Other databases | |
Alphafold | P35368 (Hs), P97717 (Mm), P15823 (Rn) |
ChEMBL Target | CHEMBL232 (Hs), CHEMBL2486 (Mm), CHEMBL315 (Rn) |
DrugBank Target | P35368 (Hs), P35368 (Hs), P35368 (Hs) |
Ensembl Gene | ENSG00000170214 (Hs), ENSMUSG00000050541 (Mm), ENSRNOG00000060087 (Rn) |
Entrez Gene | 147 (Hs), 11548 (Mm), 24173 (Rn) |
Human Protein Atlas | ENSG00000170214 (Hs) |
KEGG Gene | hsa:147 (Hs), mmu:11548 (Mm), rno:24173 (Rn) |
OMIM | 104220 (Hs) |
Pharos | P35368 (Hs) |
RefSeq Nucleotide | NM_000679 (Hs), NM_007416 (Mm), NM_016991 (Rn) |
RefSeq Protein | NP_000670 (Hs), NP_031442 (Mm), NP_058687 (Rn) |
UniProtKB | P35368 (Hs), P97717 (Mm), P15823 (Rn) |
Wikipedia | ADRA1B (Hs) |
Selected 3D Structures | |||||||||||||
|
Natural/Endogenous Ligands |
(-)-adrenaline |
(-)-noradrenaline |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Agonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Non catecholamine agonists, such as methoxamine and amidephrine, have both low affinity and low intrinsic activity at the α1B- adrenoceptor [55]. Much data has been generated using the hamster α1B-adrenoceptor, since this was the first α1B- homolog to be cloned. More recent data has been obtained utilising the human receptor. There is no evidence for any significant species differences in agonist and antagonist affinity between hamster, rat and human receptors. Methoxamine behaves as a full agonist for some and a partial agonist at other signalling pathways [67]. A61603 is highly selective for α1A-AR- no agonists currently available are selective for α1B-AR. Note that pEC50 values have been determined in a variety of assay formats measuring intracellular Ca2+ release, ERK1/2 phosphorylation, extracellular acidification rate and cAMP accumulation. Clinical uses: α1B-AR are not specific clinical targets although adrenaline and noradrenaline used for shock will activate α1B-AR in blood vessels. |
Antagonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific antagonist tables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antagonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
There are no highly selective α1B-AR antagonists available. (+) Cyclazosin has been shown to have minor α1B- selectivity in early [79] but not more recent [68] radioligand binding assays with recombinant receptors. No functional selectivity is reported in isolated tissue preparations [79]. The 19 amino acid peptide, rho-TIA, produces non-competitive blockade of α1B-AR mediated inositol phosphate formation at concentrations producing competitive blockade of this response in cells expressing α1A or α1D subtypes. There is reported variation in affinities for antagonists related to the assay system used [68,93]. Prazosin, alfuzosin, cyclazosin, doxazosin and terazosin are selective for α1-ARs vs. α2-ARs but show similar affinity for all 3 alpha;1-AR subtypes. Clinical uses: α1B-AR are not specific clinical targets however α1-AR antagonists used for hypertension and benign prostatic hypertrophy will block α1B-AR in blood vessels. |
Allosteric Modulators | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Allosteric Modulator Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The conopeptide ρ-TIA is a negative allosteric regulator at the hamster α1B-AR (pKi 7.6, [69]). Additionally, σ-TIA competes for radioligand binding to recombinant α1B-AR in a non-competitive manner [19,33]. Data published by Williams et al. (2018) show that diazepam is not a direct allosteric modulator of α1-ARs [89], but modulates receptor activity by inhibition of phosphodiesterase 4. |
Primary Transduction Mechanisms | |
Transducer | Effector/Response |
Gq/G11 family |
Phospholipase C stimulation Calcium channel Other - See Comments |
Comments: The α1B-adrenoceptor is coupled to calcium release and inositol phosphate production (i.e. Gq) less efficiently than the α1A but more efficiently than the α1D. | |
