Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Integrins are unusual signalling proteins that function to signal both from the extracellular environment into the cell, but also from the cytoplasm to the external of the cell. The intracellular signalling cascades associated with integrin activation focus on protein kinase activities, such as focal adhesion kinase and Src. Based on this association between extracellular signals and intracellular protein kinase activity, we have chosen to include integrins in the 'Catalytic receptors' section of the database until more stringent criteria from NC-IUPHAR allows precise definition of their classification.
Integrins are heterodimeric entities, composed of α and β subunits, each 1TM proteins, which bind components of the extracellular matrix or counter-receptors expressed on other cells. One class of integrin contains an inserted domain (I) in its α subunit, and if present (in α1, α2, α10, α11, αD, αE, αL, αM and αX), this I domain contains the ligand binding site. All β subunits possess a similar I-like domain, which has the capacity to bind ligand, often recognising the RGD motif. The presence of an α subunit I domain precludes ligand binding through the β subunit. Integrins provide a link between ligand and the actin cytoskeleton (through typically short intracellular domains). Integrins bind several divalent cations, including a Mg2+ ion in the I or I-like domain that is essential for ligand binding. Other cation binding sites may regulate integrin activity or stabilise the 3D structure. Integrins regulate the activity of particular protein kinases, including focal adhesion kinase and integrin-linked kinase. Cellular activation regulates integrin ligand affinity via inside-out signalling and ligand binding to integrins can regulate cellular activity via outside-in signalling.
Several drugs that target integrins are in clinical use including: (1) abciximab (αIIbβ3) for short term prevention of coronary thrombosis, (2) vedolizumab (α4β7) to reduce gastrointestinal inflammation, and (3) natalizumab (α4β1) in some cases of severe multiple sclerosis.
integrin, alpha 1 subunit C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha 2 subunit (CD49B, alpha 2 subunit of VLA-2 receptor) C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha IIb subunit (platelet glycoprotein IIb of IIb/IIIa complex, antigen CD41) C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha 3 subunit (antigen CD49C, alpha 3 subunit of VLA-3 receptor) C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha 4 subunit (antigen CD49D, alpha 4 subunit of VLA-4 receptor)
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||
integrin, alpha 5 subunit (fibronectin receptor, alpha polypeptide) C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha 6 subunit C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha 7 subunit C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha 8 subunit C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha 9 subunit C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha 10 subunit C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha 11 subunit C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha D subunit C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha E subunit (antigen CD103, human mucosal lymphocyte antigen 1; alpha polypeptide) C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha L subunit (antigen CD11A (p180), lymphocyte function-associated antigen 1; alpha polypeptide)
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||
integrin, alpha M subunit (complement component 3 receptor 3 subunit) C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, alpha V subunit
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||
integrin, alpha X subunit (complement component 3 receptor 4 subunit) C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, beta 1 subunit (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||
integrin, beta 2 subunit (complement component 3 receptor 3 and 4 subunit)
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||
integrin, beta 3 subunit (platelet glycoprotein IIIa, antigen CD61) C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, beta 4 subunit C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, beta 5 subunit C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, beta 6 subunit C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, beta 7 subunit C Show summary »« Hide summary
|
||||||||||||||||||||
integrin, beta 8 subunit C Show summary »« Hide summary
|
* Key recommended reading is highlighted with an asterisk
Anthis NJ, Campbell ID. (2011) The tail of integrin activation. Trends Biochem. Sci., 36 (4): 191-8. [PMID:21216149]
