Top ▲


Click here for help

Target not currently curated in GtoImmuPdb

Target id: 546

Nomenclature: Kv2.1

Family: Voltage-gated potassium channels (Kv)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 1 858 20q13.13 KCNB1 potassium voltage-gated channel subfamily B member 1 43,46
Mouse 6 1 857 2 87.22 cM Kcnb1 potassium voltage gated channel, Shab-related subfamily, member 1 26,39
Rat 6 1 857 3q42 Kcnb1 potassium voltage-gated channel subfamily B member 1
Previous and Unofficial Names Click here for help
DRK1 | Shab | delayed rectifier potassium channel 1 | potassium voltage-gated channel subfamily B member 1 | potassium voltage-gated channel, Shab-related subfamily, member 1 | potassium channel, voltage gated Shab related subfamily B, member 1 | potassium channel, voltage gated Shab-related subfamily B, member 1 | potassium voltage gated channel
Database Links Click here for help
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
RefSeq Nucleotide
RefSeq Protein
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
Kv5.1 29
Kv8.1 57
Kv2.2 23
Kv6.1 55,59
Kv6.2 55,59
Kv6.3 55,59
Kv9.1 52,58
Kv9.2 52,58
Kv9.3 52,58
Auxiliary Subunits
Name References
Other Associated Proteins
Name References
Fyn SH2 Domain 63
KChAP 31,76
Functional Characteristics Click here for help
Ion Selectivity and Conductance Click here for help
Species:  Rat
Rank order:  Rb+ [12.8 pS] > K+ [8.0 pS] > Cs+ > Na+ > Li+
References:  2,10,16,25,28,69,71
Species:  Rat
Macroscopic current rectification:  Delayed Rectifier Current
References:  13
Ion Selectivity and Conductance Comments
1. On removal of K+, Kv2.1 displays a large Na+ conductance that is inhibited by low concentrations of K+.
2. An outer vestibule lysine interferes with K+ flux through Kv2.1. A [K+]-dependent change in the orientation of this lysine alters single channel conductance through changing the level of this interference [71].
Voltage Dependence Click here for help
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  11.4 - 62 COS-1 Rat
Inactivation  -25.2 - 62
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  8.5 - 30 Xenopus laevis oocyte Human
Inactivation  - 8000.0 30
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  12.0 - 1 Xenopus laevis oocyte Human
Inactivation  - -
Comments  Non-inactivating
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -9.2 - 74 Xenopus laevis oocyte Rat
Inactivation  -19.0 -
Comments  Non-inactivating
Associated subunits (Human)
Kv5.1, Kv6.1-6.4, Kv8.1-8.2 and Kv9.1-9.3

Download all structure-activity data for this target as a CSV file go icon to follow link

Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
linoleic acid Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs - 5.6 pEC50 - - 45
pEC50 5.6 [45]
Gating inhibitors Click here for help
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
HaTx1 Peptide Rn - 7.4 pKd - - 67
pKd 7.4 (Kd 4.2x10-8 M) [67]
jingzhaotoxin-XI Peptide Mm - 6.1 pKd - - 36
pKd 6.1 [36]
SGTx1 Peptide Rn - 5.7 pKd - - 33
pKd 5.7 (Kd 2x10-6 M) [33]
ScTx1 Peptide Click here for species-specific activity table Rn - 7.9 pIC50 - - 12
pIC50 7.9 (IC50 1.27x10-8 M) [12]
RY796 Small molecule or natural product Click here for species-specific activity table Hs - 6.6 pIC50 - - 18
pIC50 6.6 (IC50 2.5x10-7 M) [18]
jingzhaotoxin-III Peptide Rn - 6.4 pIC50 - - 37
pIC50 6.4 (IC50 3.8x10-7 M) [37]
RY785 Small molecule or natural product Click here for species-specific activity table Hs - 5.9 pIC50 - - 18
pIC50 5.9 (IC50 1.3x10-6 M) [18]
GxTx-1E Peptide Click here for species-specific activity table Hs - 2.0 pIC50 - - 19
pIC50 2.0 [19]
View species-specific gating inhibitor tables
Gating Inhibitor Comments
Hanatoxin binds to and stabilizes the resting state of the Kv2.1 paddle [34]. This ligand has also been described as a negative allosteric modulator of the channel [9].
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
Intracellular Ba2+ Click here for species-specific activity table Rn - 4.9 pKd - - 68
pKd 4.9 [68]
Extracellular Ba2+ Click here for species-specific activity table Rn - 1.5 pKd - - 68
pKd 1.5 [68]
halothane Small molecule or natural product Approved drug Click here for species-specific activity table Rn - 3.5 pEC50 - - 30
pEC50 3.5 [30]
SsmTx-1 Peptide Rn Pore blocker 7.4 pIC50 - - 7
pIC50 7.4 (IC50 4.17x10-8 M) [7]
3-bicyclo[2.2.1]hept-2-yl-benzene-1,2-diol Small molecule or natural product Hs - 6.0 pIC50 - - 81
pIC50 6.0 [81]
DABCO-C16 Small molecule or natural product Click here for species-specific activity table Rn - 5.7 pIC50 - - 14
pIC50 5.7 [14]
linoleic acid Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs - 5.1 pIC50 - - 45
pIC50 5.1 [45]
fampridine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Pore blocker 3.3 pIC50 - - 24
pIC50 3.3 (IC50 5x10-4 M) [24]
tetraethylammonium Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Pore blocker 2.0 pIC50 - - 17
pIC50 2.0 (IC50 1x10-2 M) [17]
Na+ Click here for species-specific activity table Rn Pore blocker 1.6 pIC50 - - 40
pIC50 1.6 [40]
View species-specific channel blocker tables
Tissue Distribution Click here for help
Gastric cancer cells, uterine cancer cells
Species:  Human
Technique:  RT-PCR
References:  32,66
Species:  Mouse
Technique:  RT-PCR, immunohistochemistry
References:  27
Urinary bladder smooth muscle (UBSM) myocyte
Species:  Mouse
Technique:  RT-PCR
References:  70
Brain: Cerebral cortex > hippocampus > cerebellum > olfactory bulb
Species:  Mouse
Technique:  Immunohistochemistry, immunoblotting
References:  6,42
Pancreatic islet β cell, insulinomas. This distribution was also seen in mice.
Species:  Rat
Technique:  Immunocytochemistry, immunoblot
References:  20,41,65,77
Pulmonary arteries, ductus arteriosus.
Species:  Rat
Technique:  RT-PCR
References:  8,78
PC12 cell line.
Species:  Rat
Technique:  Immunoblot, RNAse protection, immunocytochemistry
References:  61
Heart: Atria, ventricles.
Species:  Rat
Technique:  Immunoblot, immunocytochemistry, RNAse protection
References:  5,79
Brain: Cerebral cortex > hippocampus > cerebellum > olfactory bulb.
Species:  Rat
Technique:  In situ hybridisation, immunoblotting, immunohistochemistry
References:  6,11,72
Functional Assays Click here for help
Voltage clamp of cloned KV2.1 channel.
Species:  Rat
Tissue:  Xenopus laevis oocytes
Response measured:  K+ current.
References:  13
Voltage clamp of cloned Kv2.1 channel
Species:  Rat
Tissue:  CHO cells
Response measured:  K+ current
References:  60
Physiological Functions Click here for help
Mediation of potassium efflux current, crucial for apoptotic signalling cascade.
Species:  Rat
Tissue:  CHO cells, cortical neurones, cerebellar granule cells.
References:  21,44,50,56,80
Regulation of glucose-induced insulin release from pancreatic β cells
Species:  Mouse
Tissue:  Pancreatic β cells
References:  20,35
Maintenance of membrane potential and modulation of electrical excitability in neurones and muscle.
Species:  Rat
Tissue:  Pulmonary artery myocytes, hippocampus, globus pallidus, neocortex
References:  4,15,38,49,52,64
Endoplasmic reticulum (ER)-plasma membrane junctions
Species:  Mouse
Tissue:  Brain
References:  22,75
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Kcnb1tm1Dgen Kcnb1tm1Dgen/Kcnb1tm1Dgen
involves: C57BL/6
MGI:96666  MP:0003562 abnormal pancreatic beta cell physiology PMID: 17767909 
Kcnb1tm1Dgen Kcnb1tm1Dgen/Kcnb1tm1Dgen
involves: C57BL/6
MGI:96666  MP:0000189 hypoglycemia PMID: 17767909 
Kcnb1tm1Dgen Kcnb1tm1Dgen/Kcnb1tm1Dgen
involves: C57BL/6
MGI:96666  MP:0005292 improved glucose tolerance PMID: 17767909 
Kcnb1tm1Dgen Kcnb1tm1Dgen/Kcnb1tm1Dgen
involves: C57BL/6
MGI:96666  MP:0002079 increased circulating insulin level PMID: 17767909 
Kcnb1tm1Dgen Kcnb1tm1Dgen/Kcnb1tm1Dgen
involves: C57BL/6
MGI:96666  MP:0003058 increased insulin secretion PMID: 17767909 
Gene Expression and Pathophysiology Click here for help
KV2.1 expression is reduced in chronic hypoxic pulmonary hypertension.
Tissue or cell type:  Rat pulmonary artery myocytes.
Pathophysiology:  Chronic hypoxic pulmonary hypertension.
Species:  Rat
References:  3,47
KV2.1 mRNA increased in memory-deficient and Aβ-treated rat.
Tissue or cell type:  Rat hippocampus and cortex.
Pathophysiology:  Deficits in spatial memory.
Species:  Rat
References:  51,82
KV2.1 expression in DRG neurons decreased after peripheral axotomy.
Tissue or cell type:  Dorsal root ganglion neurons
Pathophysiology:  Repetitive firing and peripheral hyperexcitability
Species:  Rat
Technique:  In situ hybridisation
References:  73
Biologically Significant Variant Comments
A total of 2343 SNPs have been identified in human KCNB1. For more information please see the entry on GeneCards.
General Comments
Kv2.1 KO mice are hyperexcitable and are susceptible to induced seizures [64], and have elevated insulin levels and are hypoglycaemic [20]. Kv2.1 is subjected to activity-dependent regulation of expression, localization and function via phosphorylation [48] and SUMOylation [54].