References: 33,45,54 |
Secondary Transduction Mechanisms | |
Transducer | Effector/Response |
Phospholipase D stimulation Other - See Comments |
|
Comments:
PDK-1 is involved in phosphorylation and desensitization [3]. cAMP accumulation [51,67]. α1-ARs form hetero-oligomeric complexes with the ACKR3:CXCR4 heteromer, and the complex is required for α1B/D-AR function. Phenylephrine-induced inositol trisphosphate production from hVSMCs is abolished after ACKR3 and CXCR4 siRNA knockdown [2]. α1-ARs (all subtypes) also activate protein Kinase C and mitogen activated protein kinases. Like the α1A-AR, α1B-AR can couple to Gs to activate adenylyl cyclase and increase cAMP levels but less efficiently than coupling to Gq. |
|
References: 33,54 |
Tissue Distribution | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
Expression Datasets | |
|
Functional Assays | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
Physiological Functions | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
Physiological Consequences of Altering Gene Expression | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
1. Acosta-Martinez M, Fiber JM, Brown RD, Etgen AM. (1999) Localization of alpha1B-adrenergic receptor in female rat brain regions involved in stress and neuroendocrine function. Neurochemistry International, 35: 383-391. [PMID:10517699]
2. Albee LJ, Eby JM, Tripathi A, LaPorte HM, Gao X, Volkman BF, Gaponenko V, Majetschak M. (2017) α1-Adrenergic Receptors Function Within Hetero-Oligomeric Complexes With Atypical Chemokine Receptor 3 and Chemokine (C-X-C motif) Receptor 4 in Vascular Smooth Muscle Cells. J Am Heart Assoc, 6 (8). [PMID:28862946]
3. Alcántara Hernández R, García-Sáinz JA. (2012) Roles of phosphoinositide-dependent kinase-1 in α1B-adrenoceptor phosphorylation and desensitization. Eur J Pharmacol, 674 (2-3): 179-87. [PMID:22134004]
4. Alfonzo-Méndez MA, Hernández-Espinosa DA, Carmona-Rosas G, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. (2017) Protein Kinase C Activation Promotes α1B-Adrenoceptor Internalization and Late Endosome Trafficking through Rab9 Interaction. Role in Heterologous Desensitization. Mol Pharmacol, 91 (4): 296-306. [PMID:28082304]
5. Alonso-Llamazares A, Zamanillo D, Casanova E, Ovalle S, Calvo P, Chinchetru MA. (1995) Molecular cloning of alpha 1d-adrenergic receptor and tissue distribution of three alpha 1-adrenergic receptor subtypes in mouse. J Neurochem, 65: 2387-2392. [PMID:7595531]
6. Alsufyani HA, Daly C, Docherty JR. (2021) Interaction between α1B - and other α1 - and α2 -adrenoceptors in producing contractions of mouse spleen. Basic Clin Pharmacol Toxicol, 129 (6): 416-426. [PMID:34383990]
7. Alsufyani HA, McCormick PA, Docherty JR. (2021) Both α1B- and α1A-adrenoceptor subtypes are involved in contractions of rat spleen. Pharmacol Rep, 73 (1): 255-260. [PMID:32860192]
8. Auclair A, Drouin C, Cotecchia S, Glowinski J, Tassin JP. (2004) 5-HT2A and alpha1b-adrenergic receptors entirely mediate dopamine release, locomotor response and behavioural sensitization to opiates and psychostimulants. Eur J Neurosci, 20 (11): 3073-84. [PMID:15579162]
9. Battaglia G, Fornai F, Busceti CL, Lembo G, Nicoletti F, De Blasi A. (2003) Alpha-1B adrenergic receptor knockout mice are protected against methamphetamine toxicity. J Neurochem, 86 (2): 413-21. [PMID:12871582]
10. Blanchet G, Upert G, Mourier G, Gilquin B, Gilles N, Servent D. (2013) New α-adrenergic property for synthetic MTβ and CM-3 three-finger fold toxins from black mamba. Toxicon, 75: 160-7. [PMID:23648423]
11. Burcelin R, Uldry M, Foretz M, Perrin C, Dacosta A, Nenniger-Tosato M, Seydoux J, Cotecchia S, Thorens B. (2004) Impaired glucose homeostasis in mice lacking the alpha1b-adrenergic receptor subtype. J Biol Chem, 279 (2): 1108-15. [PMID:14581480]