Bledzka K, Smyth SS, Plow EF. (2013) Integrin αIIbβ3: from discovery to efficacious therapeutic target. Circ. Res., 112 (8): 1189-200. [PMID:23580774]
Cavallaro U, Dejana E. (2011) Adhesion molecule signalling: not always a sticky business. Nat. Rev. Mol. Cell Biol., 12 (3): 189-97. [PMID:21346732]
* Clemetson KJ. (2017) The origins of major platelet receptor nomenclature. Platelets, 28 (1): 40-42. [PMID:27715379]
Cox D, Brennan M, Moran N. (2010) Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov, 9 (10): 804-20. [PMID:20885411]
* Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC. (2000) Structural basis of collagen recognition by integrin alpha2beta1. Cell, 101 (1): 47-56. [PMID:10778855]
Hamaia S, Farndale RW. (2014) Integrin recognition motifs in the human collagens. Adv. Exp. Med. Biol., 819: 127-42. [PMID:25023172]
* Hamidi H, Pietilä M, Ivaska J. (2016) The complexity of integrins in cancer and new scopes for therapeutic targeting. Br. J. Cancer, 115 (9): 1017-1023. [PMID:27685444]
Hogg N, Patzak I, Willenbrock F. (2011) The insider's guide to leukocyte integrin signalling and function. Nat. Rev. Immunol., 11 (6): 416-26. [PMID:21597477]
* Horton ER, Humphries JD, James J, Jones MC, Askari JA, Humphries MJ. (2016) The integrin adhesome network at a glance. J. Cell. Sci., 129 (22): 4159-4163. [PMID:27799358]
Hu P, Luo BH. (2013) Integrin bi-directional signaling across the plasma membrane. J. Cell. Physiol., 228 (2): 306-12. [PMID:22767296]
Humphries JD, Byron A, Humphries MJ. (2006) Integrin ligands at a glance. J. Cell. Sci., 119 (Pt 19): 3901-3. [PMID:16988024]
Hynes RO. (2002) Integrins: bidirectional, allosteric signaling machines. Cell, 110 (6): 673-87. [PMID:12297042]
Ivaska J, Heino J. (2011) Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu. Rev. Cell Dev. Biol., 27: 291-320. [PMID:21663443]
Kim C, Ye F, Ginsberg MH. (2011) Regulation of integrin activation. Annu. Rev. Cell Dev. Biol., 27: 321-45. [PMID:21663444]
* Ley K, Rivera-Nieves J, Sandborn WJ, Shattil S. (2016) Integrin-based therapeutics: biological basis, clinical use and new drugs. Nat Rev Drug Discov, 15 (3): 173-83. [PMID:26822833]
* Manninen A, Varjosalo M. (2017) A proteomics view on integrin-mediated adhesions. Proteomics, 17 (3-4). [PMID:27723259]
Park YK, Goda Y. (2016) Integrins in synapse regulation. Nat. Rev. Neurosci., 17 (12): 745-756. [PMID:27811927]
* Raab-Westphal S, Marshall JF, Goodman SL. (2017) Integrins as Therapeutic Targets: Successes and Cancers. Cancers (Basel), 9 (9). [PMID:28832494]
Roca-Cusachs P, Iskratsch T, Sheetz MP. (2012) Finding the weakest link: exploring integrin-mediated mechanical molecular pathways. J. Cell. Sci., 125 (Pt 13): 3025-38. [PMID:22797926]
Shattil SJ, Kim C, Ginsberg MH. (2010) The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol., 11 (4): 288-300. [PMID:20308986]
Weber GF, Bjerke MA, DeSimone DW. (2011) Integrins and cadherins join forces to form adhesive networks. J. Cell. Sci., 124 (Pt 8): 1183-93. [PMID:21444749]
Wickström SA, Fässler R. (2011) Regulation of membrane traffic by integrin signaling. Trends Cell Biol., 21 (5): 266-73. [PMID:21440440]
Wu X, Reddy DS. (2012) Integrins as receptor targets for neurological disorders. Pharmacol. Ther., 134 (1): 68-81. [PMID:22233753]
1. Anderson NA, Campos S, Butler S, Copley RCB, Duncan I, Harrison S, Le J, Maghames R, Pastor-Garcia A, Pritchard JM et al.. (2019) Discovery of an Orally Bioavailable Pan αv Integrin Inhibitor for Idiopathic Pulmonary Fibrosis. J. Med. Chem., 62 (19): 8796-8808. [PMID:31497959]
2. Barrett TN, Taylor JA, Barker D, Procopiou PA, Thompson JDF, Barrett J, Le J, Lynn SM, Pogany P, Pratley C et al.. (2019) Profile of a Highly Selective Quaternized Pyrrolidine Betaine αvβ6 Integrin Inhibitor-(3S)-3-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenyl)-4-((1S and 1R,3R)-1-methyl-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-ium-1-yl)butanoate Synthesized by Stereoselective Methylation. J. Med. Chem., 62 (16): 7543-7556. [PMID:31381331]
3. Bhaskar V, Fox M, Breinberg D, Wong MH, Wales PE, Rhodes S, DuBridge RB, Ramakrishnan V. (2008) Volociximab, a chimeric integrin alpha5beta1 antibody, inhibits the growth of VX2 tumors in rabbits. Invest New Drugs, 26 (1): 7-12. [PMID:17786386]
4. Bhaskar V, Zhang D, Fox M, Seto P, Wong MH, Wales PE, Powers D, Chao DT, Dubridge RB, Ramakrishnan V. (2007) A function blocking anti-mouse integrin alpha5beta1 antibody inhibits angiogenesis and impedes tumor growth in vivo. J Transl Med, 5: 61. [PMID:18042290]
5. Breitenstein W, Huerzeler M, Kelly T, Mancuso R, Schneider G, Weitz-Schmidt G. (2015) Small molecule lfa-1 inhibitors. Patent number: WO2015189265. Assignee: Allocyte Pharmaceuticals Ag. Priority date: 12/06/2014. Publication date: 17/12/2015.