Show »

1. Albrecht B, Lorra C, Stocker M, Pongs O. (1993) Cloning and characterization of a human delayed rectifier potassium channel gene. Recept Channels, 1 (2): 99-110. [PMID:8081723]

2. Ambriz-Rivas M, Islas LD, Gomez-Lagunas F. (2005) K+-dependent stability and ion conduction of Shab K+ channels: a comparison with Shaker channels. Pflugers Arch, 450 (4): 255-61. [PMID:15909181]

3. Archer SL, Souil E, Dinh-Xuan AT, Schremmer B, Mercier JC, El Yaagoubi A, Nguyen-Huu L, Reeve HL, Hampl V. (1998) Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest, 101 (11): 2319-30. [PMID:9616203]

4. Baranauskas G, Tkatch T, Surmeier DJ. (1999) Delayed rectifier currents in rat globus pallidus neurons are attributable to Kv2.1 and Kv3.1/3.2 K(+) channels. J Neurosci, 19 (15): 6394-404. [PMID:10414968]

5. Barry DM, Trimmer JS, Merlie JP, Nerbonne JM. (1995) Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels?. Circ Res, 77 (2): 361-9. [PMID:7614722]

6. Bekele-Arcuri Z, Matos MF, Manganas L, Strassle BW, Monaghan MM, Rhodes KJ, Trimmer JS. (1996) Generation and characterization of subtype-specific monoclonal antibodies to K+ channel alpha- and beta-subunit polypeptides. Neuropharmacology, 35 (7): 851-65. [PMID:8938716]