12. Carroll WA, Sippy KB, Esbenshade TA, Buckner SA, Hancock AA, Meyer MD. (2001) Two novel and potent 3-[(o-methoxyphenyl)piperazinylethyl]-5-phenylthien. Bioorg Med Chem Lett, 11 (9): 1119-21. [PMID:11354357]
13. Casas-González P, García-Sáinz JA. (2006) Role of epidermal growth factor receptor transactivation in alpha1B-adrenoceptor phosphorylation. Eur J Pharmacol, 542 (1-3): 31-6. [PMID:16828079]
14. Casas-González P, Ruiz-Martínez A, García-Sáinz JA. (2003) Lysophosphatidic acid induces alpha1B-adrenergic receptor phosphorylation through G beta gamma, phosphoinositide 3-kinase, protein kinase C and epidermal growth factor receptor transactivation. Biochim Biophys Acta, 1633 (2): 75-83. [PMID:12880866]
15. Castillo-Badillo JA, Molina-Muñoz T, Romero-Ávila MT, Vázquez-Macías A, Rivera R, Chun J, García-Sáinz JA. (2012) Sphingosine 1-phosphate-mediated α1B-adrenoceptor desensitization and phosphorylation. Direct and paracrine/autocrine actions. Biochim Biophys Acta, 1823 (2): 245-54. [PMID:22019450]
16. Castillo-Badillo JA, Sánchez-Reyes OB, Alfonzo-Méndez MA, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. (2015) α1B-adrenergic receptors differentially associate with Rab proteins during homologous and heterologous desensitization. PLoS One, 10 (3): e0121165. [PMID:25799564]
17. Castrejón-Sosa M, Villalobos-Molina R, Guinzberg R, Piña E. (2002) Adrenaline (via alpha(1B)-adrenoceptors) and ethanol stimulate OH* radical production in isolated rat hepatocytes. Life Sci, 71 (21): 2469-74. [PMID:12270752]
18. Chalothorn D, McCune DF, Edelmann SE, Tobita K, Keller BB, Lasley RD, Perez DM, Tanoue A, Tsujimoto G, Post GR et al.. (2003) Differential cardiovascular regulatory activities of the alpha 1B- and alpha 1D-adrenoceptor subtypes. J Pharmacol Exp Ther, 305 (3): 1045-53. [PMID:12649302]
19. Chen Z, Rogge G, Hague C, Alewood D, Colless B, Lewis RJ, Minneman KP. (2004) Subtype-selective noncompetitive or competitive inhibition of human alpha1-adrenergic receptors by rho-TIA. J Biol Chem, 279 (34): 35326-33. [PMID:15194691]
20. Cotecchia S, Björklöf K, Rossier O, Stanasila L, Greasley P, Fanelli F. (2002) The alpha1b-adrenergic receptor subtype: molecular properties and physiological implications. J Recept Signal Transduct Res, 22 (1-4): 1-16. [PMID:12503605]
21. Day HE, Campeau S, Watson Jr SJ, Akil H. (1997) Distribution of alpha 1a-, alpha 1b- and alpha 1d-adrenergic receptor mRNA in the rat brain and spinal cord. J Chem Neuroanat, 13 (2): 115-39. [PMID:9285356]
22. DeBoy JM, Jarboe BR. (1991) A response to "Can cytology proficiency testing programs discriminate between competent and incompetent practitioners?". QRB Qual Rev Bull, 17 (7): 206. [PMID:1923452]
23. Deighan C, Woollhead AM, Colston JF, McGrath JC. (2004) Hepatocytes from alpha1B-adrenoceptor knockout mice reveal compensatory adrenoceptor subtype substitution. Br J Pharmacol, 142 (6): 1031-7. [PMID:15210583]
24. Deluigi M, Morstein L, Schuster M, Klenk C, Merklinger L, Cridge RR, de Zhang LA, Klipp A, Vacca S, Vaid TM et al.. (2022) Crystal structure of the α1B-adrenergic receptor reveals molecular determinants of selective ligand recognition. Nat Commun, 13 (1): 382. [PMID:35046410]
25. Drouin C, Darracq L, Trovero F, Blanc G, Glowinski J, Cotecchia S, Tassin JP. (2002) Alpha1b-adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. J Neurosci, 22 (7): 2873-84. [PMID:11923452]
26. Ducza E, Kormányos Z, Resch BE, Falkay G. (2005) Correlation between the alterations in the mRNA expressions of the alpha1-adrenoceptor and estrogen receptor subtypes in the pregnant human uterus and cervix. Eur J Pharmacol, 528 (1-3): 183-7. [PMID:16325176]
27. Errasti AE, Werneck de Avellar MC, Daray FM, Tramontano J, Luciani LI, Lina Bard MJ, Maróstica E, Rothlin RP. (2003) Human umbilical vein vasoconstriction induced by epinephrine acting on alpha1B-adrenoceptor subtype. Am J Obstet Gynecol, 189 (5): 1472-80. [PMID:14634588]