6. Coller BS, Knight DM. (1999) Method of antithrombotic therapy using anti-GPIIb/IIIa antibodies or fragments thereof, including c7E3. Patent number: US5976532. Assignee: Centocor, Inc.. Priority date: 18/05/1988. Publication date: 02/11/1999.
7. Derkach DN, Wadekar SA, Perkins KB, Rousseau E, Dreiza CM, Cheung-Flynn J, Ramos HC, Ugarova TP, Sheller MR. (2010) RGD-dependent binding of TP508 to integrin alphavbeta3 mediates cell adhesion and induction of nitric oxide. Thromb. Haemost., 104 (1): 172-82. [PMID:20508901]
8. Eldred CD, Evans B, Hindley S, Judkins BD, Kelly HA, Kitchin J, Lumley P, Porter B, Ross BC, Smith KJ et al.. (1994) Orally active non-peptide fibrinogen receptor (GpIIb/IIIa) antagonists: identification of 4-[4-[4-(aminoiminomethyl)phenyl]-1-piperazinyl]-1-piperidineacetic acid as a long-acting, broad-spectrum antithrombotic agent. J. Med. Chem., 37 (23): 3882-5. [PMID:7966149]
9. Goodman SL, Hölzemann G, Sulyok GA, Kessler H. (2002) Nanomolar small molecule inhibitors for alphav(beta)6, alphav(beta)5, and alphav(beta)3 integrins. J. Med. Chem., 45 (5): 1045-51. [PMID:11855984]
10. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, Pellicoro A, Raschperger E, Betsholtz C, Ruminski PG et al.. (2013) Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med., 19 (12): 1617-24. [PMID:24216753]
11. Hutchinson JH, Halczenko W, Brashear KM, Breslin MJ, Coleman PJ, Duong LT, Fernandez-Metzler C, Gentile MA, Fisher JE, Hartman GD et al.. (2003) Nonpeptide alphavbeta3 antagonists. 8. In vitro and in vivo evaluation of a potent alphavbeta3 antagonist for the prevention and treatment of osteoporosis. J. Med. Chem., 46 (22): 4790-8. [PMID:14561098]
12. Jardieu PM, Presta LG. (2004) Method of treatment using humanized anti-CD11a antibodies. Patent number: US6703018. Assignee: Genentech, Inc.. Priority date: 27/11/1996. Publication date: 19/03/2004.
13. Lee Y, Kang DK, Chang SI, Han MH, Kang IC. (2004) High-throughput screening of novel peptide inhibitors of an integrin receptor from the hexapeptide library by using a protein microarray chip. J Biomol Screen, 9 (8): 687-94. [PMID:15634795]
14. Lin Kc, Ateeq HS, Hsiung SH, Chong LT, Zimmerman CN, Castro A, Lee WC, Hammond CE, Kalkunte S, Chen LL et al.. (1999) Selective, tight-binding inhibitors of integrin alpha4beta1 that inhibit allergic airway responses. J. Med. Chem., 42 (5): 920-34. [PMID:10072689]
15. Liu G, Link JT, Pei Z, Reilly EB, Leitza S, Nguyen B, Marsh KC, Okasinski GF, von Geldern TW, Ormes M et al.. (2000) Discovery of novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 1. Identification of an additional binding pocket based on an anilino diaryl sulfide lead. J. Med. Chem., 43 (21): 4025-40. [PMID:11052808]
16. Marcinkiewicz C, Weinreb PH, Calvete JJ, Kisiel DG, Mousa SA, Tuszynski GP, Lobb RR. (2003) Obtustatin: a potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer Res., 63 (9): 2020-3. [PMID:12727812]
17. Matsuno H, Stassen JM, Vermylen J, Deckmyn H. (1994) Inhibition of integrin function by a cyclic RGD-containing peptide prevents neointima formation. Circulation, 90 (5): 2203-6. [PMID:7955174]
18. Miller MW, Basra S, Kulp DW, Billings PC, Choi S, Beavers MP, McCarty OJ, Zou Z, Kahn ML, Bennett JS et al.. (2009) Small-molecule inhibitors of integrin alpha2beta1 that prevent pathological thrombus formation via an allosteric mechanism. Proc. Natl. Acad. Sci. U.S.A., 106 (3): 719-24. [PMID:19141632]
19. No authors listed. (2004) Natalizumab: AN 100226, anti-4alpha integrin monoclonal antibody. Drugs R D, 5 (2): 102-7. [PMID:15293871]
20. Ponath PD, Ringler DJ, ST, Newman W, Saldanha J, Bendig MM. (2006) Humanized immunoglobulin reactive with α4β7 integrin. Patent number: US7147851 B1. Assignee: Millennium Pharmaceuticals, Inc.. Priority date: 15/08/1996. Publication date: 12/12/2006.