7. Chen M, Li J, Zhang F, Liu Z. (2014) Isolation and characterization of SsmTx-I, a Specific Kv2.1 blocker from the venom of the centipede Scolopendra Subspinipes Mutilans L. Koch. J Pept Sci, 20 (3): 159-64. [PMID:24464516]

8. Chiara MD, Monje F, Castellano A, López-Barneo J. (1999) A small domain in the N terminus of the regulatory alpha-subunit Kv2. 3 modulates Kv2.1 potassium channel gating. J Neurosci, 19 (16): 6865-73. [PMID:10436044]

9. Christopoulos A, Changeux JP, Catterall WA, Fabbro D, Burris TP, Cidlowski JA, Olsen RW, Peters JA, Neubig RR, Pin JP et al.. (2014) International union of basic and clinical pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol Rev, 66 (4): 918-47. [PMID:25026896]

10. De Biasi M, Drewe JA, Kirsch GE, Brown AM. (1993) Histidine substitution identifies a surface position and confers Cs+ selectivity on a K+ pore. Biophys J, 65 (3): 1235-42. [PMID:8241404]

11. Drewe JA, Verma S, Frech G, Joho RH. (1992) Distinct spatial and temporal expression patterns of K+ channel mRNAs from different subfamilies. J Neurosci, 12 (2): 538-48. [PMID:1740690]

12. Escoubas P, Diochot S, Célérier ML, Nakajima T, Lazdunski M. (2002) Novel tarantula toxins for subtypes of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies. Mol Pharmacol, 62 (1): 48-57. [PMID:12065754]

13. Frech GC, VanDongen AM, Schuster G, Brown AM, Joho RH. (1989) A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature, 340 (6235): 642-5. [PMID:2770868]

14. Gordon E, Cohen JL, Engel R, Abbott GW. (2006) 1,4-Diazabicyclo[2.2.2]octane derivatives: a novel class of voltage-gated potassium channel blockers. Mol Pharmacol, 69 (3): 718-26. [PMID:16317109]

15. Guan D, Armstrong WE, Foehring RC. (2013) Kv2 channels regulate firing rate in pyramidal neurons from rat sensorimotor cortex. J Physiol (Lond.), 591 (Pt 19): 4807-25. [PMID:23878373]

16. Hartmann HA, Kirsch GE, Drewe JA, Taglialatela M, Joho RH, Brown AM. (1991) Exchange of conduction pathways between two related K+ channels. Science, 251 (4996): 942-4. [PMID:2000495]

17. He Y, Kang Y, Leung YM, Xia F, Gao X, Xie H, Gaisano HY, Tsushima RG. (2006) Modulation of Kv2.1 channel gating and TEA sensitivity by distinct domains of SNAP-25. Biochem J, 396 (2): 363-9. [PMID:16478442]

18. Herrington J, Solly K, Ratliff KS, Li N, Zhou YP, Howard A, Kiss L, Garcia ML, McManus OB, Deng Q et al.. (2011) Identification of novel and selective Kv2 channel inhibitors. Mol Pharmacol, 80 (6): 959-64. [PMID:21948463]

19. Herrington J, Zhou YP, Bugianesi RM, Dulski PM, Feng Y, Warren VA, Smith MM, Kohler MG, Garsky VM, Sanchez M et al.. (2006) Blockers of the delayed-rectifier potassium current in pancreatic beta-cells enhance glucose-dependent insulin secretion. Diabetes, 55 (4): 1034-42. [PMID:16567526]

20. Jacobson DA, Kuznetsov A, Lopez JP, Kash S, Ammälä CE, Philipson LH. (2007) Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab, 6 (3): 229-35. [PMID:17767909]

21. Jiao S, Liu Z, Ren WH, Ding Y, Zhang YQ, Zhang ZH, Mei YA. (2007) cAMP/protein kinase A signalling pathway protects against neuronal apoptosis and is associated with modulation of Kv2.1 in cerebellar granule cells. J Neurochem, 100 (4): 979-91. [PMID:17156132]