28. Ford AP, Daniels DV, Chang DJ, Gever JR, Jasper JR, Lesnick JD, Clarke DE. (1997) Pharmacological pleiotropism of the human recombinant alpha1A-adrenoceptor: implications for alpha1-adrenoceptor classification. Br J Pharmacol, 121 (6): 1127-35. [PMID:9249248]
29. García-Sáinz JA, Romero-Avila MT, Molina-Muñoz T, Medina Ldel C. (2004) Insulin induces alpha1B-adrenergic receptor phosphorylation and desensitization. Life Sci, 75 (16): 1937-47. [PMID:15306161]
30. Giardinà D, Crucianelli M, Romanelli R, Leonardi A, Poggesi E, Melchiorre C. (1996) Synthesis and biological profile of the enantiomers of [4-(4-amino-6,7-dimethoxyquinazolin-2-yl)-cis-octahydroquinoxalin- 1-yl]furan-2-ylmethanone (cyclazosin), a potent competitive alpha 1B- adrenoceptor antagonist. J Med Chem, 39 (23): 4602-7. [PMID:8917649]
31. Giessler C, Wangemann T, Silber RE, Dhein S, Brodde OE. (2002) Noradrenaline-induced contraction of human saphenous vein and human internal mammary artery: involvement of different alpha-adrenoceptor subtypes. Naunyn Schmiedebergs Arch Pharmacol, 366 (2): 104-9. [PMID:12122495]
32. González-Arenas A, Aguilar-Maldonado B, Avendaño-Vázquez SE, García-Sáinz JA. (2006) Estrogens cross-talk to alpha1b-adrenergic receptors. Mol Pharmacol, 70 (1): 154-62. [PMID:16638969]
33. Hague C, Chen Z, Uberti M, Minneman KP. (2003) Alpha(1)-adrenergic receptor subtypes: non-identical triplets with different dancing partners?. Life Sci, 74 (4): 411-8. [PMID:14609720]
34. Hague C, Lee SE, Chen Z, Prinster SC, Hall RA, Minneman KP. (2006) Heterodimers of alpha1B- and alpha1D-adrenergic receptors form a single functional entity. Mol Pharmacol, 69 (1): 45-55. [PMID:16195468]
35. Hancock AA, Buckner SA, Brune ME, Katwala S, Milicic I, Ireland LM, Morse PA, Knepper SM, Meyer MD,Chapple CR et al.. (1998) Pharmacological characterization of A-131701, a novel R 1 -adrenoceptor antagonist selective for R 1A - and R 1D - compared to R 1B -adrenoceptors. Drug Development Research, 44: 140-162.
36. Harris DA, Park JM, Lee KS, Xu C, Stella N, Hague C. (2017) Label-Free Dynamic Mass Redistribution Reveals Low-Density, Prosurvival α1B-Adrenergic Receptors in Human SW480 Colon Carcinoma Cells. J Pharmacol Exp Ther, 361 (2): 219-228. [PMID:28196836]
37. Hayashi R, Ohmori E, Moriwaki M, Kumagai H, Isogaya M. (2015) Indolylpiperidine derivatives as potent and selective α1B adrenoceptor antagonists. Bioorg Med Chem Lett, 25 (18): 3921-3. [PMID:26238322]
38. Hernández-Espinosa DA, Carmona-Rosas G, Alfonzo-Méndez MA, Alcántara-Hernández R, García-Sáinz JA. (2019) Sites phosphorylated in human α1B-adrenoceptors in response to noradrenaline and phorbol myristate acetate. Biochim Biophys Acta Mol Cell Res, 1866 (10): 1509-1519. [PMID:31325464]
39. Hernández-Espinosa DA, Reyes-Cruz G, García-Sáinz JA. (2020) Roles of the G protein-coupled receptor kinase 2 and Rab5 in α1B-adrenergic receptor function and internalization. Eur J Pharmacol, 867: 172846. [PMID:31811856]
40. Hieble JP, Bondinell WE, Ruffolo Jr RR. (1995) Alpha- and beta-adrenoceptors: from the gene to the clinic. 1. Molecular biology and adrenoceptor subclassification. J Med Chem, 38 (18): 3415-44. [PMID:7658428]
41. Huang HH, Brennan TC, Muir MM, Mason RS. (2009) Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. J Cell Physiol, 220 (1): 267-75. [PMID:19334040]
42. Jensen BC, Swigart PM, Montgomery MD, Simpson PC. (2010) Functional alpha-1B adrenergic receptors on human epicardial coronary artery endothelial cells. Naunyn Schmiedebergs Arch Pharmacol, 382 (5-6): 475-82. [PMID:20857090]
43. Khan MA, Sattar MA, Abdullah NA, Johns EJ. (2008) Alpha1B-adrenoceptors mediate adrenergically-induced renal vasoconstrictions in rats with renal impairment. Acta Pharmacol Sin, 29 (2): 193-203. [PMID:18215348]