21. Scarborough RM, Gretler DD. (2000) Platelet glycoprotein IIb-IIIa antagonists as prototypical integrin blockers: novel parenteral and potential oral antithrombotic agents. J. Med. Chem., 43 (19): 3453-73. [PMID:10999999]
22. Trstenjak U, Ilaš J, Kikelj D. (2013) Low molecular weight dual inhibitors of factor Xa and fibrinogen binding to GPIIb/IIIa with highly overlapped pharmacophores. Eur J Med Chem, 64: 302-13. [PMID:23644213]
23. Wu H, Gao C. (2010) Eph receptor Fc variants with enhanced antibody dependent cell-mediated cytotoxicity activity. Patent number: US7659374. Assignee: Medimmune, Llc. Priority date: 16/08/2004. Publication date: 09/02/2010.
24. Yao N, Xiao W, Wang X, Marik J, Park SH, Takada Y, Lam KS. (2009) Discovery of targeting ligands for breast cancer cells using the one-bead one-compound combinatorial method. J. Med. Chem., 52 (1): 126-33. [PMID:19055415]
25. Yasuda T, Gold HK, Kohmura C, Guerrero L, Yaoita H, Fallon JT, Bunting S, Collen D. (1993) Intravenous and endobronchial administration of G4120, a cyclic Arg-Gly-Asp-containing platelet GPIIb/IIIa receptor-blocking pentapeptide, enhances and sustains coronary arterial thrombolysis with rt-PA in a canine preparation. Arterioscler. Thromb., 13 (5): 738-47. [PMID:8485125]
26. Zhong M, Gadek TR, Bui M, Shen W, Burnier J, Barr KJ, Hanan EJ, Oslob JD, Yu CH, Zhu J et al.. (2012) Discovery and Development of Potent LFA-1/ICAM-1 Antagonist SAR 1118 as an Ophthalmic Solution for Treating Dry Eye. ACS Med Chem Lett, 3 (3): 203-6. [PMID:24900456]
Richard W. Farndale
Gavin E. Jarvis |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Fabbro D, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA; CGTP Collaborators. (2019) The Concise Guide to PHARMACOLOGY 2019/20: Catalytic receptors. Br J Pharmacol. 176 Suppl 1: S247-S296.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Integrin ligands
Collagen is the most abundant protein in metazoa, rich in glycine and proline residues, made up of cross-linked triple helical structures, generated primarily by fibroblasts. Extensive post-translational processing is conducted by prolyl and lysyl hydroxylases, as well as transglutaminases. Over 40 genes for collagen-α subunits have been identified in the human genome. The collagen-binding integrins α1β1, α2β1, α10β1 and α11β1 recognise a range of triple-helical peptide motifs including GFOGER (O = hydroxyproline), a synthetic peptide derived from the primary sequence of collagen I (COL1A1 (COL1A1, P02452)) and collagen II (COL2A1 (COL2A1, P02458)).
Laminin is an extracellular glycoprotein composed of α, β and γ chains, for which five, four and three genes, respectively, are identified in the human genome. It binds to α1β1, α2β1, α3,β1, α7β1 and α6β4 integrins10.
fibrinogen (FGA, FGB, FGG, P02671, P02679, P02675) is a glycosylated hexamer composed of two α (FGA, P02671), two β (FGB, P02675) and two γ (FGG, P02679,) subunits, linked by disulphide bridges. It is found in plasma and alpha granules of platelets. It forms cross-links between activated platelets mediating aggregation by binding αIIbβ3; proteolysis by thrombin cleaves short peptides termed fibrinopeptides to generate fibrin, which polymerises as part of the blood coagulation cascade.
fibronectin (FN1, P02751) is a disulphide-linked homodimer found as two major forms; a soluble dimeric form found in the plasma and a tissue version that is polymeric, which is secreted into the extracellular matrix by fibroblasts. Splice variation of the gene product (FN1, P02751) generates multiple isoforms.
vitronectin (VTN, P04004) is a serum glycoprotein and extracellular matrix protein which is found either as a monomer or, following proteolysis, a disulphide -linked dimer.
osteopontin (SPP1, P10451) forms an integral part of the mineralized matrix in bone, where it undergoes extensive post-translation processing, including proteolysis and phosphorylation.
von Willebrand factor (VWF, P04275) is a glycoprotein synthesised in vascular endothelial cells as a disulphide-linked homodimer, but multimerises further in plasma and is deposited on vessel wall collagen as a high molecular weight multimer. It is responsible for capturing platelets under arterial shear flow (via GPIb) and in thrombus propagation (via integrin αIIbβ3).