22. Johnson B, Leek AN, Tamkun MM. (2019) Kv2 channels create endoplasmic reticulum / plasma membrane junctions: a brief history of Kv2 channel subcellular localization. Channels (Austin), 13 (1): 88-101. [PMID:30712450]

23. Kihira Y, Hermanstyne TO, Misonou H. (2010) Formation of heteromeric Kv2 channels in mammalian brain neurons. J Biol Chem, 285 (20): 15048-55. [PMID:20202934]

24. Kirsch GE, Drewe JA. (1993) Gating-dependent mechanism of 4-aminopyridine block in two related potassium channels. J Gen Physiol, 102 (5): 797-816. [PMID:8301258]

25. Kirsch GE, Drewe JA, Taglialatela M, Joho RH, DeBiasi M, Hartmann HA, Brown AM. (1992) A single nonpolar residue in the deep pore of related K+ channels acts as a K+:Rb+ conductance switch. Biophys J, 62 (1): 136-43; discussion 143-4. [PMID:1600093]

26. Klocke R, Roberds SL, Tamkun MM, Gronemeier M, Augustin A, Albrecht B, Pongs O, Jockusch H. (1993) Chromosomal mapping in the mouse of eight K(+)-channel genes representing the four Shaker-like subfamilies Shaker, Shab, Shaw, and Shal. Genomics, 18 (3): 568-74. [PMID:7905852]

27. Klumpp DJ, Song EJ, Pinto LH. (1995) Identification and localization of K+ channels in the mouse retina. Vis Neurosci, 12 (6): 1177-90. [PMID:8962835]

28. Korn SJ, Ikeda SR. (1995) Permeation selectivity by competition in a delayed rectifier potassium channel. Science, 269 (5222): 410-2. [PMID:7618108]

29. Kramer JW, Post MA, Brown AM, Kirsch GE. (1998) Modulation of potassium channel gating by coexpression of Kv2.1 with regulatory Kv5.1 or Kv6.1 alpha-subunits. Am J Physiol, 274 (6 Pt 1): C1501-10. [PMID:9696692]

30. Kulkarni RS, Zorn LJ, Anantharam V, Bayley H, Treistman SN. (1996) Inhibitory effects of ketamine and halothane on recombinant potassium channels from mammalian brain. Anesthesiology, 84 (4): 900-9. [PMID:8638845]

31. Kuryshev YA, Wible BA, Gudz TI, Ramirez AN, Brown AM. (2001) KChAP/Kvbeta1.2 interactions and their effects on cardiac Kv channel expression. Am J Physiol, Cell Physiol, 281 (1): C290-9. [PMID:11401852]

32. Lan M, Shi Y, Han Z, Hao Z, Pan Y, Liu N, Guo C, Hong L, Wang J, Qiao T et al.. (2005) Expression of delayed rectifier potassium channels and their possible roles in proliferation of human gastric cancer cells. Cancer Biol Ther, 4 (12): 1342-7. [PMID:16258262]

33. Lee CW, Kim S, Roh SH, Endoh H, Kodera Y, Maeda T, Kohno T, Wang JM, Swartz KJ, Kim JI. (2004) Solution structure and functional characterization of SGTx1, a modifier of Kv2.1 channel gating. Biochemistry, 43 (4): 890-7. [PMID:14744131]

34. Lee HC, Wang JM, Swartz KJ. (2003) Interaction between extracellular Hanatoxin and the resting conformation of the voltage-sensor paddle in Kv channels. Neuron, 40 (3): 527-36. [PMID:14642277]

35. Li XN, Herrington J, Petrov A, Ge L, Eiermann G, Xiong Y, Jensen MV, Hohmeier HE, Newgard CB, Garcia ML et al.. (2013) The role of voltage-gated potassium channels Kv2.1 and Kv2.2 in the regulation of insulin and somatostatin release from pancreatic islets. J Pharmacol Exp Ther, 344 (2): 407-16. [PMID:23161216]