44. Kodama D, Togari A. (2010) Modulation of potassium channels via the α1B-adrenergic receptor in human osteoblasts. Neurosci Lett, 485 (2): 102-6. [PMID:20813157]
45. Kodama D, Togari A. (2013) Store-operated calcium entry induced by activation of Gq-coupled alpha1B adrenergic receptor in human osteoblast. Biochem Biophys Res Commun, 437 (2): 239-44. [PMID:23806689]
46. Kotova PD, Sysoeva VY, Rogachevskaja OA, Bystrova MF, Kolesnikova AS, Tyurin-Kuzmin PA, Fadeeva JI, Tkachuk VA, Kolesnikov SS. (2014) Functional expression of adrenoreceptors in mesenchymal stromal cells derived from the human adipose tissue. Biochim Biophys Acta, 1843 (9): 1899-908. [PMID:24841820]
47. Kunieda T, Zuscik MJ, Boongird A, Perez DM, Lüders HO, Najm IM. (2002) Systemic overexpression of the alpha 1B-adrenergic receptor in mice: an animal model of epilepsy. Epilepsia, 43 (11): 1324-9. [PMID:12423381]
48. Lima V, Mueller A, Kamikihara SY, Raymundi V, Alewood D, Lewis RJ, Chen Z, Minneman KP, Pupo AS. (2005) Differential antagonism by conotoxin rho-TIA of contractions mediated by distinct alpha1-adrenoceptor subtypes in rat vas deferens, spleen and aorta. Eur J Pharmacol, 508 (1-3): 183-92. [PMID:15680270]
49. Liu CM, Lo YC, Wu BN, Wu WJ, Chou YH, Huang CH, An LM, Chen IJ. (2007) cGMP-enhancing- and alpha1A/alpha1D-adrenoceptor blockade-derived inhibition of Rho-kinase by KMUP-1 provides optimal prostate relaxation and epithelial cell anti-proliferation efficacy. Prostate, 67 (13): 1397-410. [PMID:17639498]
50. Lomasney JW, Cotecchia S, Lorenz W, Leung WY, Schwinn DA, Yang-Feng TL, Brownstein M, Lefkowitz RJ, Caron MG. (1991) Molecular cloning and expression of the cDNA for the alpha 1A-adrenergic receptor. The gene for which is located on human chromosome 5. J Biol Chem, 266 (10): 6365-9. [PMID:1706716]
51. Martin RD, Sun Y, Bourque K, Audet N, Inoue A, Tanny JC, Hébert TE. (2018) Receptor- and cellular compartment-specific activation of the cAMP/PKA pathway by α1-adrenergic and ETA endothelin receptors. Cell Signal, 44: 43-50. [PMID:29329779]
52. Meyer MD, Altenbach RJ, Basha FZ, Carroll WA, Drizin I, Elmore SW, Ehrlich PP, Lebold SA, Tietje K, Sippy KB et al.. (1997) Synthesis and pharmacological characterization of 3-[2-((3aR,9bR)-cis-6-methoxy-2,3,3a,4,5,9b-hexahydro-1H-benz[e] isoindol-2-yl)ethyl]pyrido-[3',4':4,5]thieno[3,2-d]pyrimidine-2,4 (1H,3H)-dione (A-131701): a uroselective alpha 1A adrenoceptor antagonist for the symptomatic treatment of benign prostatic hyperplasia. J Med Chem, 40 (20): 3141-3. [PMID:9379432]
53. Mhaouty-Kodja S, Lozach A, Habert R, Tanneux M, Guigon C, Brailly-Tabard S, Maltier JP, Legrand-Maltier C. (2007) Fertility and spermatogenesis are altered in {alpha}1b-adrenergic receptor knockout male mice. J Endocrinol, 195 (2): 281-92. [PMID:17951539]
54. Michelotti GA, Price DT, Schwinn DA. (2000) Alpha 1-adrenergic receptor regulation: basic science and clinical implications. Pharmacol Ther, 88 (3): 281-309. [PMID:11337028]
55. Minneman KP, Theroux TL, Hollinger S, Han C, Esbenshade TA. (1994) Selectivity of agonists for cloned alpha 1-adrenergic receptor subtypes. Mol Pharmacol, 46 (5): 929-36. [PMID:7969082]
56. Mitrano DA, Jackson K, Finley S, Seeley A. (2018) α1b-Adrenergic Receptor Localization and Relationship to the D1-Dopamine Receptor in the Rat Nucleus Accumbens. Neuroscience, 371: 126-137. [PMID:29229557]
57. Molina-Muñoz T, Romero-Avila MT, Avendaño-Vázquez SE, García-Sáinz JA. (2008) Phosphorylation, desensitization and internalization of human alpha1B-adrenoceptors induced by insulin-like growth factor-I. Eur J Pharmacol, 578 (1): 1-10. [PMID:17915215]
58. Myagmar BE, Flynn JM, Cowley PM, Swigart PM, Montgomery MD, Thai K, Nair D, Gupta R, Deng DX, Hosoda C et al.. (2017) Adrenergic Receptors in Individual Ventricular Myocytes: The Beta-1 and Alpha-1B Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent. Circ Res, 120 (7): 1103-1115. [PMID:28219977]
59. Nalepa I, Vetulani J, Borghi V, Kowalska M, Przewłocka B, Pavone F. (2005) Formalin hindpaw injection induces changes in the [3H]prazosin binding to alpha1-adrenoceptors in specific regions of the mouse brain and spinal cord. J Neural Transm, 112 (10): 1309-19. [PMID:15719155]
60. Nicholson R, Dixon AK, Spanswick D, Lee K. (2005) Noradrenergic receptor mRNA expression in adult rat superficial dorsal horn and dorsal root ganglion neurons. Neurosci Lett, 380 (3): 316-21. [PMID:15862909]
61. Obika K, Shibata K, Horie K, Foglar R, Kimura K, Tsujimoto G. (1995) NS-49, a novel alpha 1a-adrenoceptor-selective agonist characterization using recombinant human alpha 1-adrenoceptors. Eur J Pharmacol, 291 (3): 327-34. [PMID:8719417]
62. Papay R, Gaivin R, McCune DF, Rorabaugh BR, Macklin WB, McGrath JC, Perez DM. (2004) Mouse alpha1B-adrenergic receptor is expressed in neurons and NG2 oligodendrocytes. J Comp Neurol, 478 (1): 1-10. [PMID:15334645]
63. Papay R, Zuscik MJ, Ross SA, Yun J, McCune DF, Gonzalez-Cabrera P, Gaivin R, Drazba J, Perez DM. (2002) Mice expressing the alpha(1B)-adrenergic receptor induces a synucleinopathy with excessive tyrosine nitration but decreased phosphorylation. J Neurochem, 83 (3): 623-34. [PMID:12390524]
64. Patane MA, Scott AL, Broten TP, Chang RS, Ransom RW, DiSalvo J, Forray C, Bock MG. (1998) 4-Amino-2-[4-[1-(benzyloxycarbonyl)-2(S)- [[(1,1-dimethylethyl)amino]carbonyl]-piperazinyl]-6, 7-dimethoxyquinazoline (L-765,314): a potent and selective alpha1b adrenergic receptor antagonist. J Med Chem, 41 (8): 1205-8. [PMID:9548811]
65. Piascik MT, Hrometz SL, Edelmann SE, Guarino RD, Hadley RW, Brown RD. (1997) Immunocytochemical localization of the alpha-1B adrenergic receptor and the contribution of this and the other subtypes to vascular smooth muscle contraction: analysis with selective ligands and antisense oligonucleotides. J Pharmacol Exp Ther, 283 (2): 854-68. [PMID:9353407]
66. Price DT, Lefkowitz RJ, Caron MG, Berkowitz D, Schwinn DA. (1994) Localization of mRNA for three distinct alpha 1-adrenergic receptor subtypes in human tissues: implications for human alpha-adrenergic physiology. Mol Pharmacol, 45 (2): 171-5. [PMID:8114668]
67. Proudman RGW, Baker JG. (2021) The selectivity of α-adrenoceptor agonists for the human α1A, α1B, and α1D-adrenoceptors. Pharmacol Res Perspect, 9 (4): e00799. [PMID:34355529]
68. Proudman RGW, Pupo AS, Baker JG. (2020) The affinity and selectivity of α-adrenoceptor antagonists, antidepressants, and antipsychotics for the human α1A, α1B, and α1D-adrenoceptors. Pharmacol Res Perspect, 8 (4): e00602. [PMID:32608144]
69. Ragnarsson L, Wang CI, Andersson Å, Fajarningsih D, Monks T, Brust A, Rosengren KJ, Lewis RJ. (2013) Conopeptide ρ-TIA defines a new allosteric site on the extracellular surface of the α1B-adrenoceptor. J Biol Chem, 288 (3): 1814-27. [PMID:23184947]
70. Ramarao CS, Denker JM, Perez DM, Gaivin RJ, Riek RP, Graham RM. (1992) Genomic organization and expression of the human alpha 1B-adrenergic receptor. J Biol Chem, 267 (30): 21936-45. [PMID:1328250]
71. Rivard K, Trépanier-Boulay V, Rindt H, Fiset C. (2009) Electrical remodeling in a transgenic mouse model of alpha1B-adrenergic receptor overexpression. Am J Physiol Heart Circ Physiol, 296 (3): H704-18. [PMID:19112097]
72. Ross SA, Rorabaugh BR, Chalothorn D, Yun J, Gonzalez-Cabrera PJ, McCune DF, Piascik MT, Perez DM. (2003) The alpha(1B)-adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. Cardiovasc Res, 60 (3): 598-607. [PMID:14659805]
73. Santana N, Mengod G, Artigas F. (2013) Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors. Int J Neuropsychopharmacol, 16 (5): 1139-51. [PMID:23195622]
74. Saussy Jr DL, Goetz AS, Queen KL, King HK, Lutz MW, Rimele TJ. (1996) Structure activity relationships of a series of buspirone analogs at alpha-1 adrenoceptors: further evidence that rat aorta alpha-1 adrenoceptors are of the alpha-1D-subtype. J Pharmacol Exp Ther, 278 (1): 136-44. [PMID:8764344]
75. Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH, Worman NP, Campbell S, Fidock MD, Furness LM, Parry-Smith DJ et al.. (1995) Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: sequence corrections and direct comparison with other species homologues. J Pharmacol Exp Ther, 272 (1): 134-42. [PMID:7815325]
76. Shi T, Gaivin RJ, McCune DF, Gupta M, Perez DM. (2007) Dominance of the alpha1B-adrenergic receptor and its subcellular localization in human and TRAMP prostate cancer cell lines. J Recept Signal Transduct Res, 27 (1): 27-45. [PMID:17365508]
77. Shibata K, Foglar R, Horie K, Obika K, Sakamoto A, Ogawa S, Tsujimoto G. (1995) KMD-3213, a novel, potent, alpha 1a-adrenoceptor-selective antagonist: characterization using recombinant human alpha 1-adrenoceptors and native tissues. Mol Pharmacol, 48 (2): 250-8. [PMID:7651358]
78. Spiegl G, Zupkó I, Minorics R, Csík G, Csonka D, Falkay G. (2009) Effects of experimentally induced diabetes mellitus on pharmacologically and electrically elicited myometrial contractility. Clin Exp Pharmacol Physiol, 36 (9): 884-91. [PMID:19298542]
79. Stam WB, Van der Graaf PH, Saxena PR. (1998) Functional characterisation of the pharmacological profile of the putative alpha1B-adrenoceptor antagonist, (+)-cyclazosin. Eur J Pharmacol, 361 (1): 79-83. [PMID:9851544]
80. Takahashi K, Hossain M, Ahmed M, Bhuiyan MA, Ohnuki T, Nagatomo T. (2007) Asp125 and Thr130 in transmembrane domain 3 are major sites of alpha1b-adrenergic receptor antagonist binding. Biol Pharm Bull, 30 (10): 1891-4. [PMID:17917257]
81. Tanaka K, Hirai T, Kodama D, Kondo H, Hamamura K, Togari A. (2016) α1B -Adrenoceptor signalling regulates bone formation through the up-regulation of CCAAT/enhancer-binding protein δ expression in osteoblasts. Br J Pharmacol, 173 (6): 1058-69. [PMID:26750808]
82. Tayebati SK, Bronzetti E, Morra Di Cella S, Mulatero P, Ricci A, Rossodivita I, Schena M, Schiavone D, Veglio F, Amenta F. (2000) In situ hybridization and immunocytochemistry of alpha1-adrenoceptors in human peripheral blood lymphocytes. J Auton Pharmacol, 20 (5-6): 305-12. [PMID:11350496]
83. Testa R, Guarneri L, Angelico P, Poggesi E, Taddei C, Sironi G, Colombo D, Sulpizio AC, Naselsky DP, Hieble JP et al.. (1997) Pharmacological characterization of the uroselective alpha-1 antagonist Rec 15/2739 (SB 216469): role of the alpha-1L adrenoceptor in tissue selectivity, part II. J Pharmacol Exp Ther, 281 (3): 1284-93. [PMID:9190864]
84. Townsend SA, Jung AS, Hoe YS, Lefkowitz RY, Khan SA, Lemmon CA, Harrison RW, Lee K, Barouch LA, Cotecchia S et al.. (2004) Critical role for the alpha-1B adrenergic receptor at the sympathetic neuroeffector junction. Hypertension, 44 (5): 776-82. [PMID:15466664]
85. Uberti MA, Hall RA, Minneman KP. (2003) Subtype-specific dimerization of alpha 1-adrenoceptors: effects on receptor expression and pharmacological properties. Mol Pharmacol, 64 (6): 1379-90. [PMID:14645668]
86. Villégier AS, Drouin C, Bizot JC, Marien M, Glowinski J, Colpaërt F, Tassin JP. (2003) Stimulation of postsynaptic alpha1b- and alpha2-adrenergic receptors amplifies dopamine-mediated locomotor activity in both rats and mice. Synapse, 50 (4): 277-84. [PMID:14556232]
87. Wang P, Zhu H, Tian JS, Zhu W, Xu S, Yao H, Liu J, Zhu Z, Miao CY, Xu J. (2024) Discovery of MT-1207: A Novel, Potent Multitarget Inhibitor as a Promising Clinical Candidate for the Treatment of Hypertension. J Med Chem, 67 (18): 16128-16144. [PMID:38968440]
88. Waugh DJ, Gaivin RJ, Damron DS, Murray PA, Perez DM. (1999) Binding, partial agonism, and potentiation of alpha(1)-adrenergic receptor function by benzodiazepines: A potential site of allosteric modulation. J Pharmacol Exp Ther, 291 (3): 1164-71. [PMID:10565838]