36. Liao Z, Yuan C, Deng M, Li J, Chen J, Yang Y, Hu W, Liang S. (2006) Solution structure and functional characterization of jingzhaotoxin-XI: a novel gating modifier of both potassium and sodium channels. Biochemistry, 45 (51): 15591-600. [PMID:17176080]

37. Liao Z, Yuan C, Peng K, Xiao Y, Liang S. (2007) Solution structure of Jingzhaotoxin-III, a peptide toxin inhibiting both Nav1.5 and Kv2.1 channels. Toxicon, 50 (1): 135-43. [PMID:17481690]

38. Liu PW, Bean BP. (2014) Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons. J Neurosci, 34 (14): 4991-5002. [PMID:24695716]

39. Lock LF, Gilbert DJ, Street VA, Migeon MB, Jenkins NA, Copeland NG, Tempel BL. (1994) Voltage-gated potassium channel genes are clustered in paralogous regions of the mouse genome. Genomics, 20 (3): 354-62. [PMID:8034307]

40. Lopatin AN, Nichols CG. (1994) Internal Na+ and Mg2+ blockade of DRK1 (Kv2.1) potassium channels expressed in Xenopus oocytes. Inward rectification of a delayed rectifier. J Gen Physiol, 103 (2): 203-16. [PMID:8189205]

41. MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY, Salapatek AM, Backx PH, Wheeler MB. (2001) Members of the Kv1 and Kv2 voltage-dependent K(+) channel families regulate insulin secretion. Mol Endocrinol, 15 (8): 1423-35. [PMID:11463864]

42. Mandikian D, Bocksteins E, Parajuli LK, Bishop HI, Cerda O, Shigemoto R, Trimmer JS. (2014) Cell type-specific spatial and functional coupling between mammalian brain Kv2.1 K+ channels and ryanodine receptors. J Comp Neurol, 522 (15): 3555-74. [PMID:24962901]

43. Mazzanti CM, Bergen A, Enoch MA, Michelini S, Goldman D. (1996) Identification of a Ser857-Asn857 substitution in DRK1 (KCNB1), population frequencies and lack of association to the low voltage alpha EEG trait. Hum Genet, 98 (2): 134-7. [PMID:8698327]

44. McCord MC, Aizenman E. (2013) Convergent Ca2+ and Zn2+ signaling regulates apoptotic Kv2.1 K+ currents. Proc Natl Acad Sci USA, 110 (34): 13988-93. [PMID:23918396]

45. McKay MC, Worley JF. (2001) Linoleic acid both enhances activation and blocks Kv1.5 and Kv2.1 channels by two separate mechanisms. Am J Physiol, Cell Physiol, 281 (4): C1277-84. [PMID:11546665]

46. Melis R, Stauffer D, Zhao X, Zhu XL, Albrecht B, Pongs O, Brothman A, Leppert M. (1995) Physical and genetic localization of a Shab subfamily potassium channel (KCNB1) gene to chromosomal region 20q13.2. Genomics, 25 (1): 285-7. [PMID:7774931]

47. Michelakis ED, McMurtry MS, Wu XC, Dyck JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R, Archer SL. (2002) Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation, 105 (2): 244-50. [PMID:11790708]

48. Misonou H, Menegola M, Mohapatra DP, Guy LK, Park KS, Trimmer JS. (2006) Bidirectional activity-dependent regulation of neuronal ion channel phosphorylation. J Neurosci, 26 (52): 13505-14. [PMID:17192433]

49. Murakoshi H, Trimmer JS. (1999) Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. J Neurosci, 19 (5): 1728-35. [PMID:10024359]

50. Pal S, Hartnett KA, Nerbonne JM, Levitan ES, Aizenman E. (2003) Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci, 23 (12): 4798-802. [PMID:12832499]

51. Pan Y, Xu X, Tong X, Wang X. (2004) Messenger RNA and protein expression analysis of voltage-gated potassium channels in the brain of Abeta(25-35)-treated rats. J Neurosci Res, 77 (1): 94-9. [PMID:15197742]

52. Patel AJ, Lazdunski M, Honoré E. (1999) Kv2.1/Kv9.3, an ATP-dependent delayed-rectifier K+ channel in pulmonary artery myocytes. Ann N Y Acad Sci, 868: 438-41. [PMID:10414317]

53. Peltola MA, Kuja-Panula J, Lauri SE, Taira T, Rauvala H. (2011) AMIGO is an auxiliary subunit of the Kv2.1 potassium channel. EMBO Rep, 12 (12): 1293-9. [PMID:22056818]

54. Plant LD, Dowdell EJ, Dementieva IS, Marks JD, Goldstein SA. (2011) SUMO modification of cell surface Kv2.1 potassium channels regulates the activity of rat hippocampal neurons. J Gen Physiol, 137 (5): 441-54. [PMID:21518833]

55. Post MA, Kirsch GE, Brown AM. (1996) Kv2.1 and electrically silent Kv6.1 potassium channel subunits combine and express a novel current. FEBS Lett, 399 (1-2): 177-82. [PMID:8980147]

56. Redman PT, He K, Hartnett KA, Jefferson BS, Hu L, Rosenberg PA, Levitan ES, Aizenman E. (2007) Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc Natl Acad Sci USA, 104 (9): 3568-73. [PMID:17360683]

57. Salinas M, de Weille J, Guillemare E, Lazdunski M, Hugnot JP. (1997) Modes of regulation of shab K+ channel activity by the Kv8.1 subunit. J Biol Chem, 272 (13): 8774-80. [PMID:9079713]

58. Salinas M, Duprat F, Heurteaux C, Hugnot JP, Lazdunski M. (1997) New modulatory alpha subunits for mammalian Shab K+ channels. J Biol Chem, 272 (39): 24371-9. [PMID:9305895]

59. Sano Y, Mochizuki S, Miyake A, Kitada C, Inamura K, Yokoi H, Nozawa K, Matsushime H, Furuichi K. (2002) Molecular cloning and characterization of Kv6.3, a novel modulatory subunit for voltage-gated K(+) channel Kv2.1. FEBS Lett, 512 (1-3): 230-4. [PMID:11852086]

60. Scholle A, Dugarmaa S, Zimmer T, Leonhardt M, Koopmann R, Engeland B, Pongs O, Benndorf K. (2004) Rate-limiting reactions determining different activation kinetics of Kv1.2 and Kv2.1 channels. J Membr Biol, 198 (2): 103-12. [PMID:15138750]

61. Sharma N, D'Arcangelo G, Kleinlaus A, Halegoua S, Trimmer JS. (1993) Nerve growth factor regulates the abundance and distribution of K+ channels in PC12 cells. J Cell Biol, 123 (6 Pt 2): 1835-43. [PMID:8276901]

62. Shi G, Kleinklaus AK, Marrion NV, Trimmer JS. (1994) Properties of Kv2.1 K+ channels expressed in transfected mammalian cells. J Biol Chem, 269 (37): 23204-11. [PMID:8083226]

63. Sobko A, Peretz A, Attali B. (1998) Constitutive activation of delayed-rectifier potassium channels by a src family tyrosine kinase in Schwann cells. EMBO J, 17 (16): 4723-34. [PMID:9707431]

64. Speca DJ, Ogata G, Mandikian D, Bishop HI, Wiler SW, Eum K, Wenzel HJ, Doisy ET, Matt L, Campi KL et al.. (2014) Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability. Genes Brain Behav, 13 (4): 394-408. [PMID:24494598]

65. Su J, Yu H, Lenka N, Hescheler J, Ullrich S. (2001) The expression and regulation of depolarization-activated K+ channels in the insulin-secreting cell line INS-1. Pflugers Arch, 442 (1): 49-56. [PMID:11374068]

66. Suzuki T, Takimoto K. (2004) Selective expression of HERG and Kv2 channels influences proliferation of uterine cancer cells. Int J Oncol, 25 (1): 153-9. [PMID:15202000]