89. Williams LM, He X, Vaid TM, Abdul-Ridha A, Whitehead AR, Gooley PR, Bathgate RAD, Williams SJ, Scott DJ. (2019) Diazepam is not a direct allosteric modulator of α1-adrenoceptors, but modulates receptor signaling by inhibiting phosphodiesterase-4. Pharmacol Res Perspect, 7 (1): e00455. [PMID:30619611]
90. Williams TJ, Blue DR, Daniels DV, Davis B, Elworthy T, Gever JR, Kava MS, Morgans D, Padilla F, Tassa S et al.. (1999) In vitro alpha1-adrenoceptor pharmacology of Ro 70-0004 and RS-100329, novel alpha1A-adrenoceptor selective antagonists. Br J Pharmacol, 127 (1): 252-8. [PMID:10369480]
91. Wright CD, Wu SC, Dahl EF, Sazama AJ, O'Connell TD. (2012) Nuclear localization drives α1-adrenergic receptor oligomerization and signaling in cardiac myocytes. Cell Signal, 24 (3): 794-802. [PMID:22120526]
92. Yan M, Sun J, Bird PI, Liu DL, Grigg M, Lim YL. (2001) Alpha1A- and alpha1B-adrenoceptors are the major subtypes in human saphenous vein. Life Sci, 68 (10): 1191-8. [PMID:11228103]
93. Yoshiki H, Uwada J, Anisuzzaman AS, Umada H, Hayashi R, Kainoh M, Masuoka T, Nishio M, Muramatsu I. (2014) Pharmacologically distinct phenotypes of α1B -adrenoceptors: variation in binding and functional affinities for antagonists. Br J Pharmacol, 171 (21): 4890-901. [PMID:24923551]
94. Yoshio R, Taniguchi T, Itoh H, Muramatsu I. (2001) Affinity of serotonin receptor antagonists and agonists to recombinant and native alpha1-adrenoceptor subtypes. Jpn J Pharmacol, 86 (2): 189-95. [PMID:11459121]
95. Yun J, Gaivin RJ, McCune DF, Boongird A, Papay RS, Ying Z, Gonzalez-Cabrera PJ, Najm I, Perez DM. (2003) Gene expression profile of neurodegeneration induced by alpha1B-adrenergic receptor overactivity: NMDA/GABAA dysregulation and apoptosis. Brain, 126 (Pt 12): 2667-81. [PMID:12937073]
96. Yun J, Zuscik MJ, Gonzalez-Cabrera P, McCune DF, Ross SA, Gaivin R, Piascik MT, Perez DM. (2003) Gene expression profiling of alpha(1b)-adrenergic receptor-induced cardiac hypertrophy by oligonucleotide arrays. Cardiovasc Res, 57 (2): 443-55. [PMID:12566117]
97. Zemkova H, Stojilkovic SS, Klein DC. (2011) Norepinephrine causes a biphasic change in mammalian pinealocye membrane potential: role of alpha1B-adrenoreceptors, phospholipase C, and Ca2+. Endocrinology, 152 (10): 3842-51. [PMID:21828176]
98. Zhang H, Cotecchia S, Thomas SA, Tanoue A, Tsujimoto G, Faber JE. (2004) Gene deletion of dopamine beta-hydroxylase and alpha1-adrenoceptors demonstrates involvement of catecholamines in vascular remodeling. Am J Physiol Heart Circ Physiol, 287 (5): H2106-14. [PMID:15231500]
99. Zhang H, Faber JE. (2001) Trophic effect of norepinephrine on arterial intima-media and adventitia is augmented by injury and mediated by different alpha1-adrenoceptor subtypes. Circ Res, 89 (9): 815-22. [PMID:11679412]
100. Zhang Q, Tan Y. (2011) Nerve growth factor augments neuronal responsiveness to noradrenaline in cultured dorsal root ganglion neurons of rats. Neuroscience, 193: 72-9. [PMID:21784134]
101. Zhang S, Takahashi R, Yamashita N, Teraoka H, Kitazawa T. (2018) Αlpha1B-adrenoceptor-mediated positive inotropic and positive chronotropic actions in the mouse atrium. Eur J Pharmacol, 839: 82-88. [PMID:30172786]
102. Zhang Y, Kolli T, Hivley R, Jaber L, Zhao FI, Yan J, Herness S. (2010) Characterization of the expression pattern of adrenergic receptors in rat taste buds. Neuroscience, 169 (3): 1421-37. [PMID:20478367]
103. Zuscik MJ, Chalothorn D, Hellard D, Deighan C, McGee A, Daly CJ, Waugh DJ, Ross SA, Gaivin RJ, Morehead AJ et al.. (2001) Hypotension, autonomic failure, and cardiac hypertrophy in transgenic mice overexpressing the alpha 1B-adrenergic receptor. J Biol Chem, 276 (17): 13738-43. [PMID:11278430]
104. Zuscik MJ, Sands S, Ross SA, Waugh DJ, Gaivin RJ, Morilak D, Perez DM. (2000) Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. Nat Med, 6 (12): 1388-94. [PMID:11100125]