67. Swartz KJ, MacKinnon R. (1995) An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron, 15 (4): 941-9. [PMID:7576642]

68. Taglialatela M, Drewe JA, Brown AM. (1993) Barium blockade of a clonal potassium channel and its regulation by a critical pore residue. Mol Pharmacol, 44 (1): 180-90. [PMID:8341271]

69. Taglialatela M, Drewe JA, Kirsch GE, De Biasi M, Hartmann HA, Brown AM. (1993) Regulation of K+/Rb+ selectivity and internal TEA blockade by mutations at a single site in K+ pores. Pflugers Arch, 423 (1-2): 104-12. [PMID:7683786]

70. Thorneloe KS, Nelson MT. (2003) Properties and molecular basis of the mouse urinary bladder voltage-gated K+ current. J Physiol (Lond.), 549 (Pt 1): 65-74. [PMID:12679374]

71. Trapani JG, Andalib P, Consiglio JF, Korn SJ. (2006) Control of single channel conductance in the outer vestibule of the Kv2.1 potassium channel. J Gen Physiol, 128 (2): 231-46. [PMID:16880266]

72. Trimmer JS. (1991) Immunological identification and characterization of a delayed rectifier K+ channel polypeptide in rat brain. Proc Natl Acad Sci USA, 88 (23): 10764-8. [PMID:1961744]

73. Tsantoulas C, Zhu L, Yip P, Grist J, Michael GJ, McMahon SB. (2014) Kv2 dysfunction after peripheral axotomy enhances sensory neuron responsiveness to sustained input. Exp Neurol, 251: 115-26. [PMID:24252178]

74. VanDongen AM, Frech GC, Drewe JA, Joho RH, Brown AM. (1990) Alteration and restoration of K+ channel function by deletions at the N- and C-termini. Neuron, 5 (4): 433-43. [PMID:2206531]

75. Vierra NC, Kirmiz M, van der List D, Santana LF, Trimmer JS. (2019) Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. Elife, 8. DOI: 10.7554/eLife.49953 [PMID:31663850]

76. Wible BA, Yang Q, Kuryshev YA, Accili EA, Brown AM. (1998) Cloning and expression of a novel K+ channel regulatory protein, KChAP. J Biol Chem, 273 (19): 11745-51. [PMID:9565597]

77. Wolf-Goldberg T, Michaelevski I, Sheu L, Gaisano HY, Chikvashvili D, Lotan I. (2006) Target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (t-SNAREs) differently regulate activation and inactivation gating of Kv2.2 and Kv2.1: Implications on pancreatic islet cell Kv channels. Mol Pharmacol, 70 (3): 818-28. [PMID:16754785]

78. Wu C, Hayama E, Imamura S, Matsuoka R, Nakanishi T. (2007) Developmental changes in the expression of voltage-gated potassium channels in the ductus arteriosus of the fetal rat. Heart Vessels, 22 (1): 34-40. [PMID:17285444]

79. Xu H, Dixon JE, Barry DM, Trimmer JS, Merlie JP, McKinnon D, Nerbonne JM. (1996) Developmental analysis reveals mismatches in the expression of K+ channel alpha subunits and voltage-gated K+ channel currents in rat ventricular myocytes. J Gen Physiol, 108 (5): 405-19. [PMID:8923266]

80. Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW. (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science, 278 (5335): 114-7. [PMID:9311914]

81. Zaks-Makhina E, Kim Y, Aizenman E, Levitan ES. (2004) Novel neuroprotective K+ channel inhibitor identified by high-throughput screening in yeast. Mol Pharmacol, 65 (1): 214-9. [PMID:14722253]

82. Zhong CB, Pan YP, Tong XY, Xu XH, Wang XL. (2005) Delayed rectifier potassium currents and Kv2.1 mRNA increase in hippocampal neurons of scopolamine-induced memory-deficient rats. Neurosci Lett, 373 (2): 99-104. [PMID:15567561]


Show »

How to cite